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ABSTRACT

Precise estimation of synchronization parameters is essential for re-
liable data detection in digital communications and phase errors can
result in significant performance degradation. The literature on es-
timation of synchronization parameters, including the carrier fre-
quency offset, are based on approximations or heuristics because
the optimal estimation problem is analytically intractable for most
cases of interest. We develop an online Bayesian inference proce-
dure for blind estimation of the frequency offset, for arbitrary signal
constellations. Our unified approach is built on a sequential infer-
ence procedure that leverages a novel result on conjugacy of the von
Mises and Gaussian distributions. This conjugacy allows for an eas-
ily computable, closed form parametric expression for the posterior
distribution of the parameters given the streaming data, in which hy-
perparameters are recursively updated, making the optimal sequen-
tial estimation problem mathematically tractable. Our algorithm is
computationally efficient and can be implemented in real-time with
very low memory requirements. Numerical experiments are also
provided and show that our methods outperform heuristic sequen-
tial carrier frequency offset estimators.

Index Terms— Sequential Estimation, Blind Synchronization,
Frequency Offset Estimation, Bayesian Inference, Phase tracking.

1. INTRODUCTION

Synchronization plays a critical role in attaining reliable digital
transmission through wireless channels. Timing and frequency off-
sets need to be estimated well in order to align the received signal
appropriately at the receiver before data detection. Optimal estima-
tors for synchronization parameters do not exist and as a result, most
of the existing literature uses approximate maximum-likelihood
techniques and heuristics [1, 2]. Even in the simpler setting, where
the amplitude is known and constant, optimal estimation of the
frequency offset is not known in closed-form and only approxi-
mate maximum-likelihood (ML) and maximum a posterior (MAP)
approaches are tractable [3].

In digital communications, there is often a mismatch between
the local oscillator of the transmitter and the receiver. This translates
to a carrier frequency error when downconverting at the receiver,
which effectively rotates the signal constellation from sample-to-
sample. For small carrier frequency errors, ∆f , the constellation
rotates slowly and tracking its rotation rate is required for successful
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data detection. Popular methods for carrier synchronization include
the use of a phase-lock loop (PLL), which often requires hardware
implementation or waveform-level block-based processing in soft-
ware, both of which can be expensive. Furthermore, the PLL ap-
proach often requires pilot data for higher order modulations. A
synchronization approach based on model-based sequential Monte
Carlo (SMC) techniques was proposed in [4] to estimate the timing
offset and the data, but is heavily dependent on known state-space
dynamic models governing the evolution of the parameters, several
approximations are made to make the SMC algorithm tractable, and
is computationally expensive as the complexity of the SMC grows
exponentially fast [4].

In contrast, our approach is not data-aided (i.e., blind), works for
arbitrary signal modulations, operates at the sample-level, is simple
to implement, and has very low latency and storage requirement as
it proceeds on-the-fly in an online fashion. In this paper, we pro-
pose a novel sequential Bayesian inference framework to estimate
the unknown carrier frequency offset and the parameters of the sig-
nal modulation.

We leverage ideas from the sequential inference approach of [5]
to derive a sequential Bayesian algorithm to estimate the frequency
offset and the constellation parameters given streaming non-i.i.d. re-
ceived samples. This is a challenging machine learning problem
primarily because of the temporal dynamics of the data generation
process. Our method exploits the temporal relation from sample-
to-sample and uses the online clustering and parameter estimation
framework developed in [5]. Solid empirical performance is ob-
served for slow enough rotation rates in our experiments.

2. SEQUENTIAL BAYESIAN INFERENCE FRAMEWORK

Here, we review the adaptive sequential updating and greedy search
(ASUGS) framework of [5] for online clustering and parameter es-
timation. Define the unknown parameters θ = (µ1, . . . , µK , δ),
where δ ∈ [0, 2π) is the unknown rotation offset and µh is the
mean of each class (i.e., cluster center). Let the observations be
given by yi ∈ Rd, and γi to denote the class label of the ith ob-
servation (a latent variable). We define the available information at
time i as y(i) = {y1, . . . ,yi} and γ(i−1) = {γ1, . . . , γi−1}. The
ASUGS algorithm is as follows. Set γ1 = 1 and k1 = 1. Calculate
π(θ1|y1, γ1). For i ≥ 2,

1. Choose best class label for yi:

γi ∼ {q(i)
h } =

{
Li,h(yi)πi,h∑
h′ Li,h′(yi)πi,h′

}
.



2. Update the posterior distribution using yi, γi:

π(θγi |y
(i), γ(i)) ∝ f(yi|θγi)π(θγi |y

(i−1), γ(i−1)). (1)

where θh are the parameters of class h, f(yi|θh) is the observa-
tion density conditioned on class h. The conditional likelihood
P (yi|γi = h,y(i−1), γ(i−1)) is denoted by Li,h(yi) and πi,h de-
notes the class priors. The algorithm sequentially allocates observa-
tions yi to classes by sampling the conditional posterior probability
distribution {q(i)

h }.

3. PROBLEM FORMULATION AND PROBABILISTIC
MODEL

Consider a digital communication system where symbols from a dis-
crete unknown alphabet, xm ∈ A are transmitted through a channel.
The received signal at the front-end of the receiver consisting of a
matched filter can be modeled as:

y(t) = ej2π∆ft
∑
m

xmg(t−mT ) + w(t)

where T is the symbol period, g(·) is the raised-cosine pulse wave-
form, and w(t) is additive white Gaussian noise (AWGN) with
power spectral density N0/2. Here, ∆f is the carrier frequency
error. Sampling the output of the matched filter at a rate 1/T , we
obtain the discrete-time signal:

yk = ej2π∆fkTxk + wk (2)

where yk = y(kT ), wk = w(kT ), and k = 0, 1, . . . is the discrete-
time index. Note the phase rotation offset δ = 2π∆fT is propor-
tional to the carrier frequency error ∆f .

We consider a Bayesian framework for estimating the unknown
mean for each class and unknown phase rotation offset δ. This
framework can be extended to include unknown covariances as well
(corresponding to unknown SNR), but is not considered here for sim-
plicity (see [5]). The means can be considered as known by setting
the uncertainty to zero (see Section 4).

The observation model (2) in vector form is given by:

yi = R(θi)xi + wi

θi+1 = θi + δ

where xi ∈ A are symbols from a constellation, wi is additive Gaus-
sian noise with covariance σ2I. Here, R(θ) is a rotation matrix given
by

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
Without loss of generality, we assume θ1 = 0. The unknown pa-
rameters in the model are the constellation symbols x ∈ A, and the
phase offset δ. Let K = |A| denote the size of the symbol alphabet.

The probabilistic model for the unknown parameters is given as:

y|µ, δ ∼ N (·|R(δ)µ, σ2I)

µ ∼ N (·|µ0, σ
2
0I)

δ ∼ V(·|δ0, κ0) (3)

where N (·|µ,Σ) denote the multivariate normal distribution with
mean µ and covariance matrix Σ, and V(·|δ0, κ0) denotes the von
Mises distribution with direction parameter δ0 and concentration pa-
rameter κ0. The parameters θ = (µ, δ) ∈ Rd × [−π, π) follow
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Fig. 1. Graphical model for simultaneous phase tracking and param-
eter estimation problem.

a normal-von Mises joint distribution. The corresponding graphical
model is shown in Fig. 1.

For concreteness, let us write the distribution in (3):

f(yi|θ) = p(yi|µ, δ) =
1

(2πσ2)d/2
e
− 1

2σ2
‖yi−R(δ)µ‖22

p(µ) =
1

(2πσ2
0)d/2

e
− 1

2σ20

‖µ−µ0‖22

p(δ) =
1

2πI0(κ0)
eκ0 cos(δ−δ0)

where I0(·) is the modified Bessel function of order 0.
Due to the conjugacy of the distributions, the posterior distribu-

tion π(θh|y(i−1), γ(i−1)) always has the form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ(i−1)
h , (σ

(i−1)
h )2I)

× V(δ|δ(i−1), κ(i−1)) (4)

where µ(i−1)
h , σ

(i−1)
h , δ(i−1), κ(i−1) are hyperparameters that can be

recursively computed as new samples come in. This factorization is
proven analytically in Section 4.

We will show in Section 4 that the model (3) leads to closed-
form expressions for hyperparameter updates due to conjugacy.

4. CONJUGACY AND HYPERPARAMETER UPDATES

In this section, we derive the hyperparameter updates. For simplicity,
let y be a generic observation of the form:

y = R(δ)x + w (5)

The conditional distribution p(µ|δ,y) ∝ p(y|µ, δ)p(µ) is mul-
tivariate normal with mean and covariance given by:

E[µ|δ,y] =
σ2

0

σ2 + σ2
0

R(δ)Ty +
σ2

σ2 + σ2
0

µ0

Cov(µ|δ,y) =
σ2σ2

0

σ2 + σ2
0

I

Recall the von Mises prior distribution on δ, i.e., p(δ) ∝
eκ0 cos(δ−δ0). The posterior is given by

p(δ|y) ∝ p(y|δ)p(δ)

∝ exp

(
−‖y −R(δ)µ0‖22

2(σ2 + σ2
0)

+ κ0 cos(δ − δ0)

)

∝ exp

(
yTR(δ)µ0

σ2 + σ2
0

+ κ0 cos(δ − δ0)

)
(6)



Next, write y = [yR, yI ]
T , µ0 = [µ0,R, µ0,I ]

T . Then, direct calcu-
lations yield:

yTR(δ)µ0 = (yTµ0) cos δ + (yT µ̃0) sin δ (7)

where µ̃0 = [−µ0,I , µ0,R]T . Furthermore, from a trigonometric
identity, we obtain:

κ0 cos(δ − δ0) = κ0 cos(δ0) cos δ + κ0 sin(δ0) sin δ (8)

Using (7) and (8) into (6), we obtain:

p(δ|y) ∝ exp

((
κ0 cos(δ0) +

yTµ0

σ2 + σ2
0

)
cos δ

+

(
κ0 sin(δ0) +

yT µ̃0

σ2 + σ2
0

)
sin δ

)

This equals exp(κnew cos(δ − δnew)) for all δ ∈ [−π, π) iff:

κ0 cos(δ0) +
yTµ0

σ2 + σ2
0

= κnew cos(δnew)

κ0 sin(δ0) +
yT µ̃0

σ2 + σ2
0

= κnew sin(δnew)

Solving for κnew and δnew, we obtain:

κ2
new =

(
κ0 cos(δ0) +

yTµ0

σ2 + σ2
0

)2

+

(
κ0 sin(δ0) +

yT µ̃0

σ2 + σ2
0

)2

δnew = tan−1

 κ0 sin(δ0) + yT µ̃0

σ2+σ2
0

κ0 cos(δ0) + yT µ0

σ2+σ2
0


Returning to the model at the ith time instant, pre-multiplying

with the rotation matrix R(θi−1)T :

R(θi−1)Tyi = R(θi−1)TR(θi)xi + R(θi−1)Twi

= R(θi−1)−1R(θi−1)R(δ)xi + R(θi−1)Twi

= R(δ)xi + R(θi−1)Twi

where R(θi−1)Twi is Gaussian noise with zero mean and covari-
ance σ2I, due to rotation invariance. Thus, the model (5) becomes
applicable when applied to R(θi−1)Tyi. This essentially amounts
to rotating the vector yi by an angle θi−1. A graphical illustration
of this rotation is shown in Fig. 2.
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Fig. 2. Illustration of pre-rotation of observation yi to reduce to
model (5).

To summarize, once the γith component is chosen, the parame-
ter updates for the γith class become:

δ(i) = tan−1

 κ(i−1) sin δ(i−1) +

〈
R(θ(i−1))T yi,µ̃

(i−1)
γi

〉
σ2+(σ

(i−1)
γi

)2

κ(i−1) cos δ(i−1) +

〈
R(θ(i−1))T yi,µ

(i−1)
γi

〉
σ2+(σ

(i−1)
γi

)2


(9)

(κ(i))2 =

κ(i−1) sin δ(i−1) +

〈
R(θ(i−1))Tyi, µ̃

(i−1)
γi

〉
σ2 + (σ

(i−1)
γi )2

2

+

κ(i−1) cos δ(i−1) +

〈
R(θ(i−1))Tyi, µ

(i−1)
γi

〉
σ2 + (σ

(i−1)
γi )2

2

(10)

θ(i) = θ(i−1) + δ(i) (11)

γ(i) ∼ q(i)
h =

Li,h(R(θ(i))Tyi)πi,h∑
h Li,h(R(θ(i))Tyi)πi,h

µ(i)
γi =

(σ
(i−1)
γi )2

σ2 + (σ
(i−1)
γi )2

R(θ(i))Tyi +
σ2

σ2 + (σ
(i−1)
γi )2

µ(i−1)
γi

(12)

(σ(i)
γi )2 = (σ(i−1)

γi )2

(
σ2

σ2 + (σ
(i−1)
γi )2

)
(13)

For exactly known means (i.e., constellation parameters), one can
set σ(i)

h = 0 and µ(i)
h = µh for all h, i. In this case, the updates

(12)-(13) become superfluous.

4.1. Calculation of Conditional Likelihood

To calculate the class posteriors {q(i)
h }, the conditional likelihoods of

ȳi
def
= R(θ(i))Tyi given assignment to class h and the previous class

assignments need to be calculated first. The conditional likelihood
of yi given assignment to class h and the history (y(i−1), γ(i−1)) is
given by:

Li,h(ȳi) =

∫
f(ȳi|θh)π(θh|y(i−1), γ(i−1))dθh (14)

We recall from (4) that the posterior distribution has the product
form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ(i−1)
h , (σ

(i−1)
h )2I)V(δ|δ(i−1), κ(i−1))

For large κ(i−1), which is the case after a few iterations, this can be
approximated as:

π(θh|y(i−1), γ(i−1)) ≈ N (µh|µ(i−1)
h , (σ

(i−1)
h )2)I)D(δ − δ(i−1))

(15)
where D(·) denotes the Dirac function. Using this approximation
(15) into (14):

Li,h(yi) ≈
∫
Rd
N (yi|R(θ(i))µ, σ2I)

×N (µ|µ(i−1)
h , (σ

(i−1)
h )2I)dµ

=
1

(2π(σ2 + (σ
(i−1)
h )2))d/2

e
−
‖R(θ(i))T yi−µ

(i−1)
h

‖22
2(σ2+(σ

(i−1)
h

)2)

(16)



which corresponds to the Gaussian distribution yi ∼ N (·|R(θ(i))µ
(i−1)
h , (σ2+

(σ
(i−1)
h )2)I).

5. SIMULATIONS

In this section, we perform a simulation experiment on detecting
and estimating the constellation parameters of a 16-QAM modula-
tion. The phase rotation angle per-sample is δ = 3◦. The correct
number of classes for this data set is 16, each one corresponding to
4 information bits.

Data symbols {xi} are randomly (uniformly) chosen from the
16-QAM constellation and corrupted with additive noise at SNR of
15dB. The data is plotted in Fig. 3, along with the original signaling
locations arranged in a rectangular grid.
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Fig. 3. Noisy constellation data from 16-QAM constellation with
phase rotation rate of δ = 3◦ at 15dB.

For comparison, we consider the naive sequential phase estima-
tor:

θ(i) = ∠

{
yi

PA(e−jθ(i−1)yi)

}
(17)

where yi = yRi + jyIi , PA(z) := µh∗ , h∗ = arg minh ‖z−µh‖22 is
the minimum norm projection on the constellation A. Fig. 4 shows
the clustering performance of this naive method, and the clusters are
very noisy and not estimated well. As shown in Fig. 4, the phase
offset δ is not learned as the number of samples grow; although the
mean is around 3◦, the variance is quite high and is not decaying as
a function of iteration.

To alleviate this problem, we aim to use the online Bayesian es-
timation algorithm developed in this paper to estimate the frequency
offset. Fig. 5 shows the clustering performance and the estimation
performance of the Bayesian algorithm. In our simulations, we im-
plemented the paremeter updates (9)-(11), and set µ(i)

h = µh, σ
(i)
h =

0 for all h, i because no uncertainty in the constellation parameters
was assumed. The algorithm was initialized with δ(1) = 0. With the
Bayesian learning algorithm based on the von Mises prior, asymp-
totic learning occurs for the phase offset δ as more samples are pro-
cessed. This leads to a significantly more stable performance when
compared to the naive phase estimator (17).

-5 0 5
-5

0

5

Iteration
0 1000 2000 3000 4000

P
ha

se
 O

ffs
et

 E
st

im
at

e 
(d

eg
)

-10

-5

0

5

10

15

20

Estimate
True /

Fig. 4. Resulting compensated constellation (left) and frequency off-
set estimation performance (right) for naive sequential phase estima-
tor (17).
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Fig. 5. Resulting compensated constellation (left) and frequency off-
set estimation performance (right) for sequential Bayesian estimator
(9)-(13).

6. CONCLUSION

We have proposed an online Bayesian framework for blind estima-
tion of the frequency offset and the parameters of an arbitrary signal
constellation. Our approach leverages novel conjugate prior distri-
bution theory for the von Mises and Gaussian distribution, which
allows us to derive closed-form updates of the hyperparameters of
the posterior distribution of the unknown parameters given stream-
ing data. Simulations show that our estimation algorithm results in
fast convergence and learning of the frequency offset, and signifi-
cantly outperforms heuristic online frequency offset estimators.



7. REFERENCES

[1] U. Mengali and A. N. D’Andrea, Synchronization techniques
for digital receivers, Applications of Communications Theory.
Plenum Press, New York, London, 1997.

[2] G. Vazquez and J. Riba, “Non data-aided digital synchroniza-
tion,” in Trends in Single and Multi-User Systems (Vol. II), G. B.
Giannakis and Y. Hua, Eds. Prentice-Hall, Upper Saddle River,
NJ, 2000.

[3] H. Fu and P. Y. Kam, “MAP/ML Estimation of the Frequency
and Phase of a Single Sinusoid in Noise,” IEEE Transactions on
Signal Processing, vol. 55, no. 3, pp. 834–845, March 2007.

[4] T. Ghirmai, M. F. Bugallo, J. Miguez, and P. M. Djuric, “A
Sequential Monte Carlo Method for Adaptive Blind Timing Es-
timation and Data Detection,” IEEE Transactions on Signal Pro-
cessing, vol. 53, no. 8, pp. 2855–2865, August 2005.

[5] T. Tsiligkaridis and K. W. Forsythe, “Adaptive Low-Complexity
Sequential Inference for Dirichlet Process Mixture Models,”
Preprint, arXiv: 1409.8185, September 2014.


