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Abstract 

The United States Army has a variety of applications for identifying fea-
tures of interest within remote imagery. Whether it is characterizing a 
landscape while planning operations or trying to find particular installa-
tions in an urban setting, the Army can glean a significant amount of infor-
mation from imagery data. This study investigates methods that can detect 
linear and repetitive features contained in remotely sensed images that are 
in panchromatic or true-color formats. Image-processing techniques, in-
cluding Hough transforms, machine learning, and template matching, are 
capable of detecting different kinds of features within images. However, 
the success of these methods depends on effectively preprocessing image 
data, which has proven difficult and intensive for certain images. In many 
cases, the amount of user interaction needed to produce useful results ex-
ceeds the amount of labor needed to manually inspect individual images. 
At their current state, these methods provide useful tools to help analysts 
detect features but do not replace their expertise. This report summarizes 
several techniques for preprocessing image data and then detecting linear 
and repetitive features in that data.  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

The Army desires the ability to deliver cargo, equipment, and personnel to 
harsh locations almost anywhere on the planet. This requires locating ar-
eas that are large, flat, and obstruction-free with sufficient soil strength to 
support at least one aircraft landing and taking off (Ryerson and McDowell 
2008). The goal of Geospatial Remote Assessment for Ingress Locations 
(GRAIL) is to develop tools that will help the Army remotely identify these 
types of locations where an aircraft can land without any prior ground ac-
tivity or surveillance from Army personnel. The GIS- (geographic infor-
mation system) based GRAIL Toolkit provides a capability to identify po-
tential landing zones (LZs) that have acceptable slope and land cover. 
However, field testing has shown that some of these LZs contain telephone 
wires and poles, fences, well holes, etc., that do not show up in the GIS 
analysis. This paper introduces image-processing techniques and tools 
that may help detect some of these features in remotely sensed imagery. 

1.2 Objectives 

This report explores methods for identifying two types of features that 
pose issues for aircraft attempting to land or takeoff at a particular site or 
for ground forces passing through an area. Linear and repetitive features 
correspond to infrastructure that spans across large spatial lengths, as op-
posed to isolated features such as boulders or houses. Linear features con-
sist of roads, fence lines, cracks in ice, and other contiguous entities. Re-
petitive features are those that have recognizable characteristics and follow 
general patterns but are not visibly connected, at least from a remote per-
spective. An example of these is telephone poles. These features may not 
appear linear in the remote imagery, but still pose issues for an aircraft at-
tempting to land in an area where they are present.  

1.3 Approach 

This report serves as a summary of image-processing methods and tech-
niques that could help identify these features of interest. It contains initial 
methodologies, discussions, and examples of how to detect both linear and 
repetitive features within remote imagery. There is certainly more to ex-
plore on this topic, and some of these areas are introduced in Section 6: 
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“Future Directions.” The ultimate goal of this study is to identify method-
ologies that are as autonomous as possible so as to reduce user input. Cur-
rent techniques used by the Army and other entities are time-consuming 
and require individuals to survey imagery and manually identify features.  

This study used Matlab, Python, and several of their add-on packages for 
image processing. Matlab’s Image Processing, Computer Vision System, 
and Statistics and Machine Learning Toolboxes provide several useful 
tools and modules for these analyses. Similarly, the following Python pack-
ages supplemented the base Python package (version 2.7): Numpy, 
OpenCV, Scikit-Image (Skimage), and Scipy. This report contains refer-
ences to language-specific tools or functions. This does not mean those ca-
pabilities cannot be used in other programming languages but that addi-
tional programming may be necessary to transfer them into those lan-
guages.  

1.4 Test cases 

This write-up uses a few test cases to illustrate the described concepts. The 
text will reference these test cases and will highlight them in their own sec-
tions. These are examples only and do not represent the optimal methods 
and steps used to detect linear or repetitive features, and the imagery used 
in these examples is limited to panchromatic and RGB images. There is 
one linear-feature detection test case, which attempts to identify fence 
lines within an image of a landscape. There are two repetitive-feature test 
cases that use different methods to identify telephone poles and Karez 
holes. A Karez is an underground aqueduct system used in many Middle 
Eastern countries to connect remote villages to a water resource. These 
systems are characterized by well holes that connect the underground tun-
nel to the ground surface. The fence line and Karez hole figures are hill-
shade images processed from BuckEye elevation data collected in a region 
of Afghanistan. It is important to note that the hillshade images are used 
only to illustrate the image-processing techniques described in this report. 
Direct use of elevation data provides much more information about a par-
ticular site than a two-dimensional image does. The telephone pole case 
includes Google Map images for two field sites (JM-12 and JM-13) at Fort 
Hunter-Liggett (FHL), an Army base in California. These two field sites 
were determined as sufficient LZ’s through GIS analysis; however, a site 
visit revealed there were telephone wires running through these locations, 
which the GIS tools failed to identify. This is an example of how the fea-
ture-detection methods may supplement the rest of GRAIL functionality.  
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2 Data Preprocessing 

Many feature-extraction methods require some level of preprocessing to 
enhance the image data or highlight features while reducing sections of the 
data that are not of interest. This may include altering the image’s contrast 
or intensity range, sharpening or blurring the data, segmenting the image, 
or many other alterations. The preprocessing method used for a particular 
image and its effectiveness is usually specific to the type of image being re-
fined, the image characteristics, the atmospheric conditions at image cap-
ture, the perspective of the image, and the resolution-to-object ratio of the 
image. What works well for one image often does not work for another. 
The ultimate goal of preprocessing is to prepare the image data in such a 
way that feature-extraction algorithms can then function more effectively 
on that image. Not all detection methods require preprocessing, such as 
the cross-correlation method for finding repetitive features; however, ap-
plying some form of preprocessing often enhances detection-method per-
formance across all detection methodologies. 

Image enhancement methods fall into two categories—those that work in 
the spatial domain and those that function in the frequency domain. Spa-
tial-domain methods are alterations applied locally to the image pixels 
whereas frequency-domain methods are performed globally and require 
transforming the image into the frequency domain through a Fourier 
transform (Maini and Aggarwal 2010; Rahnama and Gloaguen 2014). An 
inverse Fourier transform converts the image back after the spatial meth-
ods are completed. 

Many extraction methods, such as machine learning, require segmenting 
the image into distinct regions to work properly. However, this can be a 
challenging task. Gonzalez and Woods (2002) state that proper segmenta-
tion is one of the most difficult tasks in all of the image-processing field 
and that feature detection is more likely to succeed with accurate segmen-
tation. There has been substantial work in this field to develop segmenta-
tion algorithms and methods for a variety of applications. Although this 
report does not contain an exhaustive list of methods, it explores some of 
the main themes in that area. 
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2.1 Spatial-domain operations 

The majority of spatial-domain operations require images in an intensity 
format where each pixel is represented with a grayscale value ranging be-
tween 0 (black) and 1 (white) or a binary format where pixels are either 0 
or 1. There are several spatial-domain techniques; however, two common 
categories of these techniques are point processing, which alters pixel 
characteristics individually, and histogram manipulation, which alters an 
image based on the distribution of intensity values within the whole image 
(or a reference image). An example of a point-processing method is taking 
the negative of an image. An example of histogram manipulation is rescal-
ing a light-colored image to the lighter range of the grayscale so that its de-
tails are more pronounced. 

Morphological operations are common point-processing methods that can 
reduce noise in binary image data (Efford 2000). These operations pro-
duce a new image after comparing an initial image with a structure ele-
ment, or “kernel,” which is a small matrix of pixels with 0 or 1 values that 
define a shape, such as a diamond, cross, circle, etc. (Efford 2000). Table 1 
represents an example of a 5 × 5 diamond structure element. The central 
pixel of the structure element is passed over each pixel in the input image, 
and the pixels with a value of 1 in the structure element are compared with 
the corresponding pixels in the image. Different operations test how well 
the image pixels and structure element match: 

• The element “fits” the image if each 1 pixel in the structure element 
corresponds to a 1 pixel in the image. 

• The element “hits” the image if at least one of the 1 pixels in the struc-
ture element corresponds to a 1 pixel in the image (Quackenbush 
2004). 

Table 1.  Example of a 5 × 5 diamond structure 
element. The central red pixel indicates where the 
element lines up with a specific pixel in the image. 

0 0 1 0 0 
0 1 1 1 0 
1 1 1 1 1 
0 1 1 1 0 
0 0 1 0 0 

 
Morphological operations are used for two fundamental processes—ero-
sion and dilation. As the name suggests, the erosion process erodes pixels 



ERDC/CRREL TR-17-6 5 

 

from the edge of features, which is used to reduce noise and removes small 
pixel groups. If there is not a complete “fit” between the structure element 
and a region in the input image, then the central pixel of that region is 
made a 0. In dilation, if there is a “hit” between the structure element and 
the input image region, then the corresponding pixel is made a 1. This pro-
cess adds a layer to the edges of image features and fills any small gaps. 
The effects of these operations depend on the size and shape of the struc-
ture elements used. These fundamental operations can combine to form 
useful compound morphology operations (Quackenbush 2004). For exam-
ple, the “area-opening” operation removes small outlier groups of edge 
pixels that are not a part of actual features and is achieved by an erosion 
followed by a dilation with the same structure element. This process opens 
up gaps between features connected by small pixel bridges. The closing op-
eration does the opposite of the area-opening operation and connects any 
small gaps between features. There are a variety of other operations that 
produce different preprocessing results (Quackenbush 2004). 

Additional spatial filters, including the Ford filter (Table 2), directional 
sun-angle filters (Table 3), gradient filters, and Laplacian filters, use struc-
tural elements with various cell values to alter the image’s pixels or to en-
hance linear features (Mavrantza and Argialas 2003).  

Table 2.  A 5 × 5 Ford filter intended to enhance 
details relevant to manmade objects and to reduce 
details of natural background. This is considered a 

high-pass spatial filter (Mavrantza and Argialas 
2003). 

−0.3 −0.3 −0.3 −0.3 −0.3 
−0.3 −0.3 −0.3 −0.3 −0.3 
−0.3 −0.3 9.7 −0.3 −0.3 
−0.3 −0.3 −0.3 −0.3 −0.3 
−0.3 −0.3 −0.3 −0.3 −0.3 

 
Table 3.  A 3 × 3 directional sun-angle filter that 

takes into account the direction of the sun and is 
intended to enhance edges affected by shadowing 
(Mavrantza and Argialas 2003). This example filter 

is for sun from the Northwest. 

−1 −1 0 
−1 0 1 
0 1 1 
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Median filtering provides another method for enhancing the image data, 
specifically for reducing noise. Similar to structure elements, a window 
surrounding a specified number of pixels moves through the image. The 
median intensity value within that window is then applied to the target 
pixel, which smooths intensity values across the image (Fisher et al. 
2003). The same idea can be applied with other statistical values, such as 
mean, maximum, or minimum of the image region. Median filters are par-
ticularly useful for situations where impulse noise is present, which is 
noise that appears as small black and white dots overlaid on the image 
(Gonzalez and Woods 2002). 

In conclusion, there are multitudes of spatial-domain operations available 
to use. Most image-processing software programs have a number of these 
operations preprogrammed or assembled in packages for use. However, it 
is important to know that a certain amount of trial and error is necessary 
to settle on the appropriate approach to spatial-domain image processing. 

2.2 Fourier-domain operations 

Frequency-domain filters work on image data that have gone through a 
Fourier transform, in which pixel-by-pixel data are converted into a series 
of sinusoidal functions of varying frequencies and amplitudes that approx-
imate the pixel field. The boundaries of distinct features tend to have 
higher frequencies than regions of the image that are continuous in inten-
sity. A sudden change in intensity values between pixels is akin to a peri-
odic function with high frequency, where the signal output changes from a 
low to high value quickly with respect to location in the image. Filter func-
tions are based on the assumption that noise in the data is associated with 
high frequencies and are designed to target or ignore these frequencies de-
pending on the intention of the filter (Fisher et al. 2003). 

Images containing natural objects tend to have different Fourier transform 
characteristics than those with manmade objects, which may prove useful 
when trying to distinguish manmade structures, such as telephone poles 
and fences, from a natural background. Manmade structures typically have 
strong edges oriented in vertical or horizontal directions whereas natural 
structures do not. The strong features of manmade structures produce dis-
tinct lines in the image representation of the Fourier transform (Figure 1a) 
while natural objects produce less coherent images due to their lack of dis-
tinct lines and features (Figure 1b) (Wittman 2010). 
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Figure 1.  A Fourier transform analyses of overhead images of CRREL buildings and of a 
forested area with few house and roads. 

 (a) CRREL Buildings (b) Forested Area 

 

Frequency filters sometimes have equivalent functions in the spatial do-
main that are often less computationally expensive to use (Fisher et al. 
2003). For example, gray-level slicing is the spatial domain equivalent to 
passing a band-pass filter over the data (Maini and Aggarwal 2010). Simi-
larly, the Ford filter is the equivalent of a high-pass frequency filter. How-
ever, it is important to note that the equivalent spatial filters are only ap-
proximations of the frequency filters (Fisher et al. 2003). 

As a reminder, high-frequency data is attributed to image noise or image 
regions where there are sudden changes in intensity (e.g., feature edges), 
whereas low-frequency data is synonymous with pixels that are consistent 
and do not vary much (e.g., image background). A low-pass filter removes 
high-frequency noise but permits low-frequency data, which smoothens 
the image. This is useful when an image has a lot of noise. A high-pass fil-
ter removes low-frequency information but permits high-frequency data, 
which sharpens features such as edges or lines. This is useful when the im-
age contains a lot of unwanted background data. A band-pass filter retains 
data within a range of specified frequencies. This type of filter may be use-
ful when there is noise and background data to remove from an image. 

Low-pass filters sometimes create a visual effect due to the Gibbs phenom-
enon, where a series of artificial rings form around edges, which may 
prove problematic for subsequent linear-feature extraction (Wittman 
2010). Gaussian filters work by passing a Gaussian signal over the data 
that smoothens any spikes or noise and avoids the Gibbs ring effect. The 
Butterworth filter represents a “discrete approximation to the Gaussian” 
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and has a lower computational cost than the Gaussian filter when imple-
menting wide high- or low-pass filters. The Gaussian filter is better suited 
for high- or low-pass filters with narrow pass ranges (Fisher et al. 2003). 
The intent of these filters is to reduce the impact of noise in the data by ef-
fectively blurring the image, including feature edges.  

A high-pass filter or an “unsharp filter” sharpens image data by subtract-
ing a smoothed version of the image from itself. The result is called an 
“edge” image and emphasizes the high-frequency regions in the original 
data. This is then added back to the original image to produce a sharpened 
version of the image (Fisher et al. 2003).  

The intention of these different filters is to improve the image data before 
they are passed through feature extraction methods. There are many 
methods to achieve different image enhancements, and the most useful 
methods may depend on different aspects of the input image, such as ter-
rain type, ground cover, etc. 

2.3 Segmentation 

As stated previously, proper image segmentation is paramount to effective 
feature-extraction methods. This process is not straightforward, and a va-
riety of approaches achieve useful results. The result of many of these 
methods is binary images where the segmented regions are pixels with a 
value of “1” and the background pixels have a value of “0.” 

2.3.1 Intensity-based thresholds 

One of the simplest ways to segment an image is based on the distribution 
of intensity values in that image. When features of interest appear lighter 
or darker than the rest of the image, an intensity-threshold value may ade-
quately separate the features from the background. This value can help to 
convert the input image to a binary image where anything above the 
threshold is converted to white and anything below is converted to black. 
If the image is initially in a color format, then the image must be converted 
to an intensity format before thresholding in this manner.  

The threshold value can be determined manually by inspecting the inten-
sity distribution of the image, or it can be determined automatically. Two 
common ways to do this are with Otsu’s method and K-means clustering. 
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2.3.1.1 Otsu’s method 

Otsu’s method identifies a threshold value that minimizes the spread be-
tween the intensity distributions of light and dark features in an image 
(Morse 2000). There are two variations to Otsu’s method: global, which 
considers the intensity distribution of the entire image, and local or adap-
tive, which considers only the intensity values of a certain neighborhood of 
pixels as the algorithm works through the image. The global variation 
proved more useful in the test cases, which is likely because the features of 
interest and background data were fairly consistent within each test case 
image. For example, the intensity values of the telephone pole shadows 
were relatively consistent from one shadow to the next. However, small 
variations in the background data made the local intensity distribution 
more variable from one neighborhood to the next. Including a larger in-
tensity dataset likely reduced variability in the Otsu threshold calculation, 
thereby rendering the results of the global application more reliable than a 
localized approach. However, the effectiveness of the Otsu threshold de-
pends on the image’s intensity distribution.  

2.3.1.2 K-means clustering 

K-means clustering tries to separate the intensity data into different 
groups by selecting an intensity value “such that each pixel on each side of 
the threshold is closer in intensity to the mean of all pixels on that side of 
the threshold than the mean of all pixels on the other side of the thresh-
old” (Morse 2000). This is an iterative process where the updated thresh-
old is the value halfway between the intensity averages of the points on ei-
ther side of the old threshold. This process continues until the threshold 
value converges. K-means clustering works well for situations where the 
respective intensity distributions of light and dark regions are approxi-
mately equal but struggles when the distributions vary significantly (Morse 
2000). An advantage to this method is that the user can easily segment the 
image into more than two groups.  

2.3.1.3 Intensity-threshold issues 

Otsu’s method and K-means clustering both struggle in a few situations. 
For example, both methods are less effective when the feature of interest 
falls somewhere in the middle of the intensity distribution. However, one 
way around this is to redistribute the intensity values of the image towards 
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one end of the spectrum before implementing either method. The ad-
vantage to K-means clustering is that the user may specify enough groups 
to segment that one of them captures the feature of interest before any in-
tensity redistribution is required. 

Another area where these methods break down is when the feature itself 
has a range of intensity values. An example of this is when segmenting Ka-
rez holes in hillshade images. Hillshade images present elevation data in a 
way that humans can easily understand. This data is represented as if 
there was a light source located to the northwest with an altitude angle of 
45°*, which produces an image with shadows and light regions around 
each elevated feature in the data. However, this means the mounds corre-
sponding to Karez holes have both a light and dark side, which makes it 
difficult to segment the entire Karez feature based on its intensity values. A 
way around this is to pass a gradient filter over the image, which calculates 
the gradient of the intensity field. This is useful because the changes in in-
tensity from the background terrain to the light and dark sides of the Karez 
holes are nearly the same. The result of the gradient filter is a new inten-
sity image where the outlines of the Karez holes have similar intensity val-
ues with which Otsu’s method or K-means clustering may work. This ex-
ample illustrates a common trend with these segmentation techniques: get 
the image data in an intensity format where the features of interest are 
similar values that are distinguishable from the background, and then im-
plement Otsu’s method or K-means clustering to convert the data to a bi-
nary dataset. 

2.3.2 Watershed segmentation 

This method is named for a hydrological analogy that explains the princi-
ples of the algorithm. In this analogy, a binary image is treated as a terrain 
map where dark areas are low-elevation catchment basins and white areas 
are high-elevation areas. In the real-world scenario, water flows from high 
ground and collects in catchment basins. Watershed lines dictate the re-
gions of terrain that drain into the same particular basins, effectively seg-
menting one basin from others (Eddins 2002).  

The watershed lines in an image are found with the following procedure. 
First, the distance is calculated from each “basin” pixel to the closest 
“edge” pixel, where black and white pixels interface. An example of this 

                                                   
* To convert to radians, multiply the angle by 0.01745329. 
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distance map is the top right image in Figure 2. The local maxima of the 
resultant distance map are used as seed points from which each “basin” is 
“flooded.” The watershed lines are where different flood sources meet. Oc-
casionally, this process results in oversegmentation, at which point seg-
mented regions must be combined with a different process (Beucher 
2010). 

Figure 2.  Examples of different segmentation schemes and results. 

 

This method has issues when identifying features that are small in relation 
to the whole image size or features that vary in size from one instance to 
the next. In addition, it is based on the local intensity values of the image, 
which means it suffers from the same problem that Otsu’s method does. It 
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fails to identify regions of interest that are not overly bright or dark. How-
ever, redistributing the intensity values of the image before implementing 
the watershed algorithm may help. 

2.3.3 Random walker segmentation 

Random walker segmentation is based on the probability that a random 
path around an image will cross a specific target segment before it reaches 
any other segment. The user defines a set of seed points that are associated 
with each type of region (“feature” and “background” in this case). There 
are different ways to choose these seed points, including the same way as 
the watershed method (local maxima of a distance map). The algorithm 
then calculates the probability of a random walker leaving each unseeded 
pixel and finding one of the seeded points (Grady 2006). The result is a 
probability map depicting how likely each unseeded pixel is associated 
with each seed pixel. During testing, there was not a large difference be-
tween the results of the watershed and random walker segmentation tech-
niques. Figure 2 illustrates and compares the results of watershed and ran-
dom walker segmentation for basic shapes. The segmentation results for 
both methods show similar results in this example as illustrated in the bot-
tom images of Figure 2.  
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3 Linear-Feature Extraction 

There are a wide variety of techniques and algorithms used to extract lin-
ear features from images, including mathematical morphology, Hough 
transforms, multiresolution techniques, and many more. The following lit-
erature review is not exhaustive given that a number of extraction tech-
niques are proprietary (Quackenbush 2004) or are not readily imple-
mented in the software chosen for this report—Matlab or Skimage. 

A number of feature-extraction techniques process and compare the image 
data against models that describe the important characteristics of a feature 
or object. These feature models are either “rigid” or “flexible.” A rigid 
model sets strict values or guidelines for the feature’s shape, maximum 
size, or spectral characteristics. Flexible models set values for less specific 
properties, such as curvature, symmetry, homogeneity, etc. (Quackenbush 
2004). The function or process used to compare the image data with the 
model is what varies between different techniques. 

Feature-extraction methods are usually split into three steps: edge detec-
tion, edge tracking, and linking edges. Edge detection consists of finding 
possible feature edges in the image via the algorithms explained next. 
Edge tracking entails following the possible edges once they are identified. 
Edge linking connects edges that most likely define a feature and estimates 
missing edge pixels (Rahnama and Gloaguen 2014). 

3.1 Edge detection 

3.1.1 Morphology operations 

The morphology operations discussed in the preprocessing section can 
also help to detect features and edges within an image. Regions of the im-
age where these linear-feature structure elements “fit” represent linear 
features or the edges of features. Often using these different methods in 
conjunction will provide different results. 

3.1.2 Gradient and Laplacian operators 

Calculating the gradient of an image field indicates the direction of largest 
change in intensity. This is useful for detecting edges as the interface be-
tween features and the background are usually characterized by large 
changes in intensity. A Laplacian operator takes this process another step 
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and looks at how quickly the intensity values change within the field. Be-
cause of the Laplacian operator’s sensitivity to noise, passing a Gaussian 
filter over the data can help to reduce noise before implementing the La-
placian. It is possible to combine the Gaussian and Laplacian steps into a 
single process called the Laplacian of Gaussian (LoG) filter, which reduces 
the number of operations performed on the data (Fisher et al. 2003). The 
zero-crossing points of the resultant Laplacian indicate the locations of an 
edge; however, some of these zero-crossing points correspond to minor 
edges or image texture. Taking the variance of intensity values near each 
detected edge estimates how significant that particular edge is. A small 
variance indicates a minor edge, and a large variance indicates a signifi-
cant edge. Specifying a variance threshold for this process gives us another 
parameter to fine-tune the linear-feature extraction process. Any edges be-
low the variance threshold are ignored to remove minor features during 
the extraction process (Claypoole et al. 1997). 

The spatial field representation of an image is a discontinuous function, 
which cannot be differentiated. This poses an issue when trying to calcu-
late the gradient or Laplacian of that image, which represent the first- and 
second-order spatial derivative of the image, respectively (Fisher et al. 
2003). To overcome this problem, these operations are fulfilled with dis-
crete filters that approximate the first-order or second-order derivatives. 
Table 4 and Table 5 illustrate some of these structure elements. It is im-
portant to understand that these gradient and Laplacian methods are only 
approximations of the true derivatives of the image; however, they pro-
duce good results.  

The Roberts cross operator performs best when edges are oriented 45° to 
the pixel array, and it is very quick to compute since it uses only a 2 × 2 
kernel. However, this method does not deal well with noise (Fisher et al. 
2003). 

In the case of vertical and horizontal filters, they are both applied simulta-
neously throughout the image (Vilnius University 2009). Table 6 is an ex-
ample of how these filters are applied to an image (Delmas 2015). Take an 
input image, X, and pass the vertical Prewitt filter (Table 4) over it to get 
an altered output image, Y. The red box in X reflects where the filter struc-
ture element is located in the input image. The red cell in Y reflects the tar-
get pixel in the output image. 
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Table 4.  Gradient filters approximate the gradient 
of the image intensity field. There are multiple 

gradient filter types including Prewitt, Sobel, and 
Roberts cross (Mavrantza and Argialas 2003; 

Vilnius University 2009). 
Vertical and horizontal Prewitt filters 

−1 0 1  −1 −1 −1 

−1 0 1  0 0 0 

−1 0 1  1 1 1 

Vertical and horizontal Sobel filters  

−1 0 1  −1 −2 −1 

−2 0 2  0 0 0 

−1 0 1  1 2 1 

Roberts cross operators 

1 0  0 1 

0 −1  −1 0 

 
Table 5.  A Laplacian filter approximates the 

Laplacian of the image intensity field. As with the 
gradient filter, there are multiple types of Laplacian 

filters (Fisher et al. 2003) 

0 −1 0  −1 −1 −1 

−1 4 −1  −1 8 −1 

0 −1 0  −1 −1 −1 

 
Table 6.  Example of applying a Prewitt filter to simulated image data. 

X11 X12 X13 …   Y11 Y12 Y13 … 

X21 X22 X23 …   Y21 Y22 Y23 … 

X31 X32 X33 …   Y31 Y32 Y33 … 

… … … …   … … … … 

 
Apply a Prewitt filter to 𝑌𝑌22:  

 𝑌𝑌22 = −𝑋𝑋11 + 𝑋𝑋13 − 𝑋𝑋21 + 𝑋𝑋23 − 𝑋𝑋31 + 𝑋𝑋33 (1) 

Continue this process through the rest of the output-image pixels, and 
then repeat for the horizontal Prewitt filter. Simply add together the mag-
nitudes of the vertical and horizontal filter results for each pixel. Some-
times the results of this calculation are outside the 0–1 range typical for 
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intensity values, at which point the data is scaled to set the new minimum 
equal to 0 and new maximum to 1. 

3.1.3 Additional methods 

There are additional methods for detecting edges, but those mentioned 
here are techniques readily implemented in Matlab or Skimage. Examples 
of other methods include multidimensional gradients; squared local con-
trast; and the compass operator, which uses several orientations of a Sobel 
(or other) filter to detect edges running in multiple directions. Additional 
information on these operators and others can be found in Burger and 
Burge (2009, 2013). 

All of these edge-detection methods do exactly what their name implies—
detect potential edges—but they do not necessarily connect edge segments 
that likely represent the same line. This step usually requires a feature-ex-
traction technique. 

3.2 Feature extraction 

3.2.1 Canny method 

The Canny method combines some of the procedures already mentioned 
and includes additional edge-tracking and linking steps. The process starts 
with Gaussian smoothing and then passes a gradient filter over the image 
(Fisher et al. 2003). The method takes in two parameters: a threshold for 
the minimum edge strength in terms of gradient magnitude and a thresh-
old that is used in tracing edge sections. The gradient must be higher than 
the first threshold to indicate a potential edge section. If the gradient val-
ues in the pixels adjacent to these edge sections are greater than the sec-
ond threshold, the algorithm will assume those pixels are supposed to be 
edge sections, also, and will merge them with the initial strong-edge pieces 
(Wang et al. 2006). The output of this method is a binary image outlining 
the edges of features in the initial image (Fisher et al. 2003). This method 
is often used as an edge-detection step for other feature detection meth-
ods, such as the Hough transform, which is described later. 

3.2.2 Rothwell method 

The Canny method sometimes fails to handle corners where different edge 
segments come together. In some cases, the gradient direction can be as 
much as 70° off from its true direction. The unreliability of this direction 
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poses an issue when Canny classifies edges and non-edges; and in many 
cases, it completely ignores these corner edge segments. The Rothwell 
method is similar to Canny but includes the topology of the image in an at-
tempt to capture the corners of features (Rothwell et al. 1995).  

The Rothwell method conducts Gaussian smoothing and then identifies 
potential edges in a similar fashion to Canny. In some cases, the edges are 
located with a zero-crossing method instead of a gradient-based method. 
The edges identified in this step are considered only a base set, and verti-
ces are added to this set as they are found. The algorithm places vertices at 
edges that “have either only a single neighbour (in which case they repre-
sent the end of a dangling [edge] chain), or are [edges] which have more 
than two [edges] connected to them (junctions)” (Rothwell et al. 1995). 
The “single neighbour” refers to a pixel adjacent to only one other pixel de-
noted as an edge, which indicates the end of that line segment. After these 
vertices are determined, the algorithm follows the connected edges and 
records them to a list so as to characterize all the edges and connecting 
vertices as a single entity (Rothwell et al. 1995). 

3.2.3 Hough transform 

The Hough transform is a versatile method that can identify features of 
different shapes, or those with gaps in their boundary, and is relatively tol-
erant of noisy image data. It requires an edge-detection method prior to 
running (Fisher et al. 2003). The following explanation follows an example 
from Hamarneh et al. (1999). Consider intersecting lines in the Cartesian 
space in Figure 3. 

Every line that passes through point (𝑥𝑥𝑎𝑎, 𝑦𝑦𝑎𝑎) satisfies the following equa-
tion: 

 𝑦𝑦𝑎𝑎 = 𝑚𝑚 ∙ 𝑥𝑥𝑎𝑎 + 𝑐𝑐 (2) 

where 

 m = slope of a particular line and 
 c = y-intercept of that same line. 
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Figure 3.  Cartesian coordinates and line intersection. 

 

Hamarneh et al. (1999) show that a c-m coordinate system can be defined 
in which all the lines that cross through a Cartesian point (𝑥𝑥𝑎𝑎, 𝑦𝑦𝑎𝑎) can be 
represented as a single line in c-m space. Consider two pixels in Cartesian 
space in Figure 4. 

Figure 4.  Transformation of a Cartesian line to a c-m framework. 

 

For each point in the left image of Figure 4, one can define a line in the c-
m frame that represents all the Cartesian lines that intersect that particu-
lar point. Now consider a line in the Cartesian framework that passes 
through both points; this corresponds to an intersection of two lines in the 
c-m space. This implies that all points (image pixels) that lie on a single 
Cartesian line correspond to lines in the c-m system that cross at a single 
point. In other words, collinear segments in the Cartesian system will cor-
respond to a single point in the c-m system. This is useful for identifying 
lines that do not appear contiguous because of gaps though they are con-
tiguous in reality (Hamarneh et al. 1999).   
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The rest of this process includes converting the c-m system into a two-di-
mensional matrix and comparing it with the results of the prior edge-de-
tection process. This provides a histogram that indicates the frequency of 
detected edges corresponding to points lying on the same line. High-fre-
quency values in this histogram relate to lines in the image data. Detection 
of different shapes is possible as long as a parametric equation can de-
scribe the shape of interest. For example, a circle requires using a three-di-
mensional matrix of the circle’s radius and center coordinates (Hamarneh 
et al. 1999). 

A disadvantage of the Hough transform is that the detected lines in the c-
m system are infinite. If there are unrelated features that happen to line up 
in the image, the Hough transform may detect them as a single line. In ad-
dition, a problem arises when using the representation of a line as in 
Equation (2) because vertical lines correspond to an infinite slope. To 
avoid this, use the parametric definition of a line as described in Equation 
(3):  

 𝜌𝜌 = 𝑥𝑥 ∙ cos(𝜃𝜃) + 𝑦𝑦 ∙ sin (𝜃𝜃) (3) 

where 

 𝜌𝜌 = the distance from a line to the coordinate system origin and 
 𝜃𝜃 = the angle between the 𝜌𝜌 vector and x-axis of the coordinate 

system. 

With this representation, the Cartesian lines are represented as curves in 
the parametric space (Hamarneh et al. 1999).  

Fitton and Cox (1998) discuss a multiscale method of applying the Hough 
transform. This method consists of identifying large linear features in a 
full-size image, removing those features from the data, then halving the 
image and repeating the process. This is continued until the image seg-
ments include the end points of the smallest linear features that are of in-
terest. The idea of reducing the scale of the image is from Mirmehdi et al. 
(1991). The process of removing features from the data simplifies subse-
quent passes with the Hough transform (Fitton and Cox 1998). 

Skimage provides a probabilistic Hough transform that reduces the num-
ber of intersection points considered during calculations, which speeds up 
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the process when compared with the normal Hough transform. A random 
subset of intersection points is selected, and then line features are identi-
fied by moving along these selected components in the Cartesian space 
(Scikit-Image 2011). This Skimage function provides parameters to specify 
the minimum line length and maximum gap between linear features, 
which allows the program to combine linear segments that are close to 
each other. The function also lets the user specify a minimum strength 
threshold that each intersection point must be to be considered for the re-
maining calculations. 

3.3 Comparison of techniques 

There are a few references that compare edge detection algorithms against 
each other. Musoromy et al. (2010) summarize results of other compara-
tive studies and show that for the methods presented in this review, Canny 
performs better than Rothwell, both perform better than LoG, and LoG 
performs better than Prewitt and Sobel for noisy image data. In terms of 
compute time, Canny was the fastest of the methods, followed by Sobel, 
Laplace, and Rothwell (Musoromy et al. 2010). However, these time re-
sults depend on how many images are processed and the amount of pre-
processing. The time differences this paper presented are on the order of 
≈10 ms for processing 45,000 images.  

Argialas and Mavrantza (2004) compare edge detection methods against a 
Hough transform method. Similar to the first reference, this group found 
that Canny provides the best results, followed by Rothwell. Argialas and 
Mavrantza (2004) find that the Hough transform does not locate and ex-
tract edges as accurately as the edge-detection methods do and that its re-
sults are highly dependent on the input parameters. 

Wang et al. (2006) find similar results, stating that Sobel, Canny, and 
Rothwell have similar performance to each other, with Sobel producing 
slightly worse results than the other two and LoG performing worst. How-
ever, they say the difference in performance between these methods is 
negligible by their standards. This study also states that all of these meth-
ods are highly dependent on their input parameters, and their perfor-
mance with fixed parameters is considerably lower than with dynamic pa-
rameter inputs. Wang et al. (2006) also provide results illustrating how 
method performance depends on the analyzed image. Some methods per-
form best for some images while other methods perform better for other 
images. It seems better to use methods and parameters optimized for each 
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image instead of general methods and values. As a side note, they also sug-
gest increasing the default Canny threshold in Matlab by a factor of two 
(Wang et al. 2006). 

It appears from these comparative studies that the Canny and Rothwell 
methods perform better than the others. It makes sense that they perform 
similarly because Rothwell is based on the Canny method. Rothwell et al. 
(1995) claim that the Rothwell method recognizes and characterizes edge-
corners better than the Canny method. However, the other studies seem to 
suggest that Canny is better at extracting the actual linear features and 
takes less time than Rothwell. It is uncertain whether the corner-extrac-
tion ability that Rothwell provides is necessary for Army feature detection 
applications or if Canny is sufficient.  

3.4 Linear-feature detection methodology 

This section highlights an example methodology for detecting linear fea-
tures in imagery. For this test case, the base image is an RGB image of 
farmland, which is converted to grayscale and then processed with a series 
of gradient and Gaussian filters to improve the data. A Canny edge detec-
tor then highlights edges, which are fed into a Hough transform that com-
pletes the feature detection. 

3.4.1 Linear-feature methodology 

1. Acquire the base image (Figure 5). 

Figure 5.  Farmland with fences. 
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2. Convert the base image to grayscale (Figure 6). 

Figure 6.  Conversion of base RGB image to grayscale. 

 

3. Pass a gradient filter over the grayscale image to highlight changes in pixel 
intensity (Figure 7). 

Figure 7.  Result of passing gradient filter over the grayscale image. 

 

4. Pass a Gaussian filter over the gradient image to smooth the data (Figure 
8). 
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Figure 8.  Result of the Gaussian filter blurring the gradient image. 

 

5. Pass the Canny edge-detection algorithm over the smoothed image (Figure 
9). 

Figure 9.  Result of the Canny edge detector. The algorithm did a 
good job picking out the edges in the smoothed gradient image. 

 

6. Use the Hough transform method to link the edges identified by the Canny 
edge detector (Figure 10). 
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Figure 10.  Linear features identified by a Hough transform. 

 

3.4.2 Methodology discussion 

This methodology is able to detect the farm’s fence line with fairly good ac-
curacy compared to manually identifying the fence. However, this example 
highlights the Hough transform’s poor performance in detecting corners 
connecting linear features, as seen by the gaps at the different bends in the 
fence. In addition, it highlights how the linear Hough transform is a poor 
detector of slightly curved linear features. Close inspection of the detected 
lines shows that a number of the long features are in fact several short fea-
tures overlaid with each other. This is likely because the Hough transform 
is designed to look for straight linear features, which most real-life fea-
tures are not. As mention previously, it is possible to define Hough trans-
forms to look for any shape that can be parametrically described by an 
equation; so it may be possible to look for curved features given the proper 
equation. In addition, some formulations of the Hough transform include 
minimum distance criteria, which connects different segments within a 
specified distance of each other. Although this presents another parameter 
to optimize, this would reduce the number of line segments in the result-
ing image.  

It is likely that the features extracted along the line labeled “1” are based 
on the edge of the dirt road and not on the actual fence. The road is lighter 
than the surrounding ground, which produces a distinct line in the gradi-
ent image (Figure 7) that the Hough transform identifies. In addition, the 

1 
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other fence features produce lines in the gradient image because the fence 
has shadows in the original image (Figure 5). This illustrates a recurring 
drawback of these detection methods, which is that they work only if there 
is a distinguishable difference between the features and its surroundings. 
Otherwise, there is no way for the algorithm to differentiate between them. 

Although there are some shortcomings to this methodology, the final re-
sult is useful and would help a user or analyst distinguish the layout and 
location of different features in this landscape. With information about the 
size of this landscape, additional functions could calculate distances be-
tween fence segments or estimate the area enclosed by the fence. 
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4 Repetitive-Feature Extraction 

Linear and repetitive features are differentiated based on their appearance 
in the images of interest; however, real-life repetitive features often corre-
spond to linear systems that are not apparent from a remote standpoint. 
For example, a series of individual telephone poles corresponds to wires 
that are often too thin to see in the imagery. Additionally, Karez well holes 
correspond to an underground system of tunnels that span many miles. An 
aircraft interacting with these features could be severely damaged such 
that it cannot complete its intended mission.  

The following methodologies are examples of overall processes for finding 
repetitive features that can be applied to different types of features, re-
gardless of what they are, and uses a number of methods explained in Sec-
tion 2. Although the machine-learning procedure references Matlab func-
tionalities, the general steps should be applicable to Python or other pro-
gramming languages with image-processing capabilities.  

4.1 Classification machine learning 

The first methodology uses machine-learning algorithms. Machine learn-
ing is the process of training algorithms with known data to make predic-
tions of new, unknown data (Schapire 2006). This is readily applicable to 
classification problems in which the algorithms classify data into a set of 
specified groups, such as classifying imagery data into different types of 
features. For repetitive-feature detection, this process consists of defining 
a model that adequately describes the target feature based on different 
properties, such as size, orientation, eccentricity, etc., and then training an 
algorithm to search for that model in new imagery data.  

Matlab provides a variety of classifier algorithms, including decision tree, 
discriminant analysis, support vector machines (SVM), nearest neighbor, 
and ensemble classifiers, as defined in Table 7 (MathWorks 2015b).  

The performance of each machine-learning algorithm depends on the 
characteristics of the image data being classified. One way to test algo-
rithm performance is with a confusion matrix, which tests the algorithm’s 
performance on the training dataset. For example, the algorithm is trained 
and then reimplemented on the training image to see if it extracts all the 
features it was supposed to find. The confusion matrix indicates in matrix 
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form the percentage of “true” or “false” features the algorithm identified 
correctly or incorrectly (MathWorks 2015a). The algorithm with the high-
est confusion matrix percentages was chosen for the repetitive-feature test 
case. Matlab provides a GUI program to make this kind of analysis more 
intuitive for the user; however, it would be possible to automate the pro-
cess by calculating the confusion-matrix percentages for each tested algo-
rithm and simply to pick whichever one had the highest success rate. 

Table 7.  Machine-learning classification algorithms (MathWorks 2015b) 

Classifier Brief Description Speed Memory 

Decision 
Tree 

Trains the classification tree with test data and follows 
decisions in the tree to make new predictions 

Fast Low 

Discriminant 
Analysis 

Assumes the variables forming each class of data follow 
Gaussian distributions 

Fast Low to 
High 

SVM Finds a “hyperplane” that separates classes by the 
largest margin and uses the plane to classify new data 

Medium 
to Slow 

Medium 
to High 

Nearest 
Neighbor 

Calculates the distance between query points and 
nearest neighbors in training the dataset and classifies 
new data based on the distance between points 

Medium 
to Slow 

Medium 

Ensemble Combines other classifiers into one Fast to 
Medium 

Low to 
High 

 

4.1.1 Machine-learning methodology 

The machine-learning process for detecting repetitive features begins with 
segmenting the image data and creating a training dataset of the features 
of interest. Many of the morphological operations and preprocessing tech-
niques discussed in Section 2.1 are used to clean the imagery data and sep-
arate the features of interest from noise or other unwanted features. This 
requires a discernible characteristic between the feature and its surround-
ings, such as a difference in intensity values. Unfortunately, from the per-
spective of overhead remote imagery, telephone poles are typically too 
small to detect or are similar in color to the surrounding terrain. This 
methodology uses the poles’ shadows for their discernible property as they 
have a different intensity value than the surrounding terrain. Detection of 
the actual poles would be more robust because shadows vary with time of 
day and cloud cover. Also, the shadows do not indicate the exact location 
of the telephone poles and corresponding wire; however, they are very 
close. Presumably any detected features will prompt a buffer zone that ve-
hicles or personnel should avoid going into, and this zone would account 
for the slight offset between actual and detected pole locations. 
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The following is an annotated step-by-step approach used to detect repeti-
tive telephone pole shadows within an image via machine-learning meth-
ods. 

1. Acquire the base image (Figure 11 in this case, from Google Earth). 

Figure 11.  Initial RGB image of a test site at FHL (JM-12). 

 

2. Convert the base image to grayscale (Figure 12). 

Figure 12.  Conversion of the RGB image to grayscale. 

 

3. Convert the grayscale image to binary with Otsu’s intensity threshold (Fig-
ure 13). 
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Figure 13.  Conversion of the grayscale image to binary with the 
intensity threshold. 

 

Now a series of morphological operators are used to clean up the binary 
image data. However, these act on the white portions of the image. Be-
cause the pole shadows are dark regions compared to their surroundings, 
they appear as black in the resultant binary image of Otsu’s method (Fig-
ure 13). Taking the compliment of the binary image ensures that the fea-
tures of interest are represented as white regions. Otherwise, the operators 
will act on the wrong portions of the image. 

4. Take the compliment of the binary image (Figure 14). 

Figure 14.  Compliment of the initial binary image. 

 

Next, a series of morphological operators are passed over the image to re-
move unwanted features while highlighting the desired ones. As men-
tioned in Section 2.1, a variety of morphological operations produces dif-
ferent results. The effectiveness of preprocessing depends on the combina-
tion and call order of these operations. It is important to use the same pre-
processing procedure for both the algorithm training set and test dataset 
since the algorithm is trained to look for features with certain characteris-
tics. If the test data is prepared differently than the training set, the algo-
rithm will not be as effective.  
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Figure 15.  Post morphological preprocessing. 

 

Although it may not seem it, Figure 15 contains less noise and has cleaner 
features than the previous binary image (Figure 14). At this point, the im-
age is segmented enough to produce a training dataset for the classifier al-
gorithm. The training dataset is created by manually selecting the regions 
in Figure 15 that correspond to features of interest and calculating a vari-
ety of properties for those regions. This step uses the Matlab function 
called regionprops (Mathworks 2015c), which calculates a set of properties 
for each individual region within a binary image and then outputs them to 
a table. These properties include region area (in pixels), centroid location, 
orientation, perimeter (in pixels), and many more. These values construct 
a rigid model that describes the feature of interest in terms of specific 
properties that the algorithm can then search for. Repetitive features typi-
cally have similar characteristics as each other, which is useful for finding 
just those features in the image. For example, the shadows of each tele-
phone pole in different images have similar orientations, eccentricity, and 
lengths as one another, as shown in Table 8.  

Table 8.  Model property values for identifying telephone-pole shadows. 

Test Site Orientation (º) Eccentricity Length (pixels) 

JM-12 −35º < 𝜃𝜃 < −29º E > 0.987 23 < L < 30 

JM-13 −29º < 𝜃𝜃 < −21º E > 0.990 24 < L < 39 

 
Several more properties are calculated to provide as much data as possible 
to the classifier algorithm. The features highlighted in Figure 16 are those 
used as the training set for the classifier algorithm.  
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Figure 16.  Extracted-feature training dataset of telephone poles at the JM-
12 field-test site, FHL. 

 

The actual training of the machine-learning algorithms is performed with 
the Matlab Classification Learner app. The input to this app is the property 
dataset for the training features, and the output is a function that takes im-
age property datasets as input. Once the algorithm is trained, it can be 
tested on a brand new image. This requires preprocessing the new image 
and calculating the same set of properties as with the training image. This 
property dataset is then passed through the machine-learning function, 
which returns the identified features.  

5. Plot identified features of interest on the input test image (Figure 17).  

The last step is to display the detected poles. Points are plotted at the cen-
troid of each shadow (as calculated with the regionprops function) to ap-
proximate the location of each telephone pole.  

Figure 17.  Detected telephone poles at the JM-13 field-test site, FHL. 
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4.1.2 Methodology discussion 

The trained machine-learning algorithm effectively finds the telephone 
poles; however, it fails to find all of the pole shadows (Figure 18).  

Figure 18.  Actual telephone pole locations at test site JM-13, FHL. 

 

The algorithm most likely fails to find two poles in particular because of 
the features adjacent to those specific poles. The left-most shadow inter-
sects the dirt road, and inspection of the preprocessing result indicates 
that the program actually combines that shadow with the edge of the road. 
Thus, that particular feature does not fit the model for a telephone pole de-
fined in the machine-learning algorithm, so it is not extracted. Similarly, 
the pole next to the tree combines with the tree during the preprocessing 
step, and is not identified. 

This highlights the importance of using a good characteristic for separat-
ing the features from their surroundings. Unfortunately, it is extremely 
difficult to separate the actual telephone poles, at least in true-color for-
mat, from the surrounding terrain. The resolution is too coarse, and the 
surrounding terrain is nearly the same color brown as the telephone poles. 
As mentioned before, using shadows as the discernible feature is imperfect 
because their size, orientation, and visibility depend on the time of day 
and amount of sunlight when the image was taken. The success of this 
methodology should not depend on external variables such as weather or 
time of day. The determination of what characteristic to focus the algo-
rithm on should be a case-by-case decision. The use of imagery metadata 
may assist in determining which characteristic or property to use in the 
machine-learning algorithm. For example, information about the date, 
time, and location of an image collection could guide an estimate of the 
sun’s shadow length and orientation within that image.  
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Although there are some issues with this methodology, the result is useful 
and would help someone identify the location of telephone poles in this 
landscape. The issue is that this particular process is designed specifically 
for telephone-pole shadows with fairly specific orientations and sizes. This 
approach is not very robust and versatile in that sense. 

4.2 Template matching 

In addition to machine-learning methods, template matching can identify 
repetitive features within a given image fairly quickly. This method finds 
strong matches between a template image and different regions of a larger 
image by calculating cross-correlations between the two datasets. Similar 
to the structure elements mentioned in Section 2.1, the template images 
are passed through the larger image pixel by pixel. For each template im-
age location, a correlation is calculated between the pixels of the template 
and those of the target image. The result is a correlation map with differ-
ent peaks and valleys indicating where there are strong or weak correla-
tions between the two images. Peaks in the correlation field that are above 
a certain value are identified and extracted as matches. Multiple template 
images can be correlated with the same terrain image, which is useful if 
the feature of interest has multiple variations or if the user wants to iden-
tify different features in the same image.  

4.2.1 Template-matching methodology 

The basic template-matching methodology is fairly straightforward, but 
the following Karez hole example illustrates the different steps. First, tem-
plate images of the feature of interest are selected (Figure 19). These tem-
plates are at the same resolution and size as the Karez holes in the terrain 
image (Figure 20). 

Figure 19.  Template images of Karez holes. 

 

Next, each template image is cross-correlated with the larger terrain image 
(Figure 20, left), resulting in a cross-correlation field (Figure 20, right). 



ERDC/CRREL TR-17-6 34 

 

Figure 20.  Example of a terrain image containing 
Karez holes (left) and the resultant cross-correlation 

field (right). 

 

The next step is to extract the peaks in the cross-correlation field (Figure 
21). This case considers the top 0.1% of peaks as matches.  

Figure 21.  Results of cross-correlating Karez hole 
templates in a landscape image. 

 

This process operates quickly on large images, which is useful for identify-
ing chains of Karez holes that may not have been obvious from such a large 
perspective (Figure 22). 
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Figure 22.  Identification of Karez holes in a large-scale terrain image. 

 

Although there are a number of false positives identified with this process, 
it gives a quick indication of where these chains are, how long they are, 
and which of them may be connected. It helps an analyst to hone in on a 
particular area where a number of those features have been detected while 
ignoring other areas where there are none or very few. The false positives 
are typically associated with the threshold value selected for the correla-
tion tests. Different thresholds will lead to different amounts of true and 
false positives. 

4.2.2 Scale-and-rotation-invariant template matching 

The cross-correlation method works well for symmetric features; however, 
it does not work well with features that are complex and appear at a vari-
ety of scales and orientations. Fortunately, there are multiple algorithms 
that are invariant to scale or rotation differences between the template im-
age and a larger image. Unfortunately, a number of them are patent pro-
tected. SIFT (Scale-Invariant Feature Transform) has been widely used for 
years, and SURF (Speeded-Up Robust Features) is a faster variation of 
SIFT; but both are patented. There are a few open-source methods availa-
ble, including Ciratefi (Kim and Alves de Araujo 2007) and ORB (Oriented 
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FAST and Rotated BRIEF) (Rublee et al. 2011). This paper will briefly dis-
cuss some of the features of ORB as it is provided in OpenCV.   

4.2.2.1 Oriented FAST and Rotated BRIEF (ORB) 

As the full name suggests, ORB is based on two different algorithms: FAST 
(Features from Accelerated Segment Test) and BRIEF (Binary Robust In-
dependent Elementary Features). FAST identifies keypoints, and then 
BRIEF describes these points in a way that the computer can understand 
and then search for. The following explanation of keypoints is adapted 
from (Mordvintsev and K 2013). Keypoints are regions of an image that 
are unique and do not appear in more than one spot in that image. These 
could be corners of features with interesting interfaces between multiple 
colors or intensity values. Consider Figure 23. 

Figure 23.  Illustration of feature keypoints. 

 

Region 1 in Figure 23 cannot be a keypoint because the entire region is the 
same color. The contents of that box would look the same anywhere inside 
the hexagon. Region 2 cannot be a keypoint because it is simply a flat in-
terface between two colors. Moving that box along the upper edge of the 
hexagon would have no effect on the contents of the box. However, region 
3 could be a keypoint because it contains a unique corner. Although there 
are other corners of the hexagon, a similar box over those corners would 
look different from the region 3 box above. An algorithm that identifies 
keypoints looks for regions in the image where slight box movements 
cause large differences between the premovement and postmovement re-
gions (Mordvintsev and K 2013).  

Once the keypoints are identified with FAST, they must be described nu-
merically in a way that the computer can compare against the descriptions 
of other regions. This is where the BRIEF portion of ORB comes into ef-
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fect. However, BRIEF does not handle rotations well, so the keypoints’ ori-
entations are first calculated based on the intensity distribution of pixels in 
a small circular area around each keypoint (Mordvintsev and K 2013). This 
step assumes that the keypoint’s location differs from the centroid of the 
intensity-weighted moment of that small circular region. This is analogous 
to how the centroid of a three-dimensional object’s mass moment of iner-
tia may differ from that object’s geometric centroid due the object’s shape 
and mass distribution. If these two points differ in location, then a vector 
can be drawn from one to the other, thus giving an orientation to each key-
point (Rublee et al. 2011). ORB uses these keypoint orientations to steer 
the BRIEF portion of the algorithm, which improves its performance 
(Mordvintsev and K 2013). 

SIFT and SURF create 128 and 64 dimension floating-point vectors, re-
spectively, to describe each keypoint, which uses a large amount of compu-
tational memory. Statistical procedures, such as principal component 
analysis, can reduce the number of dimensions needed to fully describe 
each keypoint. In addition, converting this data to binary string format via 
hashing functions reduces its memory usage further. BRIEF improves this 
process by producing the binary strings for each feature directly without 
constructing the descriptive vectors first. These binary strings are then 
matched by calculating the Hamming distance between each pair of 
strings (Calonder et al. 2010). The Hamming distance between two binary 
strings is the number of coefficients that differ between them (Symonds 
2007). Small Hamming distances indicate two strings that have similar co-
efficients, which indicates they match closely. This implies that the two 
keypoints corresponding to those strings have similar descriptions and 
thus are similar to each other.  

The accuracy of matched points is assessed based on a nearest-neighbor 
test taken from Lowe (2004). For each identified keypoint, this test com-
pares the distances to both its closest and second closest matches. If the 
ratio of the closest distance to the second closest distance is less than 0.8, 
then it is considered a correct match. As explained by Lowe (2004), “this 
measure performs well because correct matches need to have the closest 
neighbor significantly closer than the closest incorrect match to achieve re-
liable matching.” (Lowe (2004) finds that this threshold removes 90% of 
false matches while removing less than 5% of correct matches. Based on 
the number of correct matches found, the user can determine whether the 
feature of interest has actually been identified. For example, if there are 
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ten correctly matched keypoints between a prescribed target feature and a 
new image, the user might assume that their feature was found in that new 
image. 

4.2.2.2 ORB template-matching example 

The following example illustrates some of the steps associated with using 
ORB to detect features with scale and rotation variations. The first step is 
to identify keypoints for the feature of interest (Figure 24). 

Figure 24.  Keypoints identified on a geometric shape. 

 

ORB identifies a number of keypoints around the feature of interest, in-
cluding several that are bunched together at the same location. As ex-
pected, the chosen keypoints are at the corner of the shape as these loca-
tions provide unique features of the shape. 

Next, ORB is tested with a rotated and scaled version of the base feature. 
The matches between the base shape and a rotated and scaled version are 
linked with colored lines in Figure 25. 

Figure 25.  Linked keypoints between scaled and rotated 
versions of the same feature using ORB. 
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ORB does a good job of linking the correct keypoints between the base im-
age and the altered version. The only points that are incorrectly matched 
are those for the 90° corners, which are difficult to track because there are 
multiple corners like that in the feature. To truly test ORB, an altered ver-
sion of the base image was mixed in with other shapes, as in Figure 26. 

Figure 26.  Linked features between the base image 
and mixed image. 

 

ORB handles this test fairly well, but the addition of other shapes leads to 
some incorrect matches. Additional tests indicate that ORB tracks the fea-
ture better if the rotation between the base image and the mixed image is 
small. ORB performs better in these situations if the additional shapes are 
rounded while the feature of interest has sharp corners or vice versa.  

Figure 27 and Figure 28 illustrate matched keypoints identified with ORB 
for a few different kinds of shapes.  

Figure 27.  Ten matched keypoints for an amorphous shape. 

 



ERDC/CRREL TR-17-6 40 

 

Figure 28.  Ten matched keypoints for a shape with geometric 
and amorphous components. 

 

Each image has more matched keypoints than those plotted, but only a 
small subset were plotted to reduce clutter. Comparing these figures with 
Figure 25 indicates how ORB produces better results for geometric shapes 
than amorphous shapes. This makes sense as the geometric shape has sev-
eral distinct corners, which generally make strong keypoints. This proves 
to be a limiting factor of ORB or any feature detection algorithms that fol-
lows a similar methodology. It would be difficult to accurately track fea-
tures with curved features. 

4.2.3 Methodology discussion 

Template matching is an intriguing method for identifying features be-
cause of how quick it is to implement. Figure 22 illustrates how the cross-
correlation method can quickly identify a number of features within a 
large image. Although a number of the identified features are incorrect, 
the result still provides a useful starting point for analysts to target their 
efforts. As with most of these methods, users must have some prior 
knowledge of the feature they hope to detect. If they can extract a number 
of templates for different features of interest from a larger image, then it is 
very simple to use this cross-correlation method to identify a number of 
those features across the entire large image. However, the method is still 
dependent on an arbitrary selection of a correlation threshold value and is 
limited to scale-and-rotation-invariant situations.  

ORB proved adequate at detecting scaled and rotated versions of objects, 
but it has limitations when it comes to curved or rounded features. It also 
has limitations when identifying multiple features within the same image. 
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Searching for several features at different scales and orientations is com-
putationally intensive, so this method is likely reserved for situations that 
look for only one or two features. 

Both methods achieve their intended goals of identifying and matching 
features; however, they do not operate with the level of precision that the 
Army likely requires. As with the detection methods previously discussed, 
these tools provide good guidance tools but not autonomous detection 
methods. 

4.3 Comparison of repetitive-feature methodologies 

Machine learning and template matching have their own advantages and 
disadvantages when it comes to extracting repetitive features. Machine-
learning algorithms are intensive to train but are simple to use after 
proper setup. Template matching is quick and simple to use but can iden-
tify a number of false positives and is not very robust. Both methods are 
able to achieve feature extraction; however, their effectiveness depends on 
creating comprehensive yet specific models for each method to search for, 
which is difficult to perfect.  

A recurring theme in this paper is the importance of proper preprocessing 
and segmentation. This step is tantamount to successful feature detection 
with machine learning. As mentioned previously, any new image on which 
the machine-learning algorithm is implemented must be preprocessed the 
exact same way as the image used to train the algorithm. The results of 
preprocessing are dependent on characteristics of the image itself, so this 
approach may fail to find features in disparate images that have varying 
preprocessing results. In addition, the algorithms are trained to look for 
features with rather specific characteristics, which could prove problem-
atic if there are variations in the feature of interest.  

Template matching does not require preprocessing as machine learning 
does; however, it requires template images that adequately cover all varia-
tions of the feature of interest. If a Karez hole in the terrain image has a 
filled-in hole and the template Karez image has a hole in it, then the cross-
correlation method may fail. In addition, ORB and other scale-and-rota-
tion-invariant template-matching schemes are able to account for varia-
tions in the feature of interest, but it is unrealistic to implement such 
methods on a large image due to the computational expense. 
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A major drawback to both repetitive-feature methodologies is that they re-
quire prior knowledge about the features of interest. These techniques 
cannot be used to find unknown features that happen to repeat in the data. 
That capability would be extremely useful for Army initiatives; however, it 
is a very difficult problem and requires more-advanced methods and 
mathematical techniques than those explored here (Ferreira and Pinho 
2014).  

In summary, both methods can find features, but they require very specific 
conditions to do so. In addition, they require a decent amount of user in-
teraction to achieve useful results. These methods are unable to achieve 
completely autonomous feature detection as is. 
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5 Combination of Linear- and Repetitive-
Feature Detection Methods 

The methods for detecting linear and repetitive features are not exclusive 
to each, and it is possible to implement them on the same image. For ex-
ample, the left image in Figure 29 contains Karez holes, a fence line sur-
rounding a farm, and some structures. 

Figure 29.  Landscape containing both linear and repetitive features. 

 

Implementing the Hough transform method to detect fences and then the 
cross-correlation method to find Karez holes provides an analyst a useful 
overview of what is in this landscape and their geospatial distributions. 
Although Figure 29 does not highlight all of the features in the image, it il-
lustrates some of the capabilities of combining these methods on the same 
image data. 
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6 Future Directions 

The field of image processing is vast with far more methods and algo-
rithms than those described in this paper. This section provides a brief 
overview of a few additional areas that may be of interest for studies with 
similar goals, as well as research areas that can improve autonomous fea-
ture detection. 

6.1 Combination of machine learning and template matching 

Machine learning and template matching were used separately to identify 
repetitive features in this study. However, they may prove useful if used in 
conjunction with each other. Selecting the features detected by both meth-
ods would increase the fidelity of the final result and might be a good way 
to remove false positives detected by either scheme. 

In addition, training machine-learning algorithms requires a training da-
taset of manually selected features, which is time consuming and requires 
user interaction. Quickly running an image through a template-matching 
scheme might provide a useful set of initial feature locations, which may 
speed the construction of the training set. 

6.2 Elevation-data fusion 

Current remote sensors can measure elevation data, which could be very 
useful in extracting features from a landscape. In the same way that fea-
tures have certain visual properties, they may have distinct elevation char-
acteristics. It may be easier to identify Karez holes based on their elevation 
footprint than their visual appearance. If the elevation data is fine enough 
resolution, it may contain information related to telephone poles, which 
would alleviate the issue of using the telephone pole’s shadows to detect 
them. In this regard, elevation data would add a whole new dimension to 
these types of analyses. 

6.3 Context-based processing 

Accounting for the geospatial distribution of the features detected with 
each scheme may improve the final set of detected features. For example, 
if an algorithm with a high “true” classification rate (true and false posi-
tives) returns a large set of possible features, additional functions based on 
the distance between points might be able to remove the false positives. 
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For example, features that are far from any other could be ignored as 
noise. Other geospatial functions might test the linearity of features, the 
shape they create, or other patterns. 

6.4 Color spaces and topology 

Color images are depicted based on different color spaces, which use num-
bers and different components to define all possible colors in an image. 
The most common color space is RGB, which uses a three-number set in-
dicating the levels of red, green, and blue of each pixel. It is possible to 
segment an image based on each color component, which occasionally 
highlights new information, depending on the feature of interest’s color. 
There are other color spaces including HSV (hue, saturation, value), 
CMYK (cyan, magenta, yellow, key [black]), or Lab (lightness, a [green–
red], b [blue–yellow]) (Farley 2010). In the same way that an RGB image 
can be segmented based on one of its three components, segmenting an 
image in one of these additional color spaces may highlight different as-
pects of the image or feature. Additional information on color segmenta-
tion is available in Gonzalez and Woods (2002). 

Point set topology is a field of mathematics that can describe the spatial 
proximity of objects via properties that remain unaffected by image 
stretching, deformation, or twisting  (Niccolai et al. 2010). These methods 
may be useful for autonomously relating features that appear at different 
scales and orientations within different images. Additionally, topological 
methods may improve the Hough transform results by connecting individ-
ual line features that are close to each other. These are worth additional in-
vestigation. 

6.5 Multispectral imagery 

Multispectral and hyperspectral imagery data contain much more infor-
mation than panchromatic image data does. In some cases, a particular 
feature of interest may be more obvious in one band than in another. As 
mentioned previously, many of the methods in this paper require input 
data in a grayscale format. This means that each band of multispectral or 
hyperspectral data would need to be processed individually using these 
methods. The additional information gleaned from several different bands 
could offset the additional computational expenses of processing several 
different bands.  
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6.6 Image metadata 

Similar to multiple spectral bands of data, metadata provides additional 
information regarding the data in an image. As mentioned previously, 
metadata could guide the training of a particular machine-learning algo-
rithm by indicating which feature characteristics are best. For example, if a 
particular image’s metadata includes the date, time, latitude, longitude, 
and weather during data collection, then it should be possible to estimate 
sun exposure and to calculate the direction of any shadows at that loca-
tion. Identifying a shadow could be very useful even if the geometry of the 
object is unknown; just the knowledge of its presence as a vertical object is 
useful. In addition, the length of the detected shadows could potentially 
indicate the height of those features, which is also useful information. 

6.7 Stereoscopics 

Stereoscopic images are based on stereopsis, which is the perception of 
depth due to multiple images of the same object that are slightly offset 
from one another. Slight variations between the two images are indicative 
of the elevation of components in those images. Humans’ depth perception 
is attributable to this phenomenon (Hubel 1995). If elevation data is una-
vailable for a particular application, it may be possible to extract elevations 
from multiple images via stereopsis. The challenge with this is being able 
to extract differences between the two images and then quantifying them 
in some meaningful manner. 

6.8 Additional applications 

This report focuses on using feature detection methods for preventative 
measures or when planning operations through a certain area. However, 
these same techniques could help to detect features for additional investi-
gation. For example, these methods might help military analysts identify 
communications equipment and installations, “cookie-cutter” residential 
compounds, or tracks through a landscape, etc.  

6.9 Preprocessing and segmentation methods 

The overall success of many feature detection methods depends on how 
well the image is preprocessed or segmented, which signifies the im-
portance of this step in the feature detection process. However, for many 
current preprocessing methods, there are simply too many choices for the 
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user to make and understand. For example, combining the methods men-
tioned in the “Data Preprocessing” section (Section 2) will have different 
results depending on the order in which they are applied to an image. In 
addition, several of these functions have inputs that tweak their results, 
which require optimization or a user’s specification. Many of these inputs 
depend on the analyzed image, and some that work great for one type of 
image analysis may not work well for others. It may be possible to develop 
a preprocessing scheme for a specific type of image and analysis, but that 
would require a fairly large amount of time to thoroughly develop.  

Development of robust preprocessing and segmentation methods is a com-
mon problem in the field of image processing, and stating the need for 
them may be redundant and obvious, but this study serves as yet another 
case for improved techniques. The high-fidelity requirements of military 
operations require image-processing results that are much more precise 
than those that are currently achievable. Improved preprocessing will sig-
nificantly help autonomous feature detection by providing the detection 
methods with clean and properly formatted image data.  
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7 Conclusions and Recommendations 

This report serves as a synopsis of basic methods used to segment and ex-
tract different types of features from imagery. Several powerful and ad-
vanced tools can effectively detect different types of features. However, the 
variety of methods highlights one of the biggest hurdles when it comes to 
feature detection—there is no one-size-fits-all way to confidently detect all 
the features within an image that a military user may be interested in. It is 
likely that each situation will require its own customized version of these 
methods, especially those requiring preprocessing. With the current state 
of preprocessing and segmentation, these techniques and tools may speed 
up an analyst’s search for features, but it is unlikely they could fully re-
place a human’s visual recognition skills. Nearly every step requires some 
user interaction to produce usable results. Advancements in this field will 
lead to more intelligent algorithms at which point the military might be 
able to rely on image processing for this task. But at the present state, the 
user interaction required to effectively run these methods is probably as 
involved and intensive as an image analyst manually going through each 
image. 

Although these methods cannot fully replace a human’s ability to detect 
features in an image, as is, they are still useful aids. The Karez hole exam-
ple in the “Template-matching methodology” section (Section 4.2.1) illus-
trates how these methods can quickly identifying large numbers of fea-
tures. Also, a number of the filters in the “Data Preprocessing” section 
(Section 2), such as gradient or Laplacian filters, can highlight features in 
the data that are not initially obvious to the human eye. These tools can 
supplement the feature detection process and help military image analysts 
identify potential threats, unobstructed tracts of land, or other features of 
interest.  
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