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Abstract—The characteristics of Big Data - often dubbed
the 3V’s for volume, velocity, and variety - will continue to
outpace the ability of computational systems to process, store, and
transmit meaningful results. Traditional techniques for dealing
with large datasets often include the purchase of larger systems,
greater human-in-the-loop involvement, or through complex
algorithms. We are investigating the use of sampling to mitigate
these challenges, specifically sampling large graphs. Often, large
datasets can be represented as graphs where data entries may be
edges, and vertices may be attributes of the data. In particular,
we present the results of sampling for the task of link prediction.
Link prediction is a process to estimate the probability of a
new edge forming between two vertices of a graph, and it has
numerous application areas in understanding social or biological
networks. In this paper we propose a series of techniques for
the sampling of large datasets. In order to quantify the effect
of these techniques, we present the quality of link prediction
tasks on sampled graphs, and the time saved in calculating link
prediction statistics on these sampled graphs.

I. INTRODUCTION

The volume of information passing through today’s data
systems often outpaces our ability to compute meaningful
results. Storing all of this data will quickly stress the limits of
storage systems. Memory issues also accompany this volume
of data, as most useful predictive analytics require loading all
relevant data into memory. Up-front data reduction, including
sampling, would help to alleviate both of these issues, but
sampling will have some effect on the results of any predictive
analytic done on the data. The focus of our study is to explore
the effects of a variety of sampling techniques on a specific
predictive analytic and type of data: link prediction on large
graphs.

Large graphs can often represent the data we collect, such
as social networks, computer networks, epidemiological data,
or any data that shows relationships between entities. One
particularly interesting anticipatory analytic is link prediction
[1], where we predict that two entities in a graph will form a
relationship in the near future. Link prediction has been used
among a diverse array of applications [2], including prediction
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in networks of web pages [3] and social networks [4]. The
methods have also been applied to collaborative filtering for
recommender systems [5]. Across these varied applications,
accurately forecasting future activity is important, and link
prediction is a prime example of an anticipatory analytic.

Sampling methods on large graphs have previously been in-
vestigated, but not in the context of predictive analytics. In [6],
the authors describe a variety of sampling techniques and
quantify the effect of sampling on the preservation of several
graph features, including degree distributions, distributions of
singular values, and hop-plots. The authors in [7] propose a
random sampling technique in order to approach the graph par-
tition optimization problem. In [8], the authors present a series
of sampling techniques to perform frequent subgraph mining.
Random walk and jump sampling methods are discussed in [9],
also for subgraph mining applications. Vertex-based sampling
methods, such as random node sampling [6], [8] or wedge
sampling [10], have also been shown to preserve various graph
features or clustering coefficient of a graph. Other techniques
for sampling to preserve graph clusters are discussed in [11].
These studies highlight the growing interest in sampling for
big data applications.

In this study, we sample several simulated graphs with
different properties and perform link prediction. We first
describe the link prediction methods we use in Section II,
followed by a description of sampling methods in Section
III. Section IV describes the methods we used to generate
simulated graphs and the steps we take to sample and perform
link prediction on these graphs. Finally, we show and discuss
the results from these simulations in Section V.

II. LINK PREDICTION METHODS

There are two modes of operation for link prediction that are
used in the experiments in this study. The first involves com-
puting statistics of a graph based on data up to a certain point
in time, and scoring the possible edges in the near future [12].
We implemented three link prediction methods in this mode
of operation: common neighbors, Jaccard’s coefficient, and
low-rank approximation. All methods were chosen for both
their computational efficiency and their ability to outperform
chance. Both common neighbors and Jaccard’s coefficient are
based on vertex neighborhoods and work based on the intuition
that two nodes are more likely to form a link in the future if
they have many neighbors in common.
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The common neighbors statistic is simply the number of
neighbors two vertices have in common and is found by
calculating the inner product of the adjacency matrix of the
graph in question. Jaccard’s coefficient starts with the common
neighbors statistic and then takes into account the degrees of
each vertex:

J(i, j) =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

(1)

where Γ(i) and Γ(j) are the set of neighbors of vertices i and
j, respectively. Here we are taking the number of neighbors i
and j have in common, and dividing by the total number of
neighbors of i and j [12].

Our final link prediction method for this mode of operation
is the low-rank approximation. In this method, using small
values of k, we compute the rank-k matrix, Mk, that best
approximates the full adjacency matrix, M , by performing a
singular value decomposition on the adjacency matrix. We then
score the potential edges by calculating the inner product on
Mk, which is essentially the common neighbors calculation on
a low-rank matrix, Mk, instead of the full matrix M . The low-
rank approximation also is also particularly good for this study
because it applies significant noise reduction to the original
large graph, while preserving most of the structure in the graph
[12].

We can make use of more fine-grained temporal information
through the use of another mode of operation. Instead of pre-
dicting links in the near future based on one graph representing
the relevant past, we predict links at specific times in the
future given a sequence graphs at different time points in the
past. Here, performing a tensor decomposition of the data will
allow us to predict future links by extrapolating the temporal
factors [13]. This method provides a higher degree of temporal
resolution than performing edge-scoring or aggregate statistics
on the same graph.

This method uses a three-dimensional tensor, where each
cell T (i, j, t) represents a connection between two vertices i,j
at a point in time t. Because this information is represented
using a tensor, it is possible to perform CP decomposition to
factor out the rank-one matrices that represent the temporal
patterns of the graph. The Holt-Winters additive forecasting
method, allows us to create a new rank-one matrix, where
each value in the matrix represents a predicted time step. This
rank-one matrix is used to construct a new tensor containing
predicted edges for future time steps. In theory, we could
predict edges infinitely into the future, but the performance
will diminish the further out we predict [13].

III. SAMPLING METHODS

In the paper, we propose a variety of sampling methods
based on a search of techniques in the literature. For the
purpose of the discussion of sampling methods, we describe
techniques applied to static graphs (i.e, graphs that are not
changing through the sampling process). Consider a graph
G = (V,E) where V and E correspond to the vertices and
edges respectively. The number of edges in G is given by

|E| and the number of vertices given by |V |. The degree of
a vertex vi ∈ V is the sum of the edges incident to vi and
is represented as d(vi). Sampling a graph, within the context
of this paper, is to generate a new graph G′ = (V,E′) where
E′ ⊆ E and |E′| ≤ |E|. The ratio of |E|/|E′| is referred to as
the desired sampling factor k. For example, a sampling factor
of k = 4 implies that the sampled graph G′ will have 25%
of the total edges in G. Given a sampling factor and graph,
there are a variety of methods in which the sampling may take
place.

A. Random Edge Sampling

Random edge sampling is the simplest form of sampling a
graph and requires the least amount of computation. Given a
desired sampling factor k, the sampled graph G′ = (V,E′)
is determined by sampling an edge with probability 1

k . The
expected number of output edges, |E′| will be approximately
k|E|. Intuitively, this sampling method is suitable for tasks
in which the relative degree of nodes is important, such as
ranking popular users in a social media graph, as it tends to
bias high-degree vertices [6].

B. Popularity Based Sampling

A slightly more involved sampling method makes use of the
degrees of the vertices between which an edge is present. The
idea is that edges between popular vertices (vertices with high
degree) should be sampled at a lower rate than edges between
unpopular vertices. This corrects for the bias for high-degree
vertices introduced by random sampling. In order to implement
this sampling method, each edge eij with connecting vertices
vi and vj is kept with a probability proportional to the degrees
of vi and vj , d(vi) and d(vj) respectively. Specifically, for
an edge eij we compute the probability of sampling eij as

1√
d(vi)d(vj)

. Thus, if the edge is between two popular nodes,

the probability that we keep the edge is relatively low.

C. Random Area Sampling

Random area sampling [8] is a “snowball” sampling method
in which a set of random seed vertices are selected and areas
(edges and vertices) connected to these seed vertices are kept,
while the others are discarded. For a starting set of vertices
V ′, all the vertices adjacent to V ′ are added to V ′ and all the
edges are kept until the desired size of the sampled output is
reached. Determining the number of input seed vertices can be
done by estimating the maximum size of the connected areas
and selecting the number of vertices that would result in the
desired output graph size. Random area sampling works well
in instances where we want to maintain common neighbors or
sections of the original graph in their entirety.

D. Random Jump Sampling

Random walks are a popular method for sampling large
graphs. In a random walk, certain seed vertices are selected
and neighbors are chosen randomly. The edges connecting the
selected neighbors form the set of edges in the sampled graph,
and the neighbors become the new seed vertices. However,



Fig. 1. Example of wedge sampling being performed on a 12-node graph.
A set of vertices are chosen at random and wedges are formed by randomly
selecting 2 edges incident to the selected vertices to generate the final sampled
graph.

this technique may get stuck at vertices with no out-edges or
at vertices that are a part of isolated components. In order
to avoid this problem, we use the random jump sampling.
Random jump sampling is similar to random walk sampling
except that along a given walk, the walk may terminate and
“jump” to a random vertex in G. Specifically, one picks a set
of seed vertices, V ′, with degree greater than one, and either
continue the walk by selecting neighbors of the vertices in V ′

or jump to a random vertex in V with probability p. The value
of p is often set to 0.15 [6].

E. Wedge Sampling

A variant of the wedge sampling algorithm proposed in [10]
has also been implemented. In this algorithm, a number of
random vertices from V are selected and two incident edges to
each of these vertices are selected at random to create wedges
centered at the vertices from V . This method is then repeated
until the desired output graph G′ is generated, where each
of the wedge edges form the edges in E′. An example of
wedge sampling is depicted in Fig. 1. Wedge sampling has
been shown to preserve the clustering coefficient and similar
properties of a graph [10].

IV. EXPERIMENTAL SETUP

In this paper, we show the results of link prediction in
several simulated dynamic graphs, each with about 10,000
vertices. Each graph is based on the Block Two-Level Erdős–
Rényi (BTER) model [14], which was developed to address
shortcomings of current graph generators: specifically, the
lack of clustering behavior. This model begins by splitting
a vertex set into many subsets of various sizes, and making
each of these subsets densely connected. The subsets are then
randomly connected to one another, with external connections
being more likely for larger clusters. The generative model
is parameterized by a degree distribution and the average
clustering coefficient of a vertex for each possible degree.

We consider an undirected version of the graph with no self-
loops, where a graph is made undirected via the “clip-and-
flip” procedure suggested in [15] (i.e., the upper-triangular
part of the adjacency matrix is maintained when it is made
symmetric).

To simulate growth of the network, the graph at time t+1 is
created based on the graph at time t. Specifically, to determine
whether vi and vj in V will share an edge in G(t + 1),
the number of common neighbors of vi and vj in G(t) are
computed, and normalized by

√
d(vi)d(vj) (this is the cosine

similarity between the rows of the adjacency matrix associated
with vi and vj). New edges are then added with probability
proportional to these values. This will account for about 70%
of the new edges at time t + 1, and is meant to simulate
connections made between a large proportion of mutual ac-
quaintances. The other 30% are created by generating a new
BTER graph with the same parameters, and randomly selecting
a subset of the edges. This accounts for the possibility of
“chance” establishment of connections, without necessarily
having many present connections in common.

For each graph, we generate 10 time steps and predict new
edges in the 11th. We consider two different parameterizations
of the BTER model, where one has a heavier tail in its
degree distribution and a higher average degree than the other.
One initial graph is generated with an average degree of
approximately 17 and a powerlaw exponent of about −1.4
(i.e., the number of nodes with degree i is approximately
proportional to i−1.4), while the other initial graph’s expected
degree is roughly 34, with a powerlaw exponent of about
−1.8. For each parameterization, we considered 10 random
instantiations.

For each of the 5 sampling methods, we sample the graphs
at rates where the number of edges is reduced by a power of
two, from 1/2 to 1/64. We set the number of seed vertices
in the random jump to be approximately 0.15|E′|, or the
probability of a jump times the number of desired edges in
the sampled graph. Sampling is performed on the integrated
graph over the entire time period (i.e., all edges that are present
over the 10 training time steps), and the temporal activity
records of the sampled edges are preserved. In both the low-
rank approximation and tensor link prediction statistics, we
used rank-10 matrices and tensors, respectively. Predictive
performance is evaluated based on the receiver operating
characteristic (ROC) curve over all possible edges where, over
the training period, (1) the associated vertices were active,
and (2) there was not already an edge present. In order to
analyze the tradeoffs the different sampling techniques offer,
we also recorded the amount of time required to compute
the prediction statistic. All sampling and link prediction was
done using the MIT SuperCloud [16] architecture at the MIT
Lincoln Laboratory. This system consists of approximately 300
nodes with dual-socket 16-core AMD processors and 128 GB
of RAM per node.



Fig. 2. Performance and timing for running various link prediction methods over two types of graphs. Each row shows results for the common neighbors,
Jaccard’s coefficient, low-rank approximation, and tensor link prediction methods, respectively. The first two columns contain plots of the area under the ROC
curve across all trials of light-tail (first column) and heavy-tail (second column) distribution graphs. The third column shows the time to compute the link
prediction statistic on all trials of the heavy-tail distribution graphs, which had timing that was representative for all graph types.

V. RESULTS AND DISCUSSION

Detection performance using all link prediction methods and
all sampling techniques is illustrated in Fig. 2. We run the link
prediction algorithm for each sample and computed the ROC
curve. The area under the ROC curve (AUC) is calculated
to summarize detection performance, where an AUC of 1

indicates perfect detection and an AUC of 0.5 indicated that
the statistic is powerless for discrimination. For each of the
10 instantiations of the two graphs, performance is averaged
over all samples taken. In addition, the error bars in the plots
show performance at the 25th and 75th percentiles.

While prediction performance primarily decreases as the



graphs are more aggressively sampled, there are some in-
teresting phenomena that occur with some of the methods.
First, with a few exceptions, performance with popularity-
based sampling and wedge sampling track each other fairly
closely, and in fact performance in both increase slightly at
low sampling levels. We suspected this may be due to more
vertices becoming isolated after sampling, since prediction
is only scored for vertices that are active during the train-
ing period. Upon closer inspection, however, the number of
isolated vertices using these methods did not substantially
increase until sampling to 1/32–1/64. This phenomenon may
be due to a greater number of false positives being associated
with high-degree vertices in link prediction on the unsampled
graph. After the slight increase in performance, the common
neighbors and Jaccard’s coefficient had a steep descent in
performance in the popularity-based and wedge sampling,
which slows at the 1/64 sampling rate. This may be due
to the high number of isolated vertices left at this rate.
The percentage of isolated vertices in the unsampled light-
and heavy-tailed graphs were approximately 25% and 14%,
respectively. Popularity sampling at the 1/64 level brought this
to 45% and 19% on average, and wedge sampling brought the
light-tailed graph to about 30% at the 1/64 level, but did not
increase the number of isolated vertices significantly in the
heavy-tailed graph.

The similarity in performance between these two methods
is likely due to the fact that both sample fewer edges from
higher-degree vertices than with random edges sampling. The
largest deviation in performance between the two methods
is in the most aggressive sampling levels for low-rank inner
product on the light-tailed graph. This may be due to wedge
sampling finding two-hop paths, which, if they are not already
closed, have a higher-than-average chance of creating a new
edge between the external vertices.

Random edge sampling and random jump sampling also
have similar performance characteristics to one another. One
interesting result is that random edge sampling outperforms
random jump sampling for link prediction based on com-
mon neighbors and Jaccard’s coefficient, but the opposite
is typically true for the low-rank matrix statistics (low-rank
approximation and tensor decomposition). This could be due
to the relationship between random walks on the graph and
the space of the eigenvectors of the adjacency matrix [17].

The remaining sampling method, random area sampling,
has a different performance characteristic. For tensor decom-
positions, performance degrades extremely quickly, and has
significant variation over samples. For the low-rank approxi-
mation, performance is somewhat similar to the other methods.
For common neighbors and Jaccard’s coefficient, however, we
see a faster initial reduction in performance. This reduction
remains steady as fewer edges are retained and eventually
outperforms the other methods. This may be due to the
significant number of isolated vertices produced by random
area sampling. At the 1/8 sampling level, where most other
sampling methods begin to decrease in performance, random
area sampling leaves more than 50% of the vertices in each

graph isolated.
Between the lighter- and heavier-tailed graphs, results are

similar with a few exceptions. Random area sampling performs
slightly better in graph with the lighter-tailed degree distribu-
tion for all of the methods based on local statistics from [12].
This could be because, with a lighter-tailed degree distribution,
more of the vertices will have low degree, and therefore the
sample will remain more localized when using this method.
The unsampled light-tailed graph has more isolated vertices
than the heavy-tailed graph, which is consistent with this
interpretation.

There are also several interesting aspects of the running
time results. (Results are shown for the heavier-tailed graph,
but the trends are similar for those with lighter tails.) For
both common neighbors and Jaccard’s coefficient, all methods
except random area sampling reduce their running time rather
slowly until far fewer edges are retained. After this point,
there is a steady decrease in running time, as there is with
random areas at all sampling levels. The steeper descent in
timing for random area sampling most likely is due to the
larger number of isolated vertices that it leaves behind. The
low-rank approximation has a strange timing characteristic,
where the timing for samples with fewer edges have seemingly
erratic trends. This may be due to changes in the distribution
of the eigenvalues, which can alter the convergence rate of
the eigensolver when computing the 10-dimensional subspace.
Random area sampling does not follow this trend, where the
number of isolated vertices may reduce the dimensionality of
the adjacency matrix enough to reduce the time to compute the
10-dimensional subspace. Finally, the tensor decomposition
method, which uses the Matlab Tensor Toolbox [18], sees a
greater stall in the timing decrease in the methods other than
random area sampling.

VI. CONCLUSION

In our experiments, we sampled two types of graphs using
five sampling techniques and performed four link prediction
methods. We found the performance of both popularity based
and wedge sampling were very close. They were characterized
by a small initial increase at low sampling rates (1/2–1/8),
followed by a sharp decrease at higher sampling rates. Perfor-
mance for random edge and random jump sampled similarly
seemed to pair, but we saw no initial increase in performance,
and a slower decrease in performance at higher sampling
rates. The performance of random area sampling saw the
smallest decrease in all link prediction methods except the
tensor method, however this may be due to the large number
of isolated vertices that remained after sampling, which were
not taken into account for link prediction performance. As
expected, sampling the graph decreased the amount of time
to compute the link prediction statistic for most methods. The
exception is the low-rank approximation, where we suspect
a change in the distribution of eigenvalues due to sampling
slows down the calculation of low-rank subspace.

For the task of link prediction, we found that both random
edge and random jump sampling seemed to have the most



consistent results, even at high sampling rates. We would
propose that, if a high sampling rate were required for a link
prediction task, either random edge or random jump sampling
would be the best choice of these five. We would also like to
note that both popularity-based and wedge sampling delivers
a higher performance in link prediction at low sampling rates
than no sampling at all, so this may be a useful technique to
improve performance even when sampling is not required.

There are several avenues of investigation to pursue from
this point. Next steps will include determining the impact of
sampling on performance as other parameters of the graph
are changed, such as the size, the temporal growth pattern, or
the generative model. In addition, the same sampling methods
will be studied in the context of other anticipatory analytics,
and the detection of emerging communities in particular [19]
and spectral fingerprinting techniques such as those proposed
in [20]. Ultimately, we intend to develop a framework for
choosing sampling methods based on performance needs and
computational constraints, within the context of a big data
analytics architecture, such as [21].
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