
Full-Chain Benchmarking for

Open Architecture Airborne ISR Systems
A Case Study for GMTI Radar Applications

Matthias Beebe, Matthew Alexander, Paul Foley, Denise Galejs, Stephen Mooney, Iulian Popescu, Kevin Rottman,
and Meryl Stav

Embedded and Open Systems Group
MIT Lincoln Laboratory

Lexington, Massachusetts, USA
{matthias.beebe, maa, paul.foley, denisegalejs, smooney, iulian.popescu, kevin.rottman, meryl.stav}@ll.mit.edu

Abstract—As the airborne ISR application space evolves, the
quantities of data acquired by remote sensing systems such as
radar, electro-optical, and infrared systems are growing larger,
and advanced algorithms are imposing more challenging
computational requirements for real-time processing. While
the difficulties in processing sensor data in real-time is the topic
of extensive research, the rapidly shifting technology and
application complexity has led to pronounced system lifecycle
challenges, including the constant threat of technology
obsolescence and unsustainable maintenance costs. One way for
Government programs to address this reality economically is to
shift the ISR system acquisition strategy to facilitate the timely,
cost-effective insertion and upgrade of technologies, through the
utilization of an open architecture (OA) approach to system
design standards for application ready processors (ARPs). OA
design leverages industry-standard hardware and middleware,
thus engaging a broader development community and lowering
barriers for third-party application development. For this
approach to succeed without sacrificing functional capabilities
and real-time performance, effective benchmarks are necessary
to ensure that an ARP system can meet the mission constraints
and performance requirements of real-world applications. This
work investigates the measurement of real-time performance of
commodity high-speed processing solutions and middleware for
airborne systems using OA composite benchmarks, i.e.,
benchmarks that characterize computational performance of the
system as a whole, while also validating OA principles. For ISR
systems, processing performance must often be counterbalanced
by size, weight and power (SWaP) constraints that often
necessitate application-specific configurations (e.g., mapping and
scheduling) for system-level optimization. Using ground moving
target indicator (GMTI) radar as an example, we demonstrate
the use of an open architecture benchmarking framework using
industry-standard middleware to indicate the suitability of
candidate systems for ISR applications under constrained SWaP.

Keywords—Open Architecture, ISR; GMTI; Heterogeneous
Benchmark; OpenCL; MKL; VSIPL; MPI

I. INTRODUCTION

In airborne high-speed sensor signal processing
applications, real-time performance is critical. Both
application design and system-level optimization are important

to meeting the latency requirements imposed by sensor data
rates and usage scenarios. Additionally, for systems with
SWaP constraints, fine-tuning application efficiency to
maximize hardware utilization is crucial. In the case of
airborne radar modes such as ground moving target indicator
(GMTI) and synthetic aperture radar (SAR), signal processing
algorithms present specific challenges related to data
dependency and data distribution for parallelization. All of
these needs and constraints often lead to highly optimized, yet
tightly integrated (or highly coupled) systems of hardware and
software, which comes with significant costs, such as time and
effort to maintain, upgrade, or replace, as well as opportunity
cost in the form of reduced re-use and adaptability. These
costs present a significant issue when it comes to the
acquisition and sustainment of systems throughout their
lifecycle.

At the same time, recent developments in commodity
processor technology for high-performance computing (HPC)
such as system-on-a-chip (SoC) processors and graphics
processing units (GPUs) for handheld and desktop platforms
have led to increased programmability through maturing
heterogeneous application programming interfaces (APIs) and
languages targeting graphics processors [1]. Examples
include the CUDA APIs for development on NVIDIA devices,
and the more portable OpenCL APIs which are supported
across multiple devices. The prevalence and widespread use
of these technologies lend to their accessibility, which is one of
the goals of the open architecture paradigm. These
developments make it feasible to implement high-performance
applications in both homogeneous and heterogeneous
environments using multi-threading, multi-tasking, and multi-
core computing techniques while moving large amounts of data
between distributed nodes. Characterizing the performance of
such systems presents a challenge, as kernel-level or network
benchmarking techniques typically measure focused
capabilities, and may not reflect actual achievable performance
across an entire system for a composite application.

In this paper, we present a case study for benchmarking a
SWaP-constrained system for GMTI radar applications using
an OA benchmarking framework. We discuss the motivations
and challenges to characterizing system performance for

Distribution A: Public Release. This work is sponsored by Assistant Secretary of Defense for
Research & Engineering under Air Force Contract FA8721-05-C-0002. Opinions,

interpretations, conclusions and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

Mode Software

Antenna
Hardware

Middleware Software

Sensor Manager

Operating System Software

Front End
Processor
Hardware

Signal
Processor
Hardware

Control
Processor
Hardware

Communication Backplane

Receiver
Exciter

Hardware

A
vi
o
n
ic
s
B
u
s

specific HPC applications using an OA approach, introduce the
concept of a system-wide or holistic benchmarking application,
and provide empirical results from a six-month study involving
three commercial vendors. Over the course of the study, each
participating vendor proposed and assembled systems adhering
to specifications set out in a Government objectives document
for ARP solutions. The primary work of the study focused on
tuning of the benchmark software for the three solutions
proposed and prototyped by the participating vendors.

II. MOTIVATION

A. Open Architecture Goals

Sensing applications in the ISR domain, such as SAR or
GMTI require real-time signal processing of large volumes of
data within strict SWaP constraints. Historically, this
application space has been dominated by expensive, highly
specialized and slowly evolving processor technology that is
both expensive to build and difficult to maintain.
Furthermore, these specialized systems are often prohibitively
costly to adapt toward new scenarios or processing algorithms.
However, this has started to change in the last decade, and the
Government is exploring a different approach to the
procurement and maintenance process, designed to ensure that
new system components can be easily integrated and upgraded.
The principal idea is that by defining key components of an
airborne sensor system and clearly defining the interfaces
between these components, as illustrated in Figure 1, the
architecture of the overall system remains open, and various
functional subcomponents can be separately assessed and
integrated or replaced. In the case of airborne radar, the result
of this approach is to allow third-party radar application
development, and to enable low-cost processor and middleware
upgrades throughout the radar program lifecycle.

Fig. 1. Open Architecture Radar System

B. Market Trends in High-Performance Computing

With the end of the era of increasing clock-rates in single-
core computing [2], parallel processing technologies have
become ubiquitous, appearing everywhere from desktop
computers to smartphones to supercomputers. Market demand
in the commercial computing industry has brought forth a wide
array of low-cost, high-volume general-purpose processors and
GPUs. As cluster computing and distributed heterogeneous

systems becoming the norm in high performance applications,
an assortment of middleware technologies for programming
parallel platforms has been developed. OpenCL and MPI are
examples of industry standard middleware for parallel
programming on heterogeneous platforms, and are supported
on a wide array processors and communication technologies.
Other standards include the vector signal and image processing
language (VSIPL) and the data distribution standard (DDS) for
inter-process communication, both maintained by the Object
Management Group (OMG). Some middleware technologies
are not officially standardized by any organizing body, yet
remain viable from an open architecture point of view, through
their wide adoption and prevalence in the marketplace.
Examples of these include the math kernel library (MKL)
developed by Intel, Inc., and the CUDA programming
language offered by NVIDIA for programming their GPU
products. OpenVPX is a switched fabric standard developed
specifically for high-performance applications in 3U and 6U
configurations often used in SWaP constrained environments,
and is supported by a wide array of vendors.

Regardless of level of standardization or adoption in the
marketplace, the reality is that modern high-performance
systems are multicore, multiprocessor, often heterogeneous
processing environments that require multiple middleware and
hardware technologies to interact efficiently and predictably.
Combined with the expanding demands of airborne ISR
sensing applications, system designers need a way to
confidently characterize the performance of candidate systems
for the applications at hand. Many benchmarks exist for
measuring processing, communication, and middleware
performance. For example, a wide array of FFT and other
math kernel benchmarks are available, similarly for
communication fabric benchmarks such as netperf, and
middleware implementations, e.g., ccmperf [3,4]. These
tools are useful for differentiating processors and network
fabrics via relative benchmark scoring. However,
benchmarking system components individually may not
provide an adequate level of confidence that as a composite
whole, the system will meet or exceed critical real-time
requirements of a particular application. One way to address
this issue would be to port an existing application to candidate
systems and measure absolute or relative performance. This
approach may be costly however, as porting and mapping an
existing application to new hardware and possibly new
middleware may require significant effort.

We propose that to mitigate this cost, a composite
benchmark application can be used instead, to tie individual
benchmark kernels together in a way that reflects a real-world
application, yet provides flexibility in mapping computation
and configuring parallelism via open standard middleware for
computation and communication. This approach may serve as
an effective means to confidently characterize the emergent
performance of candidate systems for time critical ISR sensing
applications.

III. OA BENCHMARKING APPROACH

A. Composite Benchmark Goals

Benchmarking a composite system for a specific
application requires flexibility. A benchmark that measures
system performance for a composite algorithm chain must be
configurable in order to adequately account for
communication, data reorientation (transpose operations),
distribution and aggregation, and of course mathematical
operations for signal processing.

A key distinction of this benchmarking approach is that the
sequence of operations defined by the processing chain and
output verification software serves primarily as a starting point
for the assessment process. The benchmark software must be
architected to be easily modified, mapped, and optimized for a
particular hardware solution. Open architecture principles
within the benchmark itself are critical to the success of this
goal in practice.

B. GMTI Benchmark Derivation

In order to characterize overall system performance for
specific applications, it is necessary to use actual applications
as a basis for the benchmark software used for measurement
and assessment. In this case study, we used an algorithm
from a fielded pod-class radar application as a basis for the
canonical GMTI benchmark processing chain. This algorithm
represents all computations following digital sampling of
sensor in-phase and quadrature (I/Q) data for each coherent
processing interval (CPI). In order to maintain flexibility and
to meet use-case goals for the benchmark application, we
selected the most computationally intensive operations from
the GMTI processing chain and removed operations that were
computationally negligible, with the exception of any operation
(such as detection thresholding) that is necessary for forming
meaningful output for validation. An illustration of the
benchmark processing chain is shown in Figure 2.

Fig. 2. GMTI Benchmark Processing Chain

The principal computational components of this processing
chain are pulse compression, Doppler processing, adjacent-
Doppler bin space-time adaptive processing (clutter
suppression and beam-forming), adaptive median filter
thresholding, and detection clustering. Each processing
component in the chain presents a unique computational
challenge, and also features unique data distribution

possibilities. For example pulse compression is comprised
primarily of a time-domain FIR low-pass filter, followed by a
frequency-domain matched filter requiring long FFTs, and can
be distributed arbitrarily across pulses (i.e., a single dimension
of the three dimensional input data cube), whereas Doppler
processing is data dependent in the pulse dimension, but can be
distributed in the range samples dimension.

Upon identifying the components and processing chain for
characterizing system performance reflective of the GMTI
application, we defined computationally stressing application
scenarios, based again on capabilities of actual modern fielded
systems. We then used these scenarios to define and
synthesize five measurement cases for the benchmark to
process. Table I shows some examples of the GMTI radar
parameters used in defining the various cases.

TABLE I. GMTI CASE STUDY RADAR PARAMETERS

 Case 1 Case 2 Case 3 Case 4 Case 5

Range
Swath (km)

20 20 25 25 50

PRF (Hz) 1300 1200 1200 1300 1300

Pulses 24 48 72 72 96

Samples 15847 15847 19811 41269 99070

Range
Samples

3847 3847 8902 18542 71797

Each of the above parameter sets drove corresponding
latency thresholds for real-time performance, based on pulse
repetition frequency (PRF) and corresponding data collection
times. These latency thresholds were used as goals to achieve
on the candidate systems proposed by vendors participating in
the study. Verification of processing results is built into the
benchmark software, using heuristic measurements (e.g., total
number of output clusters, percentage of mismatched threshold
crossings, etc.) to assure integrity of the processing chain is
maintained throughout any modifications necessary for
optimization.

In addition to the performance goals, the candidate systems
tested during the study were also required to adhere to specific
SWaP constraints dictated by the pod-sized radar applications
for which their suitability was being tested. For the GMTI
application case study, the SWaP requirement imposed the
limits shown in table II.

TABLE II. GMTI CASE STUDY SWAP CONSTRAINTS (POD CLASS)

Constraint Threshold

Power* 1400 Watts

Size 11” x 14” x 16”

Weight 70 lbs.
a. 240V requirement; lower 28V requirement not shown

Other hardware guidelines stipulated include MIL-STD-
461E for radiated emissions, susceptibility, and lightning

Detections

Pulse
Compression

Doppler
Processing

Clutter
Suppression/
Beamform

Threshold Clustering

N Channel
I/Q

Corner turn

Corner turn

protection, and environmental considerations such as vibration
performance, operating temperature, operating pressure, etc.

C. Workload Analysis

To determine the workload for each benchmark input case,
we compiled a detailed floating-point operation (FLOP) count
for each computation component at the CPI level, using the
same radar parameters that were used for the simulated scans.
Workloads for each kernel were assembled based on a
combination of well-known asymptotic complexities and
nominal FLOP count values for basic operations such as
complex multiplications, complex divisions, square roots, etc.,
using multiple problem sizes.

In general, the following measurements were used to derive
and characterize kernel performance on respective processing
resources:

 L1(k, di), which is the observed time, or latency, to
perform kernel k on a single dataset size di using a
single processor. This measurement includes both
computation time and the time to move the data
for the problem from the staging area (off the
processor) to a local computation or operation
memory.

 W(k, di), the workload of a computation on dataset
size di. This workload is defined in an operation
dependent and system-independent way. (For
floating-point computation operations, W is the
floating-point operation count, while for
communication operations, W(k, di) is the number
of bytes transferred.)

The relative workloads of the computational components in
the GMTI processing chain are shown in figure 3.

Fig. 3. GMTI Computation Component Workloads

 The pulse compression component accounts for most of
the workload in the processing chain, with clustering
representing the least workload. However, it should be noted
that achievable efficiencies for operations such as pulse
compression (primarily FIR filter and long FFTs) are much
higher than that of primarily logical operations such as
clustering.

Given the above measurements, the derivation of the
following performance metrics can be defined:

 T(k, di), the sustained processing throughput
achieved for a given computation stage k,
measured in operations per unit of time.

 E(k, di), the efficiency of the computation stage,
that is, the use of resources relative to the potential
of the processing resource.

The sustained processing throughput for computation stage
k is computed as:

	

where Ln(k, di) is the total time to solve n problems of the given
type using the processor. As above, Ln(k, di) includes the time
to move the data from the system memory into local memory.
For more information about sustained processing throughput
and some trade-off considerations, see [5].

The efficiency E(k, di) of a kernel as attained on a given
processor is defined as:

where U(k) is the kernel-dependent theoretical upper bound, or
‘peak rated performance’, of the processor provided by the
manufacturer. When W is in floating-point operations, U(k) is
the theoretical peak floating-point computation rate (based on
the clock rate and the number of floating-point units). For a
communication operation, where workload is defined in bytes,
U(k) is the theoretical peak bandwidth between the
communicating units.

The above analysis was done for each computation step in
the in the GMTI benchmark processing chain in order to
compute achieved efficiencies on processing resources
allocated to the various components.

D. Middleware Selection

The open architecture GMTI benchmark is designed to take
advantage of multiple middleware options for computation in
order to provide a means to compare performance across APIs
and in some cases multiple implementations, as well as to
remain adaptable to future applications. A survey of supported
math middleware across vendors participating in the GMTI
benchmark study led to the selection of three primary math and
signal processing APIs: Open Computing Language
(OpenCL), MKL/IPP, and VSIPL. Communication
middleware is currently limited to the MPI standard, as this
seemed to be the most widely supported API across vendors
participating in the study.

These middleware APIs exhibit varying levels of
standardization and openness. For example, VSIPL and
OpenCL have well-defined standards and support across
multiple platforms. VSIPL has many implementations,
including TASP VSIPL, Axis VSIPL, and others. Intel’s MKL
and IPP APIs are not standardized, but this lack of

standardization is counterbalanced by their prevalence in the
marketplace and user community.

Like the VSIPL standard, MPI has several
implementations. MPI implementations that have been tested
using the benchmark include Open MPI, MVAPICH, Intel
MPI, and others.

E. Software Arhcitecture

The GMTI benchmark software architecture is designed to
allow mapping of individual processing components to various
hardware configurations via configuration files. Mappings can
follow fully data parallel (homogeneous) or task-parallel
(heterogeneous) processing schemes.

The benchmark software is also designed to support
multiple math and communication middleware
implementations via a common object-oriented software
hierarchy, with library-specific implementations of the five
GMTI benchmark computation kernels being exposed by a
factory interface design pattern, as shown in the software stack
illustration of Figure 4.

Fig. 4. Open Architecture Software Stack

This implementation approach allows users of the
benchmark to select which math API is used in performing the
application performance measurement. Individual computation
kernels built in various APIs can be mixed and matched by
users of the benchmark in order to achieve best combinations
for performance. For example, in a heterogeneous
environment including CPUs and GPUs, a user may choose to
run pulse compression and Doppler processing on a GPU using
OpenCL or CUDA, and to run the remainder of the processing
components on Intel CPUs using MKL. This flexibility in
mapping and middleware selection is central to the goal of
benchmarking the composite candidate system as a whole.

Fig. 5. Computation Factory Interface (OpenCL variant shown)

Communication within the benchmark software is handled
via the MPI standard interface, and the software infrastructure
allows for both data parallelism and task parallelism (for
heterogeneous processing). The level of parallelism and
specific mapping to processing resources is important for the
derivation of efficiencies achieved on the candidate systems
being tested.

F. Vendor Engagement

The GMTI benchmark study began with the request for
information (RFI) submitted to the participating vendors to
ascertain availability of candidate systems and middleware
solutions for conducting the research. The responses to this
request led to the selection of the middleware APIs featured in
the benchmark software that was distributed to the vendors.
For the duration of the study, we provided technical support for
the benchmark software, including various updates and bug-fix
patches as well as advice for mapping and optimization to the
candidate systems. The vendors in turn provided feedback and
insight into the specific challenges of their hardware, such as
cache/memory or communication backplane limitations, or
difficulties in effectively harnessing processing power of all
subsystems in the case of SoC architectures, e.g., due to
difficulty in load-balancing, etc. As a result of this process,
we found some surprising behaviors that furthered our
understanding of some of the performance considerations being
examined. For example, distinct performance differences
became apparent between various implementations of VSIPL,
and similarly, data communication performance between
implementations of the MPI standard varied widely.

By the conclusion of the GMTI benchmarking study, each
of the vendors had developed a fairly comprehensive
understanding of the benchmark processing chain and the
challenges presented by it at a system level, and had
established software mappings most appropriate for their
respective systems. Additionally, all parties involved in the
study gained appreciation for performance considerations when
implementing an application-specific processing chain on
embedded system hardware using industry standard APIs.

namespace gmtiBench
{

OclFactory::OclFactory(
 BenchmarkParameters *parameters,
 TaskConfig *task,
 Const OclDeviceSelectionPolicy *devSelectionPolicy:
 ComputationFactory(),
 m_oclAppEnv(),
 m_devSelectionPolicy(devSelectionPolicy),
 m_parameters(parameters),
 m_taskConfig(task),
 m_pulseCompression(nullptr),
 m_dopplerProcessing(nullptr),
 m_clutterSuppression(nullptr),
 m_amfThresholding(nullptr),
 m_clustering(nullptr)
{

 }

Common Benchmark Infrastructure

OpenMPIMKL VSIPLclFFT CLAPACKclBLASOpenCL

PC DP CS THR CLS

Common Computation Objs. Interfaces

OpenCL Implementation

PC - Pulse Compression
DP - Doppler Processing
CS - Clutter Suppression
THR - Amf Thresholding
CLS - Clustering

PC DP CS THR CLS PC DP CS THR CLSPC DP CS THR CLS

MKL Implementation VSIPL Implementation

Middleware-specific
Implementation

Comp. Objs. FactoryComp. Objs. Factory Comp. Objs. Factory

Common Abstraction Layer

COTS Math Middleware

GMTI Processing Chain

Comp. Objs.
Factory

Interface I/O Implementation

I/O Interfaces

C
o

m
m

u
n

ic
a
tio

n

In
fra

s
tru

c
tu

re

COTS Comm. Middleware

OpenCL Application MKL Application VSIPL Application

IV. EXAMPLE RESULTS

Three unique ARP candidate systems were characterized
for performance running the GMTI benchmark under SWaP
constraints over the course of the study. While many of the
challenges encountered in achieving the goal latency thresholds
were common across the proposed solutions, certain
distinctions in configuration or underlying processor
technology proved to be surprising. For example, small
differences in cache size significantly altered performance for
certain benchmark data cases. Additionally, polling versus
event-driven MPI implementations exhibited distinct behavior
when double-buffering was employed between data input
processes and data analysis/computation processes.

Actual benchmarking study results from the vendors are not
shown here to protect competition sensitive information. The
following results are an example from lab tests of the GMTI
benchmark (MKL) on our laboratory reference system, an 8-
node cluster of Intel Xeon X5675 hex core processors clocked
at 3.07 GHz, with 12 MB cache and 48 GB RAM per CPU.
All nodes are connected via a 40Gb Infiniband backplane.

Fig. 6. Example GMTI Benchmark Component Latencies

Average latencies for each processing component of the
processing chain are shown, as well as average overall transfer
time. Efficiencies calculated using the workload analysis
and equations described in section III.C are also shown in
figure 7.

Fig. 7. Example GMTI Benchmark Component Efficiencies

V. FUTURE WORK

This work examined several important considerations for
evaluating application ready processors for SWaP-constrained
remote-sensing applications. Going forward, we are
establishing a system integration laboratory for assessing
commercial off-the-shelf hardware, middleware, and
development tools for developing ISR applications. Toward
this end, as a follow-up to the study, several systems are being
procured for continued evaluation. While the six-month
processor study described here shows that a holistic, open
architecture benchmarking approach can be beneficial for
characterizing the performance of candidate systems, there are
many more variables to explore for candidate system
performance assessment. For example, while participants in
the study experimented with both hyperthreading and resource
oversubscription, results require further analysis. In addition,
further configuration is available via MPI build options, MKL
threads, vector computation tuning using advanced vector
extensions, or operating system kernel tuning. The five
benchmark test cases used in this study were designed to fit
appropriately within the scope of the work and duration of the
effort. Additional benchmark test cases should also be
explored, including the design of new synthetic datasets with
varying degrees of difficulty and characteristics, such as
increased target counts, overlapping targets, different noise
models, and jamming scenarios, for example. Having an
open architecture benchmarking infrastructure in place to
represent real-world applications provides added confidence in
assessment, and more rapid evaluation of candidate systems for
ISR signal processing applications.

REFERENCES
[1] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue,

vol. 3, no. 7, pp.26-29, Sep. 2005.

[2] H. Sutter, “The free lunch is over: A fundamental return toward
concurrentcy in software,” Dr. Dobbs Journal, vol. 30, no. 3, pp. 202-
210, 2005.

[3] Benson, Thomas M., “A system-level optimization framework for high-
performance networking”, High Performance and Embedded Computing
Conference, 2014.

[4] Krishna, Arvind, et al., “CCMPerf: A Benchmarking Tool for CORBA
Component Model Implementations”, Real-Time and Embedded
Technology and Applications Symposium, 2004.

[5] HPEC Challenge: (Web). http://www.omgwiki.org/hpec/files/hpec-
challenge/metrics.html, 12 October 2014.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Case 1 Case 2 Case 3 Case 4 Case 5

Ef
fi
ci
e
n
cy

PC

Dopp

CS

Det

Cluster

0.25

2.5

25

250

2500

Case 1 Case 2 Case 3 Case 4 Case 5

m
ill
is
e
co
n
d
s

PC

Dopp

CS

Det

Clust

XFER

