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Spatial tuning of a RF frequency selective surface through origami 
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bWright State Research Institute, 4035 Colonel Glenn Hwy., Suite 200, Beavercreek, OH 45431; 

cUES, Inc, 4401 Dayton Xenia Rd, Beavercreek, OH 45432 

ABSTRACT  

Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise 
mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, 
sensors, reflectors, and frequency selective surfaces (FSSs).  While conventional RF FSSs are designed based upon a 
planar distribution of conductive elements, this leaves the large design space of the out of plane dimension under-
utilized. We investigated this design regime through the computational study of four FSS origami tessellations with 
conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the 
separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling 
mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain 
and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis 
of origami FSS designs for experimental study and motivates the development of computational tools to systematically 
predict optimal fold patterns for targeted frequency response and directionality. 
 
Keywords: origami, frequency selective surface, tuning, radio frequency 
 

1. INTRODUCTION  
Origami, the art of paper folding, has been applied in many engineering disciplines to explore new design concepts such 
as self-assembled devices [1, 2] and foldable robots [3-5]. Notable examples demonstrate that origami can offer 
guidance to the design of spatially reconfigurable devices. Application of this design concept in radio-frequency (RF) 
devices is particularly relevant as the electromagnetic (EM) interactions of RF components are sensitive to geometry and 
relative spacing of conductive elements [6, 7]. 

Reconfigurability of RF devices are often attained through inclusion of lumped components; some of the emerging 
techniques involve integration of metamaterial-inspired designs with varactor tuning [8] and microfluidics for medium 
property tuning [8, 9]. While spatial re-arrangement of components leads to a dramatic expansion of the design space, 
such design strategies have been under-utilized for a number of reasons. Traditionally, there was not enough motivation 
to consider 3D designs or inclusion of morphing components due to the added complexity and manufacturing challenges. 
Recent development in advanced manufacturing technology such as additive and subtractive manufacturing and smart 
materials enables arbitrarily complex fabrications at a relatively low cost, providing new opportunities to reconsider the 
way we design devices. In addition, the complex relationship between geometries and RF component interactions limited 
the use of traditional empirical or analytical-based design approaches for 3D device designs. Powerful computational 
tools facilitate the performance evaluation of a device with general 3D geometry, for example, using the finite element 
method (FEM). Origami design concepts provide a convenient design constraint to spatial reconfiguration so that any 
design in consideration is physically realizable through folding. 

To demonstrate the design concept, this article presents spatial reconfiguration of frequency response of a well-known 
system of dipole-based frequency selective surfaces (FSSs) through origami folding. The study focuses on the designs 
investigated in [10]; new simulations in the S-band (2-4GHz) frequency range are carried out to analyze the effect of 
material properties and underlying principles of resonance tuning. 
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Based on the assumptions discussed in the previous section, the EM analysis model is set up as illustrated in Figure 3 (c). 
The substrate is assumed to have negligible effect and is not drawn. The dipoles are drawn, for each folded configuration 
of interest, such that they follow the folded pattern. A dipole layout on a general single-vertex unit is shown in Figure 3 
(a). The new coordinates of dipoles on folded substrate can be calculated using a geometric mapping such as one shown 
in Figure 3(b). The vector Helmholtz equation is solved for the electric field, assuming time harmonic behavior. 
Perfectly electric conductor (PEC) BCs are used for the dipole surfaces. Absorbing boundary conditions are used at the 
top and the bottom boundaries to truncate the computational domain. Port boundary conditions are used to apply the 
excitation at a prescribed frequency, angle of incidence and polarization. Perfectly matched layers (PMLs) of quarter 
wavelength thickness are applied at the top and bottom to suppress artificial reflections from those boundaries. The 
height of the computational domain is set such that the distance between the dipoles and the port boundaries is at least a 
full wavelength. 

Mesh density is determined relative to the wavelength ߣ଴ that corresponds to the highest frequency used in the frequency 
sweep. The conductive traces were discretized using triangular elements of the maximum size ߣ଴/30. The deviation in 
the resonant frequency when using the maximum size ߣ଴/15 is 1.5%. The computational accuracy is most sensitive to 
the mesh on the conductive traces. The rest of the model is discretized according to the conductive trace mesh, with the 
size of the tetrahedral elements growing, away from the dipoles, up to the maximum dimension of ߣ଴/6. 

To improve the computational efficiency, only the dipoles aligned with the excitation are drawn and meshed in 
COMSOL. For instance, when the FSS is excited with plane waves with the electric field along the x-axis, only the two 
parallel dipoles along the x-axis are drawn. From the principles of FSS design [13] and previous numerical experiments 
[10], the dipoles aligned with the input electric field are excited with a current flow at the resonant frequency, while the 
dipoles orthogonal to the input electric field experience no induced current. A numerical test was conducted to confirm 
that the orthogonal dipoles do not affect the simulation and can be removed from the model without affecting the 
analysis. 

3.3 Effects of material properties 

Numerical experiments are conducted to investigate the material assumptions of the model, as discussed in Sec. 3.1 by 
inserting published versus idealized material properties of the dielectric substrate and finite conductivity for a flat dipole 
FSS. Figure 4 shows a summary of these studies. The black solid line refers to the frequency response of the 
transmission coefficient for a dipole FSS using no material properties, i.e., no substrate with PEC for the dipole. A 
strong resonance at 3.42GHz is observed. Changing the dipole surface to have the conductivity of copper (ߪ = 6.0 ×10଻ܵ/݉) has virtually no effect. Inclusion of a dielectric substrate with dielectric constant ߝ௥ = 2.2 and thickness 1mm 
moves the resonance down to 3.21GHz, by 6%. Inclusion of a thin dielectric substrate with 0.5mm thickness leads to a 
4% downward shift in resonance. Use of a degraded conductor reduces the Q-factor, in an extreme case (ߪ = 1.0 ×10ସܵ/݉), removing the resonance. 

3.2 Analysis using FEM inn COMSOL 
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