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ABSTRACT	  

Microprocessors are the engines that drive the modern world. For decades this space has been 
dominated by large manufacturers, such as Intel and AMD, which design and fabricate a range of 
stand-alone processors. However the proliferation of small computing devices such as cell 
phones, laptop computers, and internet-enabled appliances has opened a significant new niche: 
the Application Specific Standard Product (ASSP) microprocessor. These processors usually 
start out as soft-cores that are parameterized at design time to realize exclusively the specific 
needs of the application. The microprocessor is a small part of a working system and requires 
peripherals such as DRAM controllers and communication sub-systems to properly carry out its 
function. Therefore, creating a full system requires significant top-level integration. 

This work introduces PDSparc, an ASSP based on the OpenSparc architecture. PDSparc was 
generated using the Synopsys Processor Designer (PD) tool, which enables detailed specification 
of a pipelined processor using a C-like language called LISA [13]. PDSparc replaces a LEON3 
processor, a derivative of the Sparc v8 microarchitecture [5], in a full synthesizable SoC system 
[3] provided by Cobham Gaisler under the Gnu Public License. This integration required 
significant reverse engineering of the provided cache interfaces, and was facilitated by a novel 
socket-based debug interface to the PDSparc simulation model. This debug interface greatly 
accelerated system development by permitting micro-stepping of the PDSparc processor code in 
synchronization with the peripheral and bus package running on a commercial RTL simulator.  

We anticipate that this paper will be of interest to the practitioners in the field who can use the 
approach and the lessons learned described in the paper in building their own processor 
execution cores.  
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1. Introduction	  
Microprocessors are ubiquitous in today’s increasingly computerized world, appearing in 
watches, toys, industrial control applications, and enterprise systems. The broad range of 
applications and form factors, as well as varying size, weight and power constraints, means that a 
one-size-fits-all processor is insufficient to meet the needs of either the commercial or military 
spaces. The result is a wide variety of choices for processor architecture, from the heavyweight 
Intel Xeon [1] to ARM M-series embedded processors [2], and many in between. The success of 
the most popular processor lines is due to a number of factors, including compatibility with 
existing code bases, availability of compilation tool chains, and performance.  

The prevalence of inexpensive FPGA technology, which facilitates rapid production of arbitrary 
designs, provides an opportunity for users to build custom processors that deliver exactly what 
the application requires. Such processors, known as Application Specific Standard Products 
(ASSP), are distributed as Register Transfer Level (RTL) models that can be synthesized using 
industrial tools into nearly any hardware technology. These processors are used extensively 
throughout the design process, from prototyping to full production of critical military and 
commercial systems. The goal of this project was to rapidly create a reference baseline ASSP 
processor that could be used to demonstrate and even productize novel system features for DoD 
applications. MIT LL chose Synopsys Processor Designer (PD) as a tool to enable rapid creation 
of an execution pipeline called PDSparc that would match the OpenSparc v8 [5,6] specification. 
Further, this execution pipeline would replace an existing processor in an open SoC environment 
called GRLIB [3]. This enables unprecedented configuration freedom; processor instructions and 
interfaces can be added to a full-fledged SoC with ease using PD. This paper describes the 
process of designing a drop-in replacement for the LEON3 [4] variant of Sparc v8 processors. 

This paper is intended for an audience experienced in RTL system design and conversant in 
microprocessor architecture. The goals of this work are twofold: 

• To describe the creation of an open, flexible reference design that can be extended to 
multiple applications by enabling Instruction Set Architecture-level customization in the 
context of a full-featured, synthesizable system.  

• To describe how the LISA language as interpreted by Processor Designer can be used to 
build non-trivial execution cores capable of utilizing advanced system features such as 
streaming caches. 

The paper is structured as follows: Chapter 2 details the overall structure of the PDSparc SoC 
environment. Chapter 3 provides a brief overview of the Processor Designer tool suite, and then 
describes how it was used to build PDSparc. Chapter 4 describes the GRLIB SoC environment, 
as well as the challenges faced when interfacing it with our custom processor. Chapter 5 details a 
novel verification environment that extends some PD features to deliver source-level debugging 
of PD processor code simultaneously with source-level debugging of processor instructions and 
RTL wave tracing. Finally, Chapters 6 and 7 discuss conclusions and future work. 
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2. PDSparc 
PDSparc is a general purpose processor system created to facilitate experimentation and 
customization of embedded processing for a wide variety of DoD applications. It is based on an 
open-source LEON 3 processor, which conforms to the Sparc v8 specification, and an SoC 
support system made available by Cobham Gaisler [7] under the Gnu Public License. The SoC 
package, GRLIB, includes a processor system generator that outputs a LEON3 multi-core 
processing system with between one and four cores, an L1 cache, interrupt controllers, DRAM 
controllers, and a number of other peripherals. GRLIB is also supplied with the scripts and 
configuration necessary to target many popular commercial FPGA boards. 

The configurability of the GRLIB system makes it very attractive for a variety of prototyping 
needs. Its use of the time-tested Sparc v8 architecture, which has a great deal of software support 
and industrial momentum [8], makes the GRLIB system extremely versatile. This configurability 
enables the creation of custom systems that supply just the processing power needed by an 
application, and no more, which is useful for applications in low-power environments.  

Yet another level of configurability is possible: custom instructions. Most processor architectures 
today have fixed set of operations that they can perform. These operations are exported to the 
user as a set of instructions that embody the processor’s Instruction Set Architecture (ISA). 
Processors have historically been divided into Complex Instruction Set Computers (CISC), in 
which complex operations are rolled up into single instructions, and Reduced Instruction Set 
Computers (RISC), in which it is up to the application writer (or compiler) to build complex 
capabilities from a relatively small set of simple operations. The advantages of RISC over CISC 
architectures are many, including the ability to easily pipeline operations (because all or most 
operations take the same amount of time to execute), and speed, as critical paths can be much 
shorter. 

The RISC model is good for generalized computing, in which a wide variety of applications 
require good performance. However in the case of embedded processors, which serve very 
specific processing demands and require higher performance, some specialization is desirable. 
Such specialized processors are sometimes known as Application Specific Standard Products 
(ASSP). For example, a signal-processing ASSP might include a special instruction that 
performs FFT operations much more quickly by utilizing dedicated logic to perform the 
operation. The goal of the PDSparc is to create a configurable processor system with the added 
capability to tailor the instruction set to the application at hand. The tailored instruction set is 
enabled by Synopsys’ Processor Designer Tool [9]. 

3. Architecting PDSparc Using Processor Designer 
Synopsys Processor Designer is a tool that automatically generates synthesizable computer 
execution pipelines with arbitrary instruction sets from a processor definition written in the 
Language for Instruction Set Architectures (LISA) [13]. LISA is a C-like language first 
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PIPELINE         pipe = { FE; DC ; EX ; MEM; WB ; INST_DN}; 
   
  /* A pipeline register to pass data through the pipeline */ 
  PIPELINE_REGISTER IN pipe 
  { 
    PROGRAM_COUNTER uint32 pc; /* the address of the  
                                  instruction */ 
     
    uint32 insn0;  /* 32-bit instruction register */ 
     
    unsigned bit[10] bp_idx_src0;  /* operand 1 register index  
                                 (as source register) */ 
    bool   operand_src0_is_provisional; /* this is used if we  
                                           have to recompute      
                                           branch addresses in   
                                           writeback */ 
    uint32 operand_src0;          /* operand 1 value */ 
 
 … 
	  

developed in 1997 at RWTH Aachen University. It simplifies the specification of processing 
pipelines and the instructions they support by reducing processing logic to trees of operations. 
Pipelines are specified by listing the names of the pipeline stages, and then the registers 
separating those stages. For example, PDSparc’s five-stage instruction pipeline is defined in 
Figure 1 (not all pipe registers are shown for brevity). 

In LISA, the PIPELINE command defines the names of the pipeline stages. There are registers, 
defined by the PIPELINE_REGISTER command between each set of pipeline registers, FE/DC, 
DC/EX, EX/MEM, MEM/WB, where FE is the fetch unit, DC, is the instruction decode unit, EX 
is the execution unit, MEM is the data cache memory input, and WB is the writeback unit that 
commits state to the processor register file. The last stage INST_DN is a dummy stage that 
ensures that the tool will place state elements after the Writeback (WB) stage. In addition to the 
Instruction pipeline, PDSparc has a tightly coupled three stage load/store pipeline. The full 
architecture is illustrated in Figure 2. In that figure, each pipeline stage has a register set at its 
inputs, outputs, or both. All logic in between those stages is combinational (unclocked), and 
constitutes the functionality of that particular stage. A particular stage is stalled when the output 
of the combinational stage is not registered in its downstream register set by disabling update 
functionality of the register. Stalls are explicitly called in the LISA language by addressing the 
stage to stall and which register set (IN or OUT) to stall. For example, to stall the Execution unit 
(EX) in the next cycle, the LISA writer would include EX.OUT.stall() in their code. This would 
prevent the EX/MEM state register set from clocking in the result of the EX logic. This 

Figure	  1:	  The	  PDSparc	  LISA	  instruction	  pipeline	  definition	  
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command will generally also stall the DC/EX and FE/DC registers as they are upstream of the 
stalled register and cannot forward their data. This stall will result in a pipeline bubble (an 
undefined operation that has no effect) passing through to the Writeback (WB) stage. This 
automatic stall mechanism greatly simplifies the task of managing the pipeline to maintain 
performance by keeping the pipeline full- despite confounding factors such as load/store access 
delays. 

There are two kinds of stall conditions in a simple RISC processor: instruction fetch stalls, in 
which the next instruction is not yet available to insert into the pipeline when there is space to do 
so, and load/store stalls, in which the instructions executing in the pipeline require loads or stores 
to memory3. Because either can stall the pipeline, it is difficult to extricate one or the other 
during development. Rather, the fetch unit, which ordinarily only fetches instructions must also 
be cognizant of the state of the load/store logic, because a load/store stall downstream has the 
same effect as a fetch stall upstream: the pipeline cannot advance, and no new instructions may 
be inserted into the pipeline. 

Nonetheless, the processes of instruction fetch and load/store access have their own semantics 
and protocols. This is the reason that PDSparc has two pipelines: one for instruction execution, 
and one for load/store accesses. Processor Designer permits the definition of multiple pipelines, 
and they can easily be made to interact via signals. As will be described in the next section, the 
protocol and functionality of a streaming instruction cache which strives to make sure that an 
instruction is ready for consumption by the instruction pipeline at every cycle, is very different 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  We	  are	  not	  including	  stalls	  due	  to	  asynchronous	  interrupts,	  or	  multi-‐cycle	  arithmetic	  operations	  in	  this	  discussion.	  

Figure	  2:	  PDSparc	  pipelined	  architecture	  
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from the protocol and functionality of a random access data cache. Thus, separating the two but 
ensuring that they maintain a lockstep relationship results in much cleaner and extensible code. 

 Interfacing to external systems in PD is relatively straightforward as LISA defines a number of 
pin types that can be used to hook directly to standard busses. Pins can be defined in the main 
LISA code for the processor, or in special modules called protocols. In the design of PDSparc, 
two protocol features were used: a C++ test driver, and a LISA module that represents the true 
bit-accurate functionality of the protocol. Consistent with the rest of PD, protocols are made of 
operations. Those operations have inputs and outputs, and generally encode elements of more 
complex protocols, such as busses. The use of a protocol called cache_ifc is shown in the code 
block shown in Figure 3. 

In that code, an operation called write_phase, which is bound to the third stage in the load/store 
pipeline ldst_pipe.WRITE, uses C++-like method calls to call operations on the protocol 
cache_ifc, which in turn sets signals connected to the processor’s level 1 instruction and data 
caches. The protocol abstraction is very useful in test and development, because the second 
feature of the protocol, the C++ driver implementation, can be used to interface to any test 
environment, or emulate any connected device. The test interface has an identical signature to the 
LISA protocol, except that internally, it is actually a C++ method on a C++ class.  

The Processor Designer LISA model is compiled by the tool to create an Instruction Set 
Simulator (ISS). The ISS is a static library (.a) file that can be linked into any program in order 
to drive tests on the architecture. When the ISS is used, rather than utilize the LISA protocol 
operations, the tool links with the C++ protocol code to provide stimulus and record outputs. 
This allows the use of all C++ functions and libraries, from file IO to sockets (which will be 
important later in this paper), and enables high-level debugging and test automation. 

The ISS, when linked with a debug interface supplied with PD can single-step through assembly 
code running on the processor, but more importantly, it can micro-step through the LISA code 
between clock cycles. This enables source-level debugging of the processor in a sequential, 
rather than concurrent (as in HDL debugging) style. This is enabled by the PD scheduler, which 
schedules operations such that concurrent operations appear sequential, but all dependencies are 
met. Thus it is possible to step through all active combinational paths at the LISA code level.  
This powerful technique makes engineering complex logical structures such as bypass paths, 
which direct data backwards in the pipeline for immediate use, much simpler. 

When the processor is logically correct, and verified through the ISS, the user can run a tool 
called Processor Generator (PG), which converts the LISA code into Verilog, VHDL, or both 
Hardware Description Language (HDL). When PG runs, it uses the LISA protocol operations, 
rather than the C++ protocol operations that the ISS linked with. The result is a pure RTL 
version of the processor with actual pins that will be driven by external logic. PG will generate 
human readable HDL, and it will also insert JTAG debug capability for increased visibility. 
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However, in the move to HDL, we necessarily lose debug flexibility. In the next section, the 
processor-cache interface will be described. Developing the proper protocols required reverse 
engineering the GRLIB streaming cache, which was not a small effort, and demanded maximum 
visibility. Therefore, MIT LL developed a hybrid debug approach that used the protocol interface 
to connect the ISS, which affords extreme visibility, directly to the GRLIB RTL cache and other 
subsystems written in HDL, all running on an industry standard HDL simulator. This was a 
tremendous advantage, and was made possible by the high degree of logical equivalence between 
the ISS LISA code and the PG-generated HDL. 

4. Cobham Gaisler’s GRLIB 
 The Cobham Gaisler GRLIB package is a configurable multi-core System-On-Chip(SoC)  that 
can be targeted at many different industry-standard FPGA boards. This makes it ideal for 
prototyping new SoCs. GRLIB includes a graphical configuration toolchain for generation of the 
SoC RTL, and utilizes the sparc-elf [12] toolchain for program compilation. The GRLIB 
configuration chain generates synthesizable VHDL logic for all sub-systems, from instruction 
and data caches to RAM and ROM to Interrupt (IRQ) logic. It also will generate a configurable 
LEON3 processor based on the Sparc v8 specification. 

The goal in this project was to replace the LEON3 with a PD-generated Sparc v8 processor that 
could be “dropped into” the existing GRLIB system. Processor Designer is targeted exclusively 
to the generation of execution pipelines, so the dividing line between the GRLIB RTL and the 
PDSparc processor is be at the cache-processor boundary. This meant that the processor needs to 
adhere to the cache functionality in GRLIB. 

The most basic model of a processor cache interface involves an explicit address request, 
followed by data delivery. For a pipelined RISC processor however, such a relationship between 
the processor pipeline and the cache would result in many bubbles in the pipeline, as instruction 
fetch requests would take multiple cycles. In order to keep the pipeline full, a RISC system 
employs a streaming cache that delivers data to the pipeline on every cycle, unless stalled. The 
interesting thing about such a cache interface is that the seat of control is less in the processor 
pipeline, and more in the cache controller. This is because the pipeline is completely dependent 

	  
Figure	  4:	  The	  GRLIB	  instruction	  cache	  protocol 
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on the cache feeding it with instructions and data. In a RISC, with no multi-cycle instructions, 
the only reason to stall the pipeline is the when data is unavailable.  

There is therefore an extremely tight coupling between the cache and the pipeline. This also 
implies that the interactions are more complex, as are the protocols that tie the cache and the 
pipeline together. The task of reverse engineering the cache interface, and translating the 
protocol to a LISA-generated execution pipeline was not straightforward. In addition, the 
protocol and timing of the streaming instruction cache is markedly different from the random-
access data cache. The task was therefore to design a pipeline that would handle the cache 
protocol and provide similar performance to the original LEON3. A trimmed down version of 
the protocol is shown in Figure 4. 

The instruction cache interface is comprised of eight primary signals and busses. The three 
program counter busses, rpc, fpc and dpc are the mechanism by which the processor stays in 
sync with the streaming cache, and is able to receive instructions consecutively. Rpc is the 
request program counter, which is the next instruction to be fetched. Fpc is the fetch pc, which is 
the pc of the current instruction being actively pulled in by the FE stage of the pipeline. Dpc is 
the decode pc, and corresponds to the current instruction being decoded. The reason that all three 
busses are needed is that there are cases where the cache cannot deliver the proper instruction 
data, such as when a cache miss occurs. The cache miss sequence is illustrated in Figure 4 
starting at time 2, marked as event A by a blue box. At that point dpc gets the value of fpc, fpc 
gets the value of rpc, and rpc gets the next address to fetch as instructions move through the 
pipeline. At time 2, the fetch (FE) unit clocks the new instruction into the pipeline by reading the 
data bus. At time 3 (event B), the sequence continues with the FE unit registering data for 
instruction 0x110, and the decode unit decoding instruction 0x10c. However, the active low hold 
signal driven by the cache is asserted, meaning that the last data received by the FE unit may be 
invalid. In cycle 3 (event C), the possibly bogus instruction is decoded by the DC unit, but no 
action is taken pending resolution of the hold condition. At time 4, the active low mds signal is 
asserted, signaling that the instruction pointed to by dpc is indeed bogus, and the correct value is 
being driven on the data bus. This triggers the DC unit to execute a flush, which has similar 
LISA syntax to the stall command: DC.OUT.flush(), thus invalidating the instruction currently 
being decoded. At that point, the instruction input to the DC unit is modified to reflect the true 
instruction value being driven on the data bus. This requires a LISA trick however, as the 
pipeline is currently stalled, and pipeline registers are not updated on clock edges due to the hold 
condition. LISA has several different kinds of register types, most notably REGISTER types and 
STATE_REGISTER types. All pipeline registers are of type REGISTER, which are not updated 
in a pipe stage under stall. However, STATE_REGISTERs are updated unconditionally. Rather 
than use the automatically generated REGISTER types for the DC unit instruction inputs, 
STATE_REGISTERs were used so that the DC unit input could be modified without releasing 
the pipeline from the stall. 
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The stall means that the pipeline is now behind, as the instruction on the data bus is the 
instruction being decoded, not the one currently being fetched. As soon as hold is deasserted 
(event E), the pipeline assumes that the value on the data bus is the currently fetched value. Since 
the pipeline will not increment rpc until the cycle after hold is deasserted, the pipeline is 
automatically resynchronized. 

Branches are an important part of instruction fetch units, and if the Fetch and Decode units are 
not tightly synchronized, they can significantly degrade performance. The LEON3 processor in 
the original GRLIB configuration is able to fetch, decode, and branch in two cycles. This entails 
decoding the instruction, calculating the branch target, and driving the proper signals to redirect 
the cache. During that time, one more instruction will have been fetched. This instruction is in 
what is commonly called the branch delay slot, and is used to optimize performance and avoid 
pipeline bubbles by allowing the compiler to insert an instruction after a branch. PDSparc 
currently takes three cycles to branch, but a two-cycle branch should be possible in the future. 
Branches are initiated by driving the rbranch signal, and driving the new branch address onto rpc 
without incrementing fpc and dpc as shown at event G. The instruction in the dpc slot is the 
branch instruction, and the instruction in the fpc slot is in the branch delay slot. In the next cycle, 
the branch target transitions to fpc, and the fbranch signal is driven high (event H). After that 
point, instruction fetch continues normally. 

The instruction fetch unit is relatively straightforward in that it assumes there is a stall condition 
at the DC unit or later in the pipeline if the instruction cache hold signal is asserted, or the data 
cache hold signal is asserted. This is based on the aforementioned tight coupling between the 
processor and the two caches. The cache makes the assumption that if load/store data - data 
bound/from the data cache - is delayed then the pipeline cannot move forward, and instruction 
fetch is stalled also. For reasons that will be explained shortly, the converse is also true, and an 
instruction cache hold implies a data cache hold/stall. 

The data cache is significantly different from the instruction cache in that it is both streaming 
(back-to-back requests are possible), and random access. In addition, the data cache supports 
loads and stores, as opposed to only instruction loads. The data cache protocol has a similar 
structure to the instruction cache protocol in that it has a multi-cycle fetch process with hold 
conditions. To simplify the logic, and better match required functionality to the proper logic, 
PDSparc implements a separate load/store pipeline that operates in lockstep with the instruction 
pipeline. The load/store pipeline has three stages: an ADDRESS stage, in which the transaction 
address is driven on a bus called eaddress, a DATA stage, in which data to store is driven on a 
bus called edata, or data is loaded, and a final WRITE stage in which stores are committed. The 
process of performing streaming loads and stores is shown in figure X.Figure 5 In that figure, 
both the data cache bus and the instruction pipeline state are shown. Back-to-back store and 
back-to-back load instructions are shown as colored boxes on the instruction pipeline plot. The 
GRLIB cache supports streaming of two-cycle loads, which after a one cycle startup can be 
delivered on every subsequent clock, barring a hold condition. Stores however, require three 
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cycles with one cycle of latency before a new transaction can be initiated. Event A in  Figure 5 
shows a back-to-back store. At cycle1, the active high eenaddr signal is asserted, and the store 
address is driven onto the eaddress bus. While Cobham Gaisler’s rationale in choosing of signal 
names is a bit murky, the assertion of these signals corresponds to when the store instruction has 
reached the EX stage in the instruction pipeline, leading to prepending an ‘e’ to the signal name. 
At cycle 2 (event B), eenaddr is deasserted and enaddr asserted. Simultaneously, the maddress 
bus drives the store address, the data is driven on the edata bus, and read is deasserted. At this 
point, the instruction has reached the MEM pipeline stage. It is important to note that while the 
instructions are moving through the instruction pipeline, they are having no effect on execution 
after the DC unit injected them into the load/store pipeline, which drives all protocol commands 
via LISA protocols. At event C, the final stage of the write is executed when the store request 
reaches the third stage of the load/store pipeline. In that stage, the write signal is driven.  

While the first store to address 0x200 was executing, a second store was fetched (to address 
0x204). Since the store mechanism requires a cycle of latency, the second store needs to wait one 
cycle before it can be injected into the load/store pipeline at time 1. This requires the injection of 
a “bubble” into the instruction pipeline, which is supported by the LISA code by calling 

Figure	  5:	  The	  GRLIB	  data	  cache	  protocol	  with	  PDSparc	  pipeline	  state 
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DC.OUT.stall() for one cycle. The streaming cache can also be stalled in that case by driving a 
signal called inull, and rewinding the rpc address. This signals the cache that it must wait, and 
ensures that no instructions are missed. Once the first load/store reaches the DATA stage in the 
load/store pipeline, it has accepted the write and leading to eenaddr and eaddress being asserted. 
At event D, the first store has retired from both pipelines, and the second store is in the MEM 
and DATA phases of the instruction and load/store pipelines, respectively. 

The second transaction set in Figure 5 is a back-to-back streaming load. Loads utilize the same 
basic protocol as writes, but are vulnerable to hold conditions due to cache misses and other 
confounding situations. As in the store example, a load request to address 0x200 is issued at 
event E by driving 0x200 onto the eaddress bus and asserting eenaddr. A second load enters the 
instruction pipeline at event F and also drives these signals (with eaddress being driven to 
0x204). In that cycle, maddress is driven to 0x200. The streaming protocol specifies that the data 
for the load of address 0x200 may be ready in this cycle. The load/store pipeline therefore reads 
from the edata bus, and signals to the instruction pipeline that data is available. However, the 
instruction pipeline treats this data as provisional, as the data cache cannot signal a miss until the 
cycle following the DATA cycle. This case is shown starting at event G, where the data cache 
hold signal is asserted. At that point, the instruction has reached the WB (writeback) stage, and is 
in the WRITE stage of the load/store pipeline.  

There is a significant hazard at this point, as the instruction prior to the load may have just left 
the EX unit. If that instruction depended upon the loaded value, then whatever result computed 
in EX is incorrect. To avoid this, the PDSparc instruction decoder (DC) compares the destination 
register of the last instruction with the source registers of the current instruction. If there is a 
dependency, the DC will issue a pipeline bubble just like in the back-to-back store case, ensuring 
that the dependent instruction is no further than the EX unit on a data cache stall. This situation 
is even more complex for dependent branches, which are not covered in this paper. The real 
enabler for handling all of these dependencies however is a robust and clear set of bypass logic 
which gets just-received values to the source paths of currently executing instructions. This 
bypassing, which can be difficult to construct, is relatively simple in LISA as pipeline stages that 
must check for dependencies can activate one or more bypass operations that roll the process up 
into an if-then-else statement. 

If there were a dependency between the first load and a hypothetical instruction, it would be 
fulfilled starting at event H, where mds is asserted and the correct data is delivered. When that 
happens, the load in the WRITE stage of the load/store pipeline signals to the WB stage of the 
instruction pipeline that the delayed load is ready. This percolates through the bypass logic to 
upstream instructions in the DC and EX units via the bypass operation. 



SNUG	  2015	  	   13	   	  
PDSparc:	  A	  Drop-‐In	  Replacement	  for	  LEON3	  
Written	  Using	  Synopsys	  Processor	  Designer	  

5. PDSparc Verification 
While Cobham Gaisler does provide excellent documentation on the high-level functionality and 
register mappings of the GRLIB IP cores, the details of the bus interactions were not explicitly 
spelled out, leading to a significant reverse-engineering effort. With an all-RTL development 
path this would have been incredibly difficult if not impossible. Fortunately, the Processor 
Designer tool’s Instruction Set Simulator (ISS) proved instrumental in matching PDSparc to the 
GRLIB subsystem. One difficulty, however, was that the protocols employed by the ISS are 
written in C++, and are meant to drive test vectors. This is adequate for systems where the 
protocol is well understood, but for a minimally-understood interactive cache protocol, it proved 
difficult to match. The other option is to use Processor Generator (PG) to generate RTL that 
matches the ISS and connect that directly in place of the LEON3 processor in the RTL simulator. 
While PG generates an accurate representation of the LISA model, a significant amount of 
visibility is lost relative to the ISS when moving to RTL. The MIT LL team took a third 
approach: use the GRLIB RTL simulation to drive the ISS. This removed the need to “guess” the 
protocol and implement an emulator in C++ in order to do source and pipeline-level debugging 
of the processor LISA code. Ultimately, this proved to be a tremendous time-saver. 

Because the LISA ISS debugger links with C++, it was possible to utilize the entire C++ library - 
including sockets. The team created a C++ class called the cache_connector, which encapsulates 
all of the signals travelling between the processor and GRLIB into C++ structures. On every 
cycle, the PD ISS calls a function that pushes the output structures onto a C socket and reads the 
input structures off of the same socket.  Since the ISS runs in zero system time, every cycle the 
individual pipeline stages have the opportunity to manipulate the values in the output structures 
and read the values in the input structures.  

The protocol named cache_ifc in the LISA context instantiates an object of type 
cache_connector whose constructor opens up a socket and waits for a connection. On the other 
side of the socket is an industry standard mixed-language simulator running the GRLIB RTL 
system with a processor stub module written in SystemC [10]. That stub module handles all input 
and output from the GRLIB RTL model, and itself instantiates the same cache_connector object 
that is instantiated in the ISS C protocol. Thus the cache connectors are always exchanging the 
same data structures across the socket. 

Sockets work by running send and receive commands from their instantiating programs. When 
the ISS runs its protocol, for which there is a main operation that runs unconditionally, it calls a 
method on the cache_connector object called cc_exchange that exchanges data structures across 
the socket. The protocol main function will block on the cache_connector’s receive operation 
until the proper structures are read. In this way, the virtual system clock is similar to the eventual 
RTL reality in which the low-level SoC drives the clock into the processor. The SoC model 
activates the SystemC LEON3 stand-in on every clock edge. On the first positive clock edge, the 
systemC module transmits the current state of the cache signal outputs across the socket, and 
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waits for the ISS to send the cache signal inputs back. The ISS receives the cache output 
structures and sends the current value of the cache input structures, which are received by the 
systemC module and driven out into the cache RTL model.  

To tighten the round-trip loop, the systemC module is active on both edges of the clock. On a 
positive edge, it sends the recently set values of the cache outputs to the ISS, and leaves the 
cache inputs unchanged. When the ISS receives these values, it ticks the clock on the ISS in zero 
simulation time, so the values to be latched in the next cycle are ready immediately. It is 
therefore possible to drive values on the next simulation clock by activating the systemC module 
on the negative edge of the clock. On the negative clock edge, the systemC module drives the 
just-received cache input signals into the model, and leaves the cache outputs unchanged to the 
ISS. 

The result is that the ISS runs in tight lockstep with the GRLIB SoC model, and all vectors into 
the processor ISS are functionally correct, and will be nearly identical to the interactions between 
the Processor Generator generated HDL and the SoC4. What this enables is the ability to single-
step both the GRLIB RTL and the ISS through clock cycles, as well as perform source-level 
debugging on the executing processor model. For instance, it is possible to run the RTL 
simulator for 38025 nanoseconds while wave tracing, then break the ISS and jump into 
microstep mode which permits LISA source-level debugging in between SoC clock ticks. One 
can then via the ISS debug interface place a breakpoint either in the processor code stream, or in 
a particular LISA operation. In the RTL simulator, one can then run for n clock cycles until the 
breakpoint at either the LISA or processor instruction level is hit. At that point, the state of both 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  There	  are	  some	  minor	  differences	  introduced	  by	  the	  socket,	  but	  PG	  accepts	  #ifdef	  commands	  that	  allow	  one	  to	  
conditionally	  compile	  regions	  of	  code	  for	  simulation	  vs	  generation.	  

Figure	  6:	  The	  dual	  simulation	  options	  for	  PDSparc	  
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pipelines is shown graphically, and the LISA code can be single-stepped as if it were running 
under a C simulator. 

This functionality greatly sped up the development of PDSparc. At some point however, the 
processor was working well enough that it was possible to add other features from the Sparc v8 
specification. To ensure that adding features would not break the base functionality of the 
processor, the MIT LL team built a regression environment based on the ISS-socket-GRLIB 
interface. Because the ISS is actually compiled as a C static library (.a), it can be linked into and 
controlled from any C program. We therefore built a C test harness that controls the ISS, and 
interrogates it for pass/fail conditions. This interrogation was enabled by a set of simulation-only 
ISA instructions that were added to the PDSparc ISA. These instructions are understood and 
usable via the PD-generated LLVM [11] compiler and assembler, and permit the code stream to 
include assembly opcodes for instructions such as: “test_pass 0”, or “test_fail 5”, where the 
argument is intended to be an error code. The pass/fail status and error code are exported to the C 
test harness for logging and test termination detection. The system also sends a termination code 
through the socket to the SystemC module, which then terminates the GRLIB simulation at test 
completion. This regression environment can be run with a single command and execute as many 
tests as are needed. In terms of performance, a 100000 cycle test takes less than 20s to execute 
and report a result. 

6. Conclusion 
This paper describes the creation of a drop-in replacement called PDSparc for a LEON3 
processor into a synthesizable SoC support structure. PDSparc was written in the LISA language 
and compiled with Synopsys Processor Designer. The implementation of a reasonably high-
performance multicore capable pipelined RISC is a major feat, whose difficulty was 
compounded by a lack of detailed protocol information. It is safe to say that without the LISA 
source-level debugging capabilities enabled by Processor Designer and the ability to link to 
running RTL, this project would have taken far more resources that the 7 person-months in 
which it was achieved. The result is a processor which is still under development in terms of 
extended Sparc v8 features, but is now competitive in terms of performance with the original 
LEON3 it replaced .The major difference in performance stems from the extra cycle required to 
branch, which will be remedied in the future. 

7. Future Work 
The MIT LL development team will continue to evolve PDSparc to better comply with the Sparc 
v8 specification. In addition, the team intends to open-source PDSparc for general use. 
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