
Evaluating Modern Defenses Against Control Flow

Hijacking

by

Ulziibayar Otgonbaatar

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

August 18, 2015

Certified by. .

Hamed Okhravi

Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor

Certified by. .

Howard Shrobe

Principal Research Scientist and Director of Security, CSAIL

Thesis Supervisor

Accepted by .

Chris Terman

Chairman, Department Committee on Graduate Theses

Distribution A. The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States

Government.

2

Evaluating Modern Defenses Against Control Flow Hijacking

by

Ulziibayar Otgonbaatar

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Memory corruption attacks continue to be a major vector of attack for compromising
modern systems. Strong defenses such as complete memory safety for legacy languages
(C/C++) incur a large overhead, while weaker and practical defenses such as Code
Pointer Integrity (CPI) and Control Flow Integrity (CFI) have their weaknesses. In
this thesis, we present attacks that expose the fundamental weaknesses of CPI and
CFI.

CPI promises to balance security and performance by focusing memory safety on
code pointers thus preventing most control-hijacking attacks while maintaining low
overhead. CPI protects access to code pointers by storing them in a safe region that is
isolated by hardward enforcement on 0x86-32 architecture and by information-hiding
on 0x86-64 and ARM architectures. We show that when CPI relies on information
hiding, it’s safe region can be leaked and thus rendering it ineffective against malicious
exploits.

CFI works by assigning tags to indirect branch targets statically and checking
them at runtime. Coarse-grained enforcements of CFI that use a small number of
tags to improve the performance overhead have been shown to be ineffective. As a
result, a number of recent efforts have focused on fine-grained enforcement of CFI as
it was originally proposed. In this work, we show that even a fine-grained form of
CFI with unlimited number of tags is ineffective in protecting against attacks. We
show that many popular code bases such as Apache and Nginx use coding practices
that create flexibility in their intended control flow graph (CFG) even when a strong
static analyzer is used to construct the CFG. These flexibilities allow an attacker to
gain control of the execution while strictly adhering to a fine-grained CFI.

Thesis Supervisor: Hamed Okhravi
Title: Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor: Howard Shrobe
Title: Principal Research Scientist and Director of Security, CSAIL

3

4

Acknowledgments

This work is sponsored by the Assistant Secretary of Defense for Research & En-

gineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,

conclusions and recommendations are those of the author and are not necessarily

endorsed by the United States Government.

I would like to thank my advisers, Howard Shrobe, Hamed Okhravi, and Stelios

Sidiroglou-Douskos, for all their help and support. Howie, Hamed, and Stelios, this

thesis would not have been possible without you guys.

Secondly, I would like to thank my group mates, Isaac, Julian, Sam, and Tiffany,

for burning the late night oil together to produce best results we can produce. You

guys inspire me.

Lastly, I would like to thank family for their continued support and the kind

words.

5

6

Contents

1 Introduction 13

1.1 Control Flow Hijacking . 13

1.1.1 Return-Oriented Programming 16

1.2 Defenses Against Control Flow Hijacking 17

1.2.1 Complete Memory Safety . 17

1.2.2 Code Pointer Integrity (CPI) 18

1.2.3 Control Flow Integrity (CFI) 18

2 Code Pointer Integrity 21

2.1 Overview of Code Pointer Integrity 21

2.1.1 Identifying Sensitive Pointers 22

2.1.2 Instrumentations For CPI Enforcement Mechanism 22

2.1.3 Isolating Safe Region of Memory 23

2.2 Evaluation of Code Pointer Integrity 23

2.2.1 Weaknesses of CPI Design Assumptions 24

2.2.2 Weaknesses of CPI Implementation 25

2.3 Attacking Code Pointer Integrity . 26

2.3.1 Launch Timing Side-channel 27

2.3.2 Data Collection . 28

2.3.3 Locate Safe Region Without Crashes 29

2.3.4 Locate Safe Region With Crashes 35

2.3.5 Launching Payload . 36

2.3.6 Possible improvements to CPI 36

7

3 Control Flow Integrity 39

3.1 Coarse and Fine Grained Control Flow Integrity 39

3.2 Attacks on Control Flow Integrity . 41

3.3 Building Control Flow Graphs . 42

3.3.1 Scalable Static Pointer Analysis 43

3.4 Control Jujutsu: Attack on Fine-Grained CFI 44

3.4.1 Argument-Corruptable Indirect Call Site Gadgets 44

3.4.2 ACICS in Apache HTTPD . 47

3.4.3 ACICS in Nginx . 51

3.4.4 Challenges for Stopping Control Jujutsu 53

4 Conclusion 61

8

List of Figures

1-1 Steps in Control-Hijacking attack . 14

2-1 Data-pointer based side-channel example 27

2-2 Nginx data-pointer used for attack 28

2-3 Timing Measurement for Nginx 1.6.2 over Wired LAN 29

2-4 Safe Region Memory Layout. 31

2-5 Non-Crashing and Crashing Scan Strategies. 33

3-1 Example program fragment and an outline of its CFG and CFI instru-

mentation . 40

3-2 ACICS Discovery Tool . 46

3-3 APR hook macro in server/request.c:97 defining ap_run_dirwalk_stat()

in Apache HTTPD and the simplified code snippet of ap_run_dirwalk_stat()

49

3-4 dirwalk_stat called in server/request.c:616 in Apache HTTPD 50

3-5 Target function piped_log_spawn in Apache HTTPD 50

3-6 ACICS for Nginx found in ngx_output_chain function 52

3-7 Nginx Target Function that calls execve 53

3-8 The code snippet for ap_hook_dirwalk_stat() in Apache HTTPD . 54

9

10

List of Tables

2.1 Error ratio in estimation of 100 zero pages using 7 bytes 34

3.1 Indirect Call Sites Dynamic Analysis 48

3.2 Automatic Corruption Analysis . 48

3.3 Target Functions Count Based on CallGraph distance 49

3.4 Indirect Call Sites Dynamic Analysis 51

3.5 Automatic Corruption Analysis . 51

3.6 Target Functions Count Based on CallGraph distance 53

3.7 DSA analysis statistics . 58

11

12

Chapter 1

Introduction

1.1 Control Flow Hijacking

Memory corruption bugs in software written in low-level languages like C or C++ are

one of the oldest problems in computer security [46]. The lack of memory safety in

these languages allows attackers to alter the program’s behavior or take full control

over it by hijacking its control flow. This problem has existed for more than 30 years

and a vast number of potential solutions have been proposed, yet memory corruption

attacks continue to pose a serious threat. Real world exploits show that all currently

deployed protections can be defeated.

Recent code-injection attacks on iPhones [51, 15], have shown a level of sophis-

tication that is able to bypass widely-deployed prevention mechanisms against code-

injection.

Attacks that divert a program’s control flow for malicious purposes are generally

known as control-hijacking attacks. Figure 1-1 outlines the steps involved in control-

hijacking attacks, we briefly review some of the defensive mechanisms that protects

control hijacking at each individual steps.

A typical control hijacking attack starts by corrupting a pointer to an attacker-

supplied malicious data, which we refer to as the payload.

Then, the attack proceeds by modifying code pointers, which are objects that af-

fect control flow of a program. These two steps could be accomplished by, for example,

13

Attack Step Defense mechanism

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Corrupt data pointer

Modify a code pointer

...to address of
gadget/shellcode

Use pointer by indirect
call/jump

Use pointer by return
instruction

Execute injected
shellcode

Execute available
gadgets/functions

Control Flow Hijack

Control Flow Integrity (CFI)

Non-Executable Data

High Level Policies

Memory Safety

Code Pointer Integrity
(CPI)

Randomization
(ASLR)

Figure 1-1: Steps in Control-Hijacking attack

an overflow exploit. In order to hijack control successfully, the attacker needs to know

the correct target value (i.e. the address of the payload) with which to overwrite

the code pointer in step 2. That is represented in a separate step 3 in Figure 1-1.

Assuming a code pointer (e.g. a function pointer) has been successfully corrupted

in the first three steps, an attacker then proceeds by loading the corrupted pointer

into the instruction pointer, which points to next instruction a program executes.

This can be achieved by executing an indirect control-flow transfer instruction, like a

return instruction, thus diverting the execution from the intended program control-

flow. The final step of a control-flow hijack exploit is the execution of the payload,

which is often something malicious such as stealing private information, or gaining

high privilege on specific targets [37].

Memory safety enforcement mechanisms [42, 21] ensure no data pointer is cor-

14

rupted, thus preventing the attack in step 1. The state of the art, Softbound [42]

and its extension CETS [43] in fact guarantees complete memory safety at the cost

of twice to four times performance slowdown. In practical applications, such a high

performance overhead is intolerable.

Code Pointer Integrity (CPI) enforcement mechanism [35] along with Safestack [16]

implementation validates the integrity of code pointers only, which incurs significantly

lower cost (8.6% overhead) than complete memory protection. However, one of the

main weakness of CPI is it’s reliance on secrets which are kept in the same space as the

process being protected. Information-hiding is shown to be vulnerable to side-channel

attacks [57, 60, 63, 69]. Arguably, this problem has contributed to the weaknesses of

many other defenses such as Address Space Layout Randomization (ASLR) [65]

ASLR attempts to thwart attacks by introducing entropy to memory addresses.

In particular, in order to prevent the attacker from specifying the target location

reliably, ASLR randomly arranges the key areas of address space such as stack, heap,

linked libraries, and optionally the program text. This stops attacks at step 3.

In its ideal form, Control Flow Integrity [4] is a promising enforcement mechanism

against attacks that arbitrarily control and hijack a program’s behavior in general.

The CFI security policy dictates that any execution of a program must follow a path of

a Control Flow Graph (CFG) determined ahead of time. If we can perfectly construct

CFG, control transfers that are not in the intended CFG will be stopped. However,

those allowed within the CFG are still possible as we show in Chapter 3 Hence, CFI

prevents the attack at step 4 in Figure 1-1.

Perfectly constructing and maintaining CFG ahead of time firstly requires the

source code of the program and secondly incurs very high performance cost due to

runtime checks. Even with source code, constructing perfect CFG is impractically

hard because there are programming constructs in the code that make analysis hard.

These reasons have prevented CFI from being widely adopted as counter measurement

against control flow hijacking attacks and much of current research efforts focus on

making CFI fast and practical [72, 71, 41, 66].

As for protections at step 5, Not-Executable (NX) policies, such as W ⊕ X [47]

15

or DEP [40], protects the execution of injected payload.

In particular, NX marks memory pages either writable (W) or executable (X),

hence the injected payload which generally resides in the data section of memory

is not executable. Due to its low performance overhead and simplicity, NX policies

remain to be one of the mostly deployed security feature in modern operating systems

[47, 40].

However, even when Not-Executable policy is in place, the attacks that reuse the

existing code in memory still remain possible such as return-oriented programming

[14, 20], jump-oriented programming [10], and return-into-libc attacks [67].

1.1.1 Return-Oriented Programming

Return-Oriented programming (ROP) [14, 20], by reusing small gadgets, which are

comparatively small sequences of instructions ending in return instruction, is able to

bypass NX.

Generally, ROP is shown to be Turing-complete, meaning that an attacker can do

arbitrary computation on target computer given the right set of gadgets.

It is broadly applicable on a number of architectures: Intel x86 [59], SPARC [11],

ARM [34].

Various mechanisms, kBouncer [48], ROPecker [17], ROPguard [25], that check the

return addresses found in function epilogues attempt to protect from ROP attacks.

These techniques that leverage the Last Branch Recording (LBR) feature of modern

hardware architectures to check for suspicious control flow transfers. These defenses

are particularly interesting because they can be deployed on existing hardware, have

nearly zero performance overhead, and do not require binary rewriting. However,

because the number of states saved in LBR is finite and that the checks are performed

at well-known times (one paper shows that even with unlimited LBR they can still

break the defenses), the security guarantees of these techniques is shown to be broken

[14] [20].

In fact, attacks similar to ROP that leverages indirect jump instructions without

needing return instruction [10], known as Jump Oriented Programming, have shown

16

that the attack space is much broader than previously imagined.

1.2 Defenses Against Control Flow Hijacking

A variety of defensive mechanisms have been proposed to mitigate control-flow hi-

jacking attacks. As previously mentioned, complete memory safety, code pointer

integrity, and control flow integrity are some of these defenses. The practicality of

these defenses relies on how a particular implementation balances security with the

performance overhead.

1.2.1 Complete Memory Safety

Complete memory safety can defend against all control hijacking attacks by protecting

all pointers.

As shown in Figure 1-1, the first step in control hijacking corrupts a pointer by

first making it invalid and deferences the pointer. A pointer can become invalid by

going out of the bounds of its pointed object or when the object gets deallocated. A

pointer pointing to a deleted object is called a dangling pointer. Dereferencing an

out-of-bounds pointer causes a so called spatial error, while dereferencing a dangling

pointer causes a temporal error [64].

Memory safety methods [44, 33, 42, 5] that prevent spatial errors provides spatial

memory safety, whereas the methods that prevents temporal errors provide temporal

memory safety [58, 45, 43, 6].

Softbound with the CETS extensions [42, 43] enforces complete spatial and tem-

poral pointer safety albeit at a significant cost (up to 4x slowdown, 116% on average)

on the SPEC CPU benchmark [29].

On the other hand, experience has shown that low overhead mechanisms that trade

off security guarantees for performance, for example, approximate [58] or partial [7]

memory safety techniques eventually get bypassed [9, 61, 26, 14, 20].

Fortunately, hardware support can make complete memory safety practical. For

instance, Intel memory protection extensions (MPX) [32] can facilitate better en-

17

forcement of memory safety checks. Secondly, the fat-pointer scheme shows that

hardware-based approaches can enforce spatial memory safety at very low overhead

[36]. Tagged architectures and capability-based systems can also provide a possible

direction for mitigating such attacks [68].

1.2.2 Code Pointer Integrity (CPI)

Unlike complete memory safety, CPI relies on protecting only the integrity of sensitive

pointers (e.g. function pointer) to thwart control hijacking. Since sensitive pointers

make up a subset of all pointers, CPI promises to provide strong security at a very

reasonable performance cost.

CPI first over-approximately identifies all sensitive pointers via static analysis of

the code. Then, it stores metadata for checking validity of code pointers in a desig-

nated "safe region" of memory. The metadata includes the value of the pointer and

its lower and upper bounds. Additionally, CPI adds instrumentation that propagates

metadata when pointer operations occur.

CPI relies on a secret region which is kept in the same space as the process being

protected, to be isolated. It assumes it has to be leak-proof and cannot be disclosed.

However, we show that an attacker can disclose the location of the safe region using

a timing side-channel attack. Once the location of a code pointer in the safe region

is known, the metadata of the pointer is modified to allow the execution of a ROP

chain.

We describe CPI in detail, offer evaluation of the design and implementation, and

provide an attack [23] that exposes the weaknesses of CPI in Chapter 2.

1.2.3 Control Flow Integrity (CFI)

Proposed originally by Abadi et al. [4], CFI detects control-hijacking attacks by en-

forcing a Control Flow Graph, which is a representation of all paths a program may

take during its execution. It is an attempt to stop control-flow hijacking at step 4,

thus protecting against ROP.

18

Any CFI based defense relies on the level of coverage of the CFG. If the CFG is

perfectly constructed, then we can ensure only valid the control flows intended by

the program. However, perfectly constructing and maintaining CFG ahead of time

requires the source code of the program, its hard and inaccurate, and incurs very high

performance cost. These practical concerns demanded that we use a weaker version

of CFI, which results in weaker security guarantees.

There are numerous practical CFI mechanisms, CCFIR [71], binCFI [72], and

FCFI [66] and many more [41, 39].

Recent studies [20, 26] illustrate the fundamental weaknesses of these existing

practical CFI techniques.

We describe CFI in detail, give an overview of attacks against CFI, and give a

detailed description of how to attack fine grained CFI [24] in Chapter 3.

19

20

Chapter 2

Code Pointer Integrity

2.1 Overview of Code Pointer Integrity

Code Pointer Integrity (CPI) policies aim to prevent the control hijacking attacks

by guaranteeing the integrity of all sensitive pointers (e.g. function pointers) in a

program. Unlike the complete memory safety techniques which guarantees integrity

of all pointers, CPI attempts to guarantee the integrity of only the sensitive pointers

which is a subset of all pointers. Thus, if implemented correctly, it may be possible

that CPI prevent all control hijacking attacks with a lower performance cost than

Softbound+CETS [42, 43].

Introduced in 2014, Levee [35] is the first practical implementation of CPI. Given

that Levee is the only implementation of CPI known to date, we use terms Levee and

CPI interchangeably in the rest of the thesis.

In short, CPI works by

∙ identifying all the sensitive pointers (i.e. code pointers and pointers that may

point to sensitive pointers). Note that this definition of sensitive pointers is

recursive.

∙ instrumenting the program to protect all sensitive pointers in a "safe region" in

memory, and

∙ isolating the safe region by preventing non-protected access.

21

The authors of Levee also present a weaker but more efficient version called Code

Pointer Separation (CPS). CPS enforces safety for code pointers only, but not for

pointers to code pointers.

Because CPI offers the best security guarantees, we do not discuss CPS in the rest

of the chapter, instead focus on evaluating CPI.

This section describes the stages of CPI and states the summary of assumptions

made by the authors during each stage.

2.1.1 Identifying Sensitive Pointers

CPI performs static analysis on the program to detect the set of sensitive point-

ers. Sensitive pointer types include pointers to functions, pointers to sensitive types,

pointers to memory objects (i.e. struct-s or arrays) with members of sensitive types,

or universal pointers (e.g. pointers to void or char). Defined this way, the notion of

sensitivity of pointers is dynamic in that at runtime, a pointer may point to a benign

integer value (non-sensitive) and may point to a function pointer (sensitive) at some

other part of the execution.

This type-based static analysis provides an over-approximate set of pointers, (i.e.

it may include universal pointers that is never sensitive during runtime). The au-

thors assume that an over-approximate set of pointers does not affect the security

guarantees of CPI.

After identifying the sensitive pointers, the analysis proceeds to find all the pro-

gram instructions that operate on these pointers. These instructions are modified to

create and propagate the metadata associated with the sensitive pointers in order to

enforce integrity of the sensitive pointers. The metadata includes the value of the

pointer and its lower and upper thresholds.

2.1.2 Instrumentations For CPI Enforcement Mechanism

The main goal of the instrumentation is to change the program to ensure the integrity

the sensitive pointers. In simple terms, it is achieved by checking metadata of the

22

sensitive pointers on pointer dereference. The metadata for a sensitive pointer is

created in designated safe region of memory and propagated at program run time.

Secondly, the instrumentation changes the code to ensure that only CPI intrinsic

instructions can manipulate the safe region and that no pointer can directly reference

the safe region. This is to prevent any code pointer from disclosing the location of

the safe region.

2.1.3 Isolating Safe Region of Memory

The mechanism for isolating the safe region of memory from non-protected accesses

is dependent on the computer architecture on which CPI is deployed.

On x86-32 architecture, CPI uses hardware segment registers which are used to

access specific regions of memory. By configuring all but one dedicated segment

register inaccessible to the safe region, CPI guarantees safe region is accessed through

only one segment register.

On architectures that do not support segmentation protection, such as x86-64

and ARM, CPI relies on the size and sparsity of the safe region (242 bytes) and

randomization to isolate the contents of the safe region from disclosure. In particular,

the safe region is placed at a randomly chosen address in a specific area of memory.

In the design, the authors of CPI makes three fundamental assumptions to isolate

the safe region. Firstly, they assume that the large parts of memory cannot leak.

Secondly, they assume that the safe region is isolated because no address pointing

to the safe region is ever stored in the rest of the memory. Thirdly, it is assumed

that guessing the location of the safe region is impractical because the failed guessing

attempts would crash the program and is easily detectable.

2.2 Evaluation of Code Pointer Integrity

After thorough evaluation of CPI, we discovered numerous implementation and design

flaws that can facilitate attack against CPI. This chapter focuses on the evaluating

the design and implementation of CPI.

23

We found that the main weakness of CPI is its reliance on secrets which are

kept in the same space as the process being protected. Arguably, this problem has

contributed to the weaknesses of many other defenses such as ASLR [60].

2.2.1 Weaknesses of CPI Design Assumptions

The assumptions made by the CPI authors about isolating the safe region are weak at

best. In fact, we show that these assumptions are erroneous and can lead to control

hijacking attack as we show in our next chapter.

Memory Disclosure

In CPI, it is implicitly assumed that large parts of memory cannot leak. Direct

memory disclosure techniques may have some limitations. For example, they may

be terminated by zero bytes or may be limited to areas adjacent to a buffer [63].

However, indirect leaks using dangling data pointers and timing or fault analysis

attacks do not have these limitations and they can leak large parts of memory [57].

Memory Isolation

The assumption that the safe region cannot leak because there is no pointer to it is

incorrect. As we show in our attacks in rest of the chapter, random searching of the

mmap region can be used to leak the safe region without requiring an explicit pointer

into that region.

Detecting Crashes

It also is assumed that leaking large parts of memory requires causing numerous

crashes which can be detected using other mechanisms. This in fact is not correct.

Although attacks such as Blind ROP [9] and brute force [60] do cause numerous

crashes, it is also possible on current CPI implementations to avoid such crashes

using side- channel attacks. The main reason for this is that in practice large number

of pages are allocated and in fact, the entropy in the start address of a region is much

24

smaller than its size. This allows an attacker to land correctly inside allocated space

which makes the attack non-crashing. In fact, CPI’s implementation exacerbates this

problem by allocating a very large mmap region to contain the safe region.

2.2.2 Weaknesses of CPI Implementation

The published implementation (simpletable) of CPI uses a fixed address for the table

for all supported architectures, providing no protection in its default configuration.

We assume this is due to the fact that the version of CPI we evaluated is still in "early

preview". We kept this in mind throughout our evaluation, and focused primarily on

fundamental problems with the use of information hiding in CPI. Having said that,

we found that as currently implemented there was almost no focus on protecting the

location of the safe region.

The two alternate implementations left in the source, hashtable and lookuptable,

use mmap directly without a fixed address, which is an improvement but is of course

relying on mmap for randomization. This provides no protection against an ASLR

disclosure, which is within the threat model of the CPI paper. We further note

that the safe stack implementation also allocates pages using mmap without a fixed

address, thus making it similarly vulnerable to an ASLR disclosure. This vulnerability

makes the safe stack weaker than the protection offered by a stack canary, as any

ASLR disclosure will allow the safe stack location to be determined, whereas a stack

canary needs a more targeted disclosure (although it can be bypassed in other ways).

In the default implementation (simpletable), the location of the table is stored in a

static variable (__llvm__cpi_table) which is not zeroed after its value is moved into

the segment register. Thus, it is trivially available to an attacker by reading a fixed

offset in the data segment. In the two alternate implementations, the location of the

table is not zeroed because it is never protected by storage in the segment registers

at all. Instead it is stored as a local variable. Once again, this is trivially vulnerable

to an attack who can read process memory, and once disclosed will immediately

compromise the CPI guarantees. Note that zeroing memory or registers is often

difficult to perform correctly in C in the presence of optimizing compilers [50].

25

We note that CPI’s performance numbers rely on support for superpages (referred

to as huge pages on Linux). In the configurations used for performance evaluation,

ASLR was not enabled (FreeBSD does not currently have support for ASLR, and as

of Linux kernel 3.13, the base for huge table allocations in mmap is not randomized,

although a patch adding support has since been added). We note this to point out a

difference between CPI performance tests and a real world environment, although we

have no immediate reason to suspect a large performance penalty from ASLR being

enabled.

It is unclear exactly how the published CPI implementation intends to use the

segment registers on 32-bit systems. The simpletable implementation, which uses

the %gs register, warns that it is not supported on x86, although it compiles. We

note that using the segment registers may conflict in Linux with thread-local storage

(TLS), which uses the %gs register on x86-32 and the %fs register on x86-64 [22]. As

mentioned, the default implementation, simpletable, does not support 32-bit systems,

and the other implementations do not use the segment registers at all, a flaw noted

previously, so currently this flaw is not easily exposed. A quick search of 32-bit libc,

however, found almost 3000 instructions using the %gs register. Presumably this

could be fixed by using the %fs register on 32-bit systems; however, we note that

this may cause compatibility issues with applications expecting the %fs register to be

free, such as Wine (which is explicitly noted in the Linux kernel source) [3].

Additionally, the usage of the %gs and %fs segment registers might cause conflicts

if CPI were applied to protect kernel-mode code, a stated goal of the CPI approach.

The Linux and Windows kernels both have special usages for these registers.

2.3 Attacking Code Pointer Integrity

This chapter shows how an attacker can defeat CPI, on x86-64 architectures, assuming

only control of the stack. Specifically, we show how to reveal the location of the

safe region using a data-pointer overwrite without causing any crashes, which was

assumed to be impossible by the CPI authors. We present experimental results that

26

demonstrate the ability to leak the safe region using a timing side-channel attack.

Also, we present how to attack CPI protected version of the popular Nginx [53]

web server without causing any crash. Our analysis also shows that an attack can

be completed without any crashes in about 98 hours for the most performant and

complete implementation of CPI. If we tolerate a small number of crashes, our analysis

shows that in Ubuntu Linux with ASLR, it takes 6 seconds to bypass CPI with 13

crashes.

The details on the timing side-channel attack, how to leak and locate the safe

region, both with or without crashes, and how to launch a payload, is presented in

the rest of the chapter.

2.3.1 Launch Timing Side-channel

A data-pointer overwrite vulnerability is used to control a data pointer that is subse-

quently used to affect control flow (e.g., number of loop iterations) is used to reveal

the contents of the pointer under control (i.e., byte values). The data pointer can be

overwritten to point to a return address on the stack, revealing where code is located,

or a location in the code segment, revealing what code is located there.

Consider the code sequence below. If ptr can be overwritten by an attacker to

point to a location in memory, the execution time of the while loop will be correlated

with the byte value to which ptr is pointing. For example, if ptr is stored on the

stack, a simple buffer overflow can corrupt its value to point to an arbitrary location

in memory. This delay is small (on the order of nanoseconds); however, by making

numerous queries over the network and keeping the fastest samples (cumulative delay

analysis), an attacker can get an accurate estimate of the byte values [57, 19].

i = 0;

while (i < ptr->value) i++;

Figure 2-1: Data-pointer based side-channel example

In particular, we patch Nginx to introduce a stack buffer overflow vulnerability

27

allowing the user to gain control of a parameter used as the upper loop bound in the

Nginx logging system. The vulnerability enables an attacker to place arbitrary values

on the stack. Using the vulnerability, we modify a data pointer in the Nginx logging

module (nginx_http_parse.c) to point to a carefully chosen address.

for (i = 0; i < headers->nelts; i++)

Figure 2-2: Nginx data-pointer used for attack

The data pointer vulnerability enables control over the number of iterations exe-

cuted in the loop. Using this data pointer vulnerability, we perform Round Trip Time

(RTT) based analysis that enables us to reveal contents of memory.

2.3.2 Data Collection

We measure round-trip response times to our attack application in order to collect

the timing samples. We create a mapping between the smallest cumulative delay

slope and byte 0, and the largest slope and byte 255. We use these two mappings to

interpolate cumulative delay slopes for all possible byte values (0-255). This enables

us to identify a byte in arbitrary memory location with high accuracy, which in turn

enables us to read the contents of memory.

In particular, assuming the highest RTT observed is when the loop controller was

byte 255 and the lowest RTT is when loop controller was byte 0, we can establish

linear interpolation to estimate a byte in memory.

Equation 2.1 shows the exact interpolation. In the equation, 𝑐𝑖 represents the

delay sample RTT for a nonzero byte value, and 𝑠 represents the number of samples

taken. Note that the cumulative delay is adjusted in reference to a baseline round

trip time, so that we are only interpolating the time taken by all the loop iterations

to get the byte. In our setup, we collected 10000 timing samples to establish baseline

RTT.

28

𝑏𝑦𝑡𝑒 = 𝑐
𝑠∑︁

𝑖=1

𝑐𝑖 (2.1)

We then use the set of delay samples collected for byte 255 to calculate the constant

𝑐 as shown below.

𝑐 =
255∑︀𝑠
𝑖=1 𝑐𝑖

0 20 40 60 80 100
Sample Number

0

200

400

600

800

1000

1200

1400

1600

1800

Cu
m

m
ul

at
iv

e
Di

ffe
re

nt
ia

l D
el

ay
 (m

s) byte0
byte50
byte100
byte150
byte200
byte250

Figure 2-3: Timing Measurement for Nginx 1.6.2 over Wired LAN

The Figure 2-3 shows the slopes of the cumulative delay for different bytes as

measured in our experimental setup. Using the equation 2.1, we can estimate a given

byte in memory, with high accuracy. This enables us to reveal the content of memory

byte-by-byte.

This particular timing side-channel attack shows violates the assumption made in

CPI about memory disclosure.

2.3.3 Locate Safe Region Without Crashes

Using information about the possible location of the safe region with respect to the

randomized location of mmap, we launch a search that starts at a reliably mapped

location within the safe region and traverse the safe region until we discover a sequence

of bytes that indicates the location of a known library (e.g., the base of libc). Under

29

the current implementation of CPI, discovering the base of libc allows us to trivially

compute the base address of the safe region. Up to this point, the attack is completely

transparent to CPI and may not cause any crash or detectable side effect.

The attack procedure is as follows.

1. Starting at an always allocated address: Redirect a data pointer which is always

allocated. (see Fig. 2-4).

2. Scan go back in memory by the size of libc.

3. Scan some bytes. If the bytes are all zero, goto step 2. Else, scan more bytes

to decide where we are in libc by unique signature.

4. Launch payload once in libc.

Below, we describe each of the steps in locating the safe region in detail.

Starting at Always Allocated Address

For our attack without crashes, it is important that the addresses we disclose are

allocated. Figure 2-4 illustrates the memory layout of a CPI-protected application on

the x86-64 architecture. The stack is located at the top of the virtual address space

and grows downwards (towards lower memory addresses) and it is followed by the

stack gap. Following the stack gap is the base of the mmap region (𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒),

where shared libraries (e.g., libc) and other regions created by the mmap() system

call reside. In systems protected by ASLR, the location of 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 is randomly

selected to be between 𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 (located immediately after the stack gap)

and 𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒. 𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 is computed as:

𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 = 𝑚𝑎𝑥_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒− 𝑎𝑠𝑙𝑟_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 * 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒

where 𝑎𝑠𝑙𝑟_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 is 228 in 64-bit systems, and the 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 is specified as an

operating system parameter (typically 4KB). The safe region is allocated directly

30

stack
higher memory addresses

lower memory addresses

stack gap (at least 128MB)

max mmap_base

random mmap_base

linked libraries

min mmap_base =
max-2^28*PAGE_SIZE

min mmap_base -
size of linked libraries

max mmap_base - 2^42 -
size of linked libraries

safe region
2^42 bytes always allocated

dynamically loaded
libraries,

any heap allocations
backed by mmap

end of mmap region

Figure 2-4: Safe Region Memory Layout.

after any linked libraries are loaded on 𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 and is 242 bytes. Immediately

after the safe region lies the region in memory where any dynamically loaded libraries

and any mmap-based heap allocations are made.

Hence, the address at 𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 is always allocated in CPI, when safe

region is randomly allocated.

Scanning Memory by Size of LIBC

The space of possible locations to search may require 𝑎𝑠𝑙𝑟_𝑒𝑛𝑡𝑟𝑜𝑝𝑦*𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 scans

in the worst case. As the base address of mmap is page aligned, one obvious opti-

mization is to scan addresses that are multiples of 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒, thus greatly reducing

the number of addresses that need to be scanned to:

(𝑎𝑠𝑙𝑟_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 * 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒)/𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒

31

In fact, this attack can be made even more efficient. In the x86-64 architecture,

CPI protects the safe region by allocating a large region (242 bytes) that is very

sparsely populated with pointer metadata. As a result, the vast majority of bytes

inside the safe region are zero bytes. This enables us to determine with high prob-

ability whether we are inside the safe region or a linked library by sampling bytes

for zero/nonzero values (i.e., without requiring accurate byte estimation). Since we

start in the safe region and libc is allocated before the safe region, if we go back in

memory by the size of libc, we can avoid crashing the application. This is because

any location inside the safe region has at least the size of libc allocated memory on

top of it.

Hence, the number of memory pages we scan is as follows.

(𝑎𝑠𝑙𝑟_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 * 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒)/𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒 (2.2)

Unique Signature in LIBC

A key component of our attack is the ability to quickly determine whether a given

page lies inside the safe region or inside the linked libraries by sampling the page for

zero bytes. Even if we hit a nonzero address inside the safe region, which will trigger

the search for a known signature within libc, the nearby bytes we scan will not yield

a valid libc signature and we can identify the false positive. In our tests, every byte

read from the high address space of the safe region yielded zero. In other words, we

observed no false positives.

One problematic scenario occurs if we sample zero bytes values while inside libc.

In this case, if we mistakenly interpret this address as part of the safe region, we will

skip over libc and the attack will fail. We can mitigate this probability by choosing

the byte offset per page we scan intelligently. Because we know the memory layout of

libc in advance, we can identify page offsets that have a large proportion of nonzero

bytes, so if we choose a random page of libc and read the byte at that offset, we will

likely read a nonzero value.

In our experiments, page offset 4048 yielded the highest proportion of non-zero

32

values, with 414 out of the 443 pages of libc having a nonzero byte at that offset.

This would give our strategy an error rate of 1 − 414/443 = 6.5%. We note that

we can reduce this number to 0 by scanning two bytes per page instead at offsets of

our choice. In our experiments, if we scan the bytes at offsets 1272 and 1672 in any

page of libc, one of these values is guaranteed to be nonzero. This reduces our false

positive rate at the cost of a factor of 2 in speed. In our experiments, we found that

scanning 5 extra bytes in addition to the two signature bytes can yield 100% accuracy

using 30 samples per byte and considering the error in byte estimation.

This non-crashing scan strategy is depicted on the left side of Fig. 2-5.

4th page scan

5th page scan

…

…

libc

safe region

First dereference loc.
1st page scan

Si
ze

 L

2nd page scan

3rd page scan

Nth page scan
libc found!

…

L

L

L

L

L

4th page scan

5th page scan

First dereference loc.
1st page scan

2nd page scan

3rd page scan

Kth page scan
 libc found!

…

MMAP base

…

Crash!

Crash!

…

libc

safe region

MMAP base

Non-crashing scan strategy Crashing scan strategy

Figure 2-5: Non-Crashing and Crashing Scan Strategies.

Number of Scans

The number of scans in the non-crashing scan is found in Equation 2.2. In our

experiments, 𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒 is approximately 221. In other words, the estimated number

of memory page scans is: 228 * 212/221 = 219.

33

For each page we scan, we would like to sample as few bytes, as few times as

possible.

Table 2.1 summarizes the number of false positives, i.e. the number of pages we

estimate as nonzero, which are in fact 0. The number of data samples and estimation

samples, and their respective fastest percentile used for calculation all affect the

accuracy. Scanning 5 extra bytes (in addition to the two signature bytes for a page)

and sampling 30 times per bytes yields an accuracy of 100% in our setup.

As a result, we scan 30 * 7 = 210 bytes per size of libc to decide whether we are in

libc or the safe region. In total, to locate libc, the attack requires (2 + 5) * 219 * 30 =

7 * 219 * 30 = 110, 100, 480 samples on average, which takes about 97 hours with our

attack setup.

Data samples # Estimation samples False positive ratio
(%-tile used) (%-tile used)

1,000 (10%) 1,000 (10%) 0%
10,000 (1%) 1,000 (10%) 0%
1,000 (10%) 100 (10%) 0%
10,000 (1%) 100 (10%) 0%
1,000 (10%) 50 (20%) 0%
10,000 (1%) 50 (20%) 3%
1,000 (10%) 30 (33%) 2%
10,000 (1%) 30 (33%) 0%
1,000 (10%) 20 (50%) 5%
10,000 (1%) 20 (50%) 13%
1,000 (10%) 10 (100%) 91%
10,000 (1%) 10 (100%) 92%
1,000 (10%) 5 (100%) 68%
10,000 (1%) 5 (100%) 86%
1,000 (10%) 1 (100%) 54%
10,000 (1%) 1 (100%) 52%

Table 2.1: Error ratio in estimation of 100 zero pages using 7 bytes

Despite the high accuracy, we have to account for errors in estimation. For this,

we have developed a fuzzy 𝑛−gram matching algorithm that, given a sequence of

noisy bytes, tells us the libc offset at which those bytes are located by comparing the

estimated bytes with a local copy of libc. In determining zero and nonzero pages, we

only collect 30 samples per byte as we do not need very accurate measurements. After

34

landing in a nonzero page in libc, we do need more accurate measurements to identify

our likely location. Our measurements show that 10, 000 samples are necessary to

estimate each byte to within 20. We also determine that reading 70 bytes starting

at page offset 3333 reliably is enough for the fuzzy 𝑛−gram matching algorithm to

determine where exactly we are in libc. This offset was computed by looking at all

contiguous byte sequences for every page of libc and choosing the one which required

the fewest bytes to guarantee a unique match. This orientation inside libc incurs

additional 70 * 10, 000 = 700, 000 requests, which adds another hour to the total time

of the attack for a total of 98 hours.

2.3.4 Locate Safe Region With Crashes

We can further reduce the number of memory scans if we are willing to tolerate crashes

due to dereferencing an address not mapped to a readable page. Because the pages

above𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 are not mapped, dereferencing an address above𝑚𝑚𝑎𝑝_𝑏𝑎𝑠𝑒 may

crash the application. If the application restarts after a crash without re-randomizing

its address space, then we can use this information to perform a search with the goal

of finding an address 𝑥 such that 𝑥 can be dereferenced safely but 𝑥+𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒 causes

a crash. This implies that 𝑥 lies inside the linked library region, thus if we subtract

the size of all linked libraries from 𝑥, we will obtain an address in the safe region that

is near libc and can reduce to the case above. Note that it is not guaranteed that 𝑥

is located at the top of the linked library region: within this region there are pages

which are not allocated and there are also pages which do not have read permissions

which would cause crashes if dereferenced.

To find such an address 𝑥, the binary search proceeds as follows: if we crash, our

guessed address was too high, otherwise our guess was too low. On right hand side

of Figure 2-5, one can see the scanning strategy with crashes. Put another way, we

maintain the invariant that the high address in our range will cause a crash while

the lower address is safe, and we terminate when the difference reaches the threshold

of 𝑙𝑖𝑏𝑐_𝑠𝑖𝑧𝑒. This approach would only require at most log2 2
19 = 19 reads and will

crash at most 19 times (9.5 times on average).

35

2.3.5 Launching Payload

After finding the libc and hence the safe region, we use the same data pointer overwrite

to change the read_handler entry of the safe region. We then modify the base and

bound of the code pointer to hold the location of the system call (sysenter). Since

we can control what system call sysenter invokes by setting the proper values in the

registers, finding sysenter allows us to implement a variety of practical payloads.

After this, the attack can proceed simply by redirecting the code pointer to the start

of a ROP chain that uses the system call. CPI does not prevent the redirection

because its entry for the code pointer is already maliciously modified to accept the

ROP chain.

2.3.6 Possible improvements to CPI

We found that the main weakness of CPI is its reliance on secrets which are kept

in the same space as the process being protected. In particular, we showed how a

data pointer overwrite attack can be used to launch a timing side channel attack that

discloses the location of the safe region on x86- 64.

There are numerous improvements that could be made to CPI to make it resilient

to our attack, although they cannot prevent our attack.

∙ Randomize Safe Region Location: This has the advantage that there will be

much larger portions of non-mapped memory, raising the probability that an

attack might scan through one of these regions and trigger a crash. However,

without changing the size of the safe region an attacker will only need a small

number of crashes in order to discover the randomized location.

∙ Use Hash Function for Safe Region: this improvement can use the segment

register as a key for a hash function into the safe region. This could introduce

prohibitive performance penalties. It is also still vulnerable to attack as a fast

hash function will not be cryptographically secure. This idea is similar to using

cryptography mechanisms to secure CFI [39].

36

∙ Reduce Safe Region Size: this fix can be to make the safe region smaller. This

is plausible, but note that if mmap is still contiguous an attacker can start

from a mapped library and scan until they find the safe region, so this fix must

be combined with a non-contiguous mmap. Moreover, making the safe region

compact will also result in additional performance overhead (for example, if

a hashtable is being used, there will be more hashtable collisions). A smaller

safe region also runs a higher risk of running out of space to store "sensitive"

pointers more easily.

37

38

Chapter 3

Control Flow Integrity

3.1 Coarse and Fine Grained Control Flow Integrity

CFI thwarts control-hijacking attacks by ensuring that the control flow remains within

the control flow graph intended by the programmer. Every instruction that is the

target of a legitimate control-flow transfer is assigned a unique ID, and checks are

inserted before control-flow instructions to ensure that only valid targets are allowed.

There are two types of control-flow transfers: direct and indirect. Direct transfers

have a fixed target so when enforcing the transfer, one can match against the fixed

target address.

However, indirect transfers, like function calls and returns, and indirect jumps,

take a dynamic target address as argument. As the target address could be controlled

by an attacker due to a vulnerability, CFI checks to ensure that its ID matches the list

of known and allowable target IDs of the instruction. Every control-flow is permitted

as long as the CFG allows it.

Figure 3-1 shows a C program fragment where the function sort2 calls a qsort-like

function sort twice, first with lt and then with gt as the pointer to the comparison

function. The right side of Figure 3-1 shows an outline of the machine-code blocks for

these four functions and all CFG edges between them. In the figure, edges for direct

calls are drawn as light, dotted arrows; edges from source instructions are drawn as

solid arrows, and return edges as dashed arrows. In this example, sort can return to

39

Figure 3-1: Example program fragment and an outline of its CFG and CFI instru-
mentation

two different places in sort2. Therefore, the CFI instrumentation includes two IDs

in the body of sort2, and an ID-check when returning from sort, arbitrarily using 55

as the ID bit pattern. Note that here, its not specified to which of the two callsites

sort must return.

Similarly, because sort can call either lt or gt, both comparison functions start

with the ID 17; and the call instruction, which uses a function pointer in register R,

performs an ID-check for 17. Finally, the ID 23 identifies the block that follows the

comparison callsite in sort, so both comparison functions return with an ID-check

for 23.

Consequently, the quality of protection from CFI is dependent on the precision

and coverage of the CFG that is generated. Since perfect CFG generation is an

intractable in many setups [52], recent CFI solutions have used relaxed rules when

enforcing CFI. In particular, the approach the original CFI [4] proposal as well as

works like CCFIR [71] and binCFI[72], take is to instrument binary code with a

handful of ID-s associated with the type of control flow transfer. We refer to these

relaxed and provably weaker [26] form of CFI as coarse-grained CFI.

Original CFI and binCFI suggest an implementation using only two ID-s: one

for function returns and jumps, and another one for function calls. CCFIR supports

40

three IDs–one for function calls and indirect jumps, one for return addresses in normal

functions, and a specialized one for return addresses in a set of security-sensitive

functions. Among the three CFI tools, binCFI requires the least information about

the binary being protected, and CCFIR has the strictest rules.

As for fine-grained CFI, there is an unique ID for each indirect control flow trans-

fer, thus resulting in an unlimited number of ID-s (or tags).

A number of recent fine-grained CFI techniques have been proposed in the lit-

erature. Forward-edge CFI [66] enforces a fine-grained CFI on forward-edge control

transfers (i.e. indirect calls, but not returns). Cryptographically enforced CFI [39] en-

forces another form of fine-grained CFI by adding message authentication code (MAC)

to control flow elements which prevents the usage of unintended control transfers in

the CFG. Opaque CFI (OCFI) [41] enforces a fine-grained CFI by transforming the

problem of branch target check to bounds checking (possible base and bound of al-

lowed control transfers). Moreover, it prevents attacks on unintended CFG edges by

applying code randomization. The authors of OCFI mention that it achieves resilience

against information leakage (a.k.a. memory disclosure) attacks [63, 57] because the

attacker can only learn about intended edges in such attacks, and not the unintended

ones which were used in previous attacks against coarse-grained CFI [26]. The attack

[24] we describe in section 3.4 shows that just the intended edges are enough for a

successful attack that results in remote code execution.

3.2 Attacks on Control Flow Integrity

Practical CFI restricts control-flow transfers based on a finite, static CFG. As a result,

it cannot guarantee that a function call returns to the call site responsible for the most

recent invocation of the function. In addition, Gotkas et al. [26] and Lucas et al. [20]

shows that weak CFI allows broader sets of control transfer that the incomplete CFG

does not capture, therefore, it is not effective. Using these sets of control transfer

instructions, they are able to mount ROP attack.

Control Flow Bending (CFB) [13] also demonstrates attacks against fine-grained

41

CFI. To perform their proof-of-concept attacks, Control Flow Bending introduces the

notion of printf-oriented programming, a form of ACICS gadgets, that can be used

to perform Turing-complete computation. CFB assumes a fully-precise CFG, which

we show is undecidable. CFB relies on manual analysis for attack construction and is

only able to achieve remote code execution in one of their six benchmarks. Moreover,

printf-oriented programming is only applicable to older versions glibc. In the newer

versions, the %n protection prevents the printf-oriented programming attack

In contrast, Control Jujutsu in Section 3.4 introduces a framework (policies and

tools) that enable automatic attack construction. CFB and Control Jujutsu demon-

strate attacks against fine-grained CFI are possible in theory and in practice.

Counterfeit Object Oriented-Programming (COOP) [56] is another recent attack

on modern CFI defenses. COOP focuses exclusively on C++ by showing that pro-

tecting v-table pointers in large C++ programs is insufficient. Their work focuses

on showing certain design patterns that are common in sufficiently large or complex

applications and are not accounted for in the design of CFI defenses. It may be pos-

sible to extend the COOP approach to C programs, but we leave this exploration to

future work.

3.3 Building Control Flow Graphs

As previously mentioned, the security of fine-grained CFI techniques is contingent on

the ability to construct CFGs that accurately capture the intended control transfers

permitted by the application.

For C/C++ applications, even with access to source code, this assumption is

tenuous at best. In theory, the construction of an accurate CFG requires the use of

a precise (sound and complete) pointer analysis. Unfortunately, sound and complete

points-to analysis is undecidable [52]. In practice, pointer analysis can be made

practical by either adopting unsound techniques or reducing precision (incomplete).

Unsound techniques may report fewer connections (tags), which can result in false

positives when used in CFI. Given that false positives can interfere with the core

42

program functionality, researchers have focused on building sound but incomplete

pointer analysis algorithms [8, 38, 70, 55, 49, 28, 27, 31, 62] that conservatively report

more connections. For example, two pointers may alias and an indirect call site may

call a function. The hope is that such imprecision could be controlled and that the

analysis could be accurate enough so that the generated CFG still does not contain

malicious connections.

Another important design decision for pointer analysis algorithms is scalabil-

ity [30]. Standard pointer analysis algorithms for C programs have three important

knobs that control the trade-offs between accuracy and scalability: context-sensitivity,

field sensitivity, and flow sensitivity.

3.3.1 Scalable Static Pointer Analysis

Context Sensitivity: A context-sensitive analysis [70, 38, 62] is able to distinguish

between different invocations of a function at different call sites. It tracks local

variables, arguments, and return values of different function invocations, at different

call sites separately. A context-insensitive analysis, in contrast, does not distinguish

between different invocations of a function, i.e., analysis results for local variables,

arguments, and the return values from different invocations of the function are merged

together.

Unfortunately, context-sensitive pointer analysis is expensive for large real-world

applications. Full context-sensitive analysis is also undecidable for programs that

contain recursions [54]. Standard clone-based context-sensitive pointer analysis [70]

duplicates each function in a program multiple times to distinguish different invo-

cations of the function. This unfortunately will increase the size of the analyzed

program exponentially.

Field Sensitivity: A field-sensitive analysis [49, 38] is able to distinguish different

fields of a struct in C programs, while a field-insensitive analysis treats the whole

struct as a single abstract variable. Modifications to different fields are transformed

into weak updates to the same abstract variable, where the analysis conservatively

43

assumes that each of the modifications may change the value of the abstract variable.

Field-sensitive pointer analysis is hard for C programs due to the lack of type-

safety. Pointer casts are ubiquitous, and unavoidable for low-level operations such as

memcpy(). Field-sensitive analysis algorithms [49, 38] typically have a set of hand-

coded rules to handle common code patterns of pointer casts. When such rules

fail for a cast of a struct pointer, the analysis has to conservatively merge all fields

associated with the struct pointer into a single abstract variable and downgrade into

a field-insensitive analysis for the particular struct pointer.

Flow Sensitivity: A flow-sensitive analysis considers the execution order of the

statements in a function [31, 55, 27], while a flow-insensitive analysis conservatively as-

sumes that the statements inside a function may execute in arbitrary order. Flow sen-

sitivity typically improves pointer-analysis accuracy but when combined with context-

sensitive analysis it can lead to scalability issues. To the best of our effort, we are

unable to find any publicly available context-sensitive flow-sensitive pointer analysis

that can scale to server applications such as Apache HTTPD.

3.4 Control Jujutsu: Attack on Fine-Grained CFI

We present a novel attack, Control Jujutsu that exploits the incompleteness of pointer

analysis, when combined with common software engineering practices, to enable an

attacker to execute arbitrary malicious code even when fine-grained CFI is enforced.

The attack uses a new “gadget” class that we call Argument Corruptible Indirect Call

Site (ACICS).

3.4.1 Argument-Corruptable Indirect Call Site Gadgets

ACICS gadgets are pairs of Indirect Call Sites (ICS) and target functions that enable

Remote Code Execution (RCE) while respecting a CFG enforced using fine-grained

CFI. Specifically, ACICS gadgets 1) enable argument corruption of indirect call sites

(data corruption) that in conjunction with the corruption of a forward edge pointer 2)

can direct execution to a target function that when executed can exercise remote code

44

execution (e.g., system calls). We show that for modern, well engineered applications

(Apache and Nginx), ACICS gadgets are readily available as part of the intended

control transfer.

ACICS Requirements and Discovery

Control Jujutsu begins with a search for suitable ICS sites for the ACICS gadget.

Control Jujutsu identifies the following requirements for ICS locations and target:

1. The forward edge pointer and its argument(s) should reside on the heap or a

global variable to facilitate attacks from multiple data flows.

2. The arguments at the ICS can be altered without crashing the program (before

reaching a target function).

3. The ICS should be reachable from external input (e.g., a network request).

4. The target site should reside in functions that exercise behavior equivalent to a

RCE (e.g., system or exec calls).

We automate the discovery of ACICS gadgets using the ACICS Discovery Tool

(ADT). To help discover candidate ICS/target function pairs (ACICS gadgets), ADT

dynamically instruments applications using the GDB 7.0+ reverse debugging frame-

work. For each candidate ACICS gadget, ADT runs a backward data-flow analysis

that discovers the location of the ICS function pointer (and its arguments) in mem-

ory. Once a candidate pair is identified, ADT automatically corrupts the forward

edge pointer and its arguments to verify that remote code execution can be achieved.

Below, we describe ADT’s approach in detail.

As input, ADT takes a target program, a list of candidate indirect call sites (ICS),

sample inputs that exercise the desired program functionality (and the list of ICS),

and the address of a candidate target function inside the target program. For each

ICS location, ADT performs the following steps as shown on Figure 3-2.

45

call *x (y)

r.xyz
r.abc

r.handler
r.len

HEAP

x = r->handler y = r->len

valid_target_1(y)

valid_target_2(y)

valid_target_3(y)

malicious(y)

(2) Backward dataflow
analysis

(3) Determine Last Write IP
(4) Corrupt Function Pointer and Arguments

(5) ACICS Validation

(1) Reach ICS

Figure 3-2: ACICS Discovery Tool

1. Reach ICS: ADT instruments program execution, using the GDB framework,

with the ability to perform reverse execution analysis once program execution

reaches a candidate ICS location.

2. Backward Dataflow Analysis: Once execution reaches the ICS location,

ADT performs a backward reaching-definition dataflow analysis from the reg-

isters containing the target function address and its arguments to the memory

locations that hold their values.

3. Determine Last Write IP: Next, ADT needs to identify program locations

that can be used to corrupt the ICS function pointer and its values. To do this,

ADT restarts the debugger and instruments the memory addresses, identified

in the previous step, to record the code locations (i.e., the instruction pointer)

that perform memory writes to these locations.

4. Corrupt Function Pointers and Arguments: At this point, ADT is able

to restart the debugger and halt the program at the ideal point identified in the

previous step. Then ADT redirects the ICS function pointer and its arguments

to the target function. Additionally, by tracking every statement executed until

the target ICS is reached, a lower bound of the liveness of the ACICS can be

46

reported.

The liveness of an ACICS allows us to reason about its exploitability; if the

liveness persists across the program lifecycle, the ICS can be attacked by almost

any memory read/write vulnerability, regardless of where it occurs temporarily.

On the other hand, an ACICS whose liveness is contained in a single function

is significantly less exploitable.

5. ACICS validation: Finally, ADT validates the ACICS gadget by verifying

that the target function is reached, the argument values match the values in

the corruption step and ultimately verifying that the target function can exercise

functionality equivalent to remote code execution (e.g., create a file, launch a

process, etc.).

3.4.2 ACICS in Apache HTTPD

Suitable Indirect Call Sites

Using these requirements and the ADT tool, we evalutaed the unoptimized Apache

binary and found that the server contains 172 indirect call sites (ICS). We limit our

evaluation to the core binary and omit reporting potential ICS target in other Apache

modules, such as the Apache Portable Runtime (APR) and APR-util libraries. From

these 172 sites, we want to find a subset of sites 1) which are exercised when the

program processes a request and 2) whose forward edge pointer and arguments can

be successfully corrupted by our ADT tool without crashing the program.

We run our ADT tool described in Section 3.4.1 on each of the 172 sites. We use a

test script program that sends simple HTTP GET requests to drive our experiments.

There are 51 sites exercised in our experiments. The remaining 121 sites do not satisfy

our requirement, because they are either inside specific modules that are not enabled

by default or depend on specific functionalities that a simple HTTP GET request

does not exercise.

Table 3.1 presents the classification results of ICS exercised during different exe-

cution stages of Apache. In order to detect whether an ICS is exercised during the

47

HTTP GET request life cycle or the startup, we vary when the test script is called

in our tool. Our results show that there are 20 sites exercised during an HTTP

GET request life cycle and 45 sites exercised during startup. Note that some of sites

exercised during startup are also exercised by an HTTP GET request .

We use our ADT tool to detect the location of the forward edge pointer and

arguments of each of the exercised 51 ICS and to corrupt these values. Table 3.2

presents our experimental results. Of the 51 ICS that are exercised dynamically in

our experiments, our tool successfully corrupt forward edge pointers for 34 ICS. For 3

ICS our tool successfully corrupted both the forward edge pointers and the arguments.

Total ICS 172
Exercised in HTTP GET request 20

Exercised during startup 45
Unexercised 121

Table 3.1: Indirect Call Sites Dynamic Analysis

Number of ICS dynamically encountered 51
Detected forward edge pointer on the heap/global 34

Automatically corrupted forward edges 34
Automatically corrupted forward edges + arguments 3

Table 3.2: Automatic Corruption Analysis

Target Functions

We run a script that searches the Apache source code for system calls that we can

use to trigger behaviors equivalent to RCE such as exec() and system(). For each

function in Apache, the script measures the distance between the function and a

function that contains such system calls.

Table 3.3 presents the results. The farther away a target function is in the

CallGraph, the harder it generally is to use it in the payload. At the same time,

more viable functions become available. A related work has found similar results for

the Windows platform [26]. Our example Apache exploit in the next section uses

piped_log_spawn(), which is two calls away from the system call.

48

Direct calls to system calls 1 call away 2 calls away
4 13 31

Table 3.3: Target Functions Count Based on CallGraph distance

1 AP_IMPLEMENT_HOOK_RUN_FIRST(apr_status_t,dirwalk_stat,

2 (apr_finfo_t *finfo,

3 request_rec *r,

4 apr_int32_t wanted),

5 (finfo, r, wanted), AP_DECLINED)

6

7 apr_status_t ap_run_dirwalk_stat(

8 apr_finfo_t *finfo, request_rec *r,

9 apr_int32_t wanted) {

10 ap_LINK_dirwalk_stat_t *pHook;

11 int n;

12 apr_status_t rv = AP_DECLINED;

13 ...

14 //check the corresponding field of the global _hooks

15 if (_hooks.link_dirwalk_stat) {

16 pHook = (ap_run_dirwalk_stat_t *)

17 _hooks.link_dirwalk_stat->elts;

18 //invoke registered functions in the array one by

19 //one until a function returns a non-decline value.

20 for(n=0; n < _hooks.link_dirwalk_stat->nelts;++n){

21 ...

22 // our seelcted ICS

23 rv = pHook[n].pFunc(finfo, r, wanted);

24 ...

25 if (rv != AP_DECLINED) break;

26 }

27 }

28 ...

29 return rv;

30 }

Figure 3-3: APR hook macro in server/request.c:97 defining ap_run_dirwalk_stat()
in Apache HTTPD and the simplified code snippet of ap_run_dirwalk_stat()

Proof of Concept Attack

Here we present a detailed example exploit based on the selected ICS seen in

Figure 3-3. Lines 1-5 use a macro defined in the Apache Portable Runtime (APR)

library to define the function ap_run_dirwalk_stat(). Lines 7-30 present the sim-

plified code snippet of ap_run_dirwalk_stat() after macro expansion. The actual

ICS itself occurs at line 23, which invokes the function pointer pHook[n].pFunc.

Figure 3-4 presents the specific ap_run_dirwalk_stat() call we use in our exploit.

Apache HTTPD uses a design pattern that facilitates modularity and extensi-

bility. It enables Apache module developers to register multiple implementation

function hooks to extend core Apache functionality. ap_run_dirwalk_stat() is a

49

1 if (r->finfo.filetype == APR_NOFILE ||

2 r->finfo.filetype == APR_LNK) {

3 rv = ap_run_dirwalk_stat(&r->finfo,

4 r,

5 APR_FINFO_MIN);

Figure 3-4: dirwalk_stat called in server/request.c:616 in Apache HTTPD

1 /* Spawn the piped logger process pl->program. */

2 static apr_status_t piped_log_spawn(piped_log *pl)

3 {

4 apr_procattr_t *procattr;

5 apr_proc_t *procnew = NULL;

6 apr_status_t status;

7

8 ...

9 char **args;

10 apr_tokenize_to_argv(pl->program, &args, pl->p);

11 procnew = apr_pcalloc(pl->p, sizeof(apr_proc_t));

12 status = apr_proc_create(procnew,

13 args[0],

14 (const char * const *) args,

15 NULL, procattr, pl->p);

16 ...

17 }

Figure 3-5: Target function piped_log_spawn in Apache HTTPD

wrapper function that iteratively calls each registered implementation function for

the dirwalk functionality until an implementation function returns a value other than

AP_DECLINED.

As for the target, the piped_log_spawn function meets and exceeds all of our

requirements. Apache allows a configuration file to redirect the Apache logs to a

pipe rather than a file; this is commonly used by system administrators to allow

transparent scheduled log rotation. This functionality involves Apache reading its

configuration file, launching the program listed in the configuration file along with

given arguments, and then connecting the program’s standard input to Apache’s log

output.

Figure 3-5 presents a simplified version of the example target function, piped_log_spawn.

This target function accepts a pointer to the piped_log structure as an argument.

piped_log_spawn invokes an external process found in the char *program field of

the piped_log structure.

50

3.4.3 ACICS in Nginx

Suitable Indirect Call Sites

Our analysis on the unoptimized Nginx binary shows that there are 314 ICS in Ng-

inx. We run our ADT tool on each of the 314 ICS in a way similar to our Apache

experiments. Table 3.4 presents the classification results of ICS based on different

execution stages and Table 3.5 presents the corruption experiment results.

Total ICS 314
Exercised in HTTP GET request 27

Exercised during startup 18
Unexercised 278

Table 3.4: Indirect Call Sites Dynamic Analysis

Number of ICS dyanmically encountered 36
Detected forward edge pointer on the heap/global 7

Automatically corrupted forward edges 7
Automatically corrupted forward edges + arguments 4

Table 3.5: Automatic Corruption Analysis

Our results show that there are 36 ICS exercised during our Nginx experiments

and 27 of these ICS are exercised during an HTTP GET request lifecycle after Nginx

startup. Of the 36 exercised ICS, our ADT tool successfully corrupted the forward

edge pointers and arguments for 4 ICS.

We found that the ICS at core/ngx_output_chain.c:74 in ngx_output_chain()

is an ideal candidate ICS for our attack. Figure 3-6 presents the simplified code

snippet of ngx_output_chain(). The ICS is at line 27 in Figure 3-6. The function

implements the filter chaining mechanism that is inherent to Nginx’s modular design

because it gives an easy way to manipulate the output of various handlers run on the

request object to generate a response.

In this function, the function pointer ctx->output_filter and arguments ctx->filter_ctx

are all derived from ctx which is a ngx_output_chain_ctx struct pointer. This ctx

a global object lives on the heap, so that our tool successfully corrupts all of these

values.

51

1 ngx_int_t

2 ngx_output_chain(ngx_output_chain_ctx_t *ctx,

3 ngx_chain_t *in)

4 {

5 ...

6

7 if (ctx->in == NULL && ctx->busy == NULL)

8 {

9 /*

10 * the short path for the case when the ctx->in

11 * and ctx->busy chains are empty, the incoming

12 * chain is empty too or has the single buf

13 * that does not require the copy

14 */

15

16 if (in == NULL) {

17 return ctx->output_filter(ctx->filter_ctx, in);

18 }

19

20 if (in->next == NULL

21 # if (NGX_SENDFILE_LIMIT)

22 && !(in->buf->in_file && in->buf->file_last

23 > NGX_SENDFILE_LIMIT)

24 # endif

25 && ngx_output_chain_as_is(ctx, in->buf))

26 {

27 return ctx->output_filter(ctx->filter_ctx, in);

28 }

29 }

30 ...

31 }

Figure 3-6: ACICS for Nginx found in ngx_output_chain function

Secondly, the argument ctx->filter_ctx is a void pointer that is written only

once during the request life cycle, whereas argument in is a pointer to the head of a

linked list of filters that are applied to request responses. This linked list is modified

in every module that implements a filter. However with manual dataflow analysis,

it is possible to modify this linked list so that the checks at lines 18, 19, and 20 of

Figure 3-6 pass and we reach the execution of the ICS before any crash happens.

Thirdly, as all response body filters are called before the response is returned to the

user, we were able to remotely exercise this ICS during the request life cycle.

Target Functions

We use a script to search Nginx source code for system calls with RCE capability.

Table 3.6 shows the number of potential targets based on the distance in the call

graph. We found that the function ngx_execute_proc() (shown in Figure 3-7) is an

ideal target function for our proof-of-concept attack, because it executes a execve()

52

call with passed-in arguments and it has a small arity of 2, which facilitates the type

punning.

Direct calls to system calls 1 call away 2 calls away
1 2 3

Table 3.6: Target Functions Count Based on CallGraph distance

1 static void

2 ngx_execute_proc(ngx_cycle_t *cycle, void *data)

3 {

4 ngx_exec_ctx_t *ctx = data;

5

6 if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {

7 ngx_log_error(...);

8 }

9 exit(1);

10 }

Figure 3-7: Nginx Target Function that calls execve

Proof-of-concept Attack

Hence, we identified the ACICS gadget pair for our attack which is composed of the

ICS at core/ngx_output_chain.c:74 in ngx_output_chain() (see line 27 in Figure 3-

6) and the target function ngx_execute_proc() (see Figure 3-7).

We then perform the attack as follows. We corrupt ctx->output_filter to point

to the target function ngx_execute_proc() and we corrupt the memory region that

in points to so that when the memory region is viewed as a ngx_exec_ctx_t struct

in ngx_execute_proc(), it will trigger RCE at line 6 in Figure 3-7. We successfully

achieved RCE with our attack.

3.4.4 Challenges for Stopping Control Jujutsu

As previously mentioned, the construction of a precise CFG requires a pointer analysis

to determine the set of functions to which the pointer at each indirect call site can

point. For example, CFG has to capture where ICS on line 23 in the Apache example

shown in Figure 3-3 can point.

53

1 void ap_hook_dirwalk_stat(ap_HOOK_dirwalk_stat_t *pf,

2 ...) {

3 ap_LINK_dirwalk_stat_t *pHook;

4 //check the corresponding field of the global _hooks

5 if (!_hooks.link_dirwalk_stat)

6 _hooks.link_dirwalk_stat = apr_array_make(...);

7 // store the function pointer pf into the array

8 pHook = apr_array_push(_hooks.link_dirwalk_stat);

9 pHook->pFunc = pf;

10 ...

11 }

Figure 3-8: The code snippet for ap_hook_dirwalk_stat() in Apache HTTPD

Figure 3-8 presents a simplified version of ap_hook_dirwalk_stat(), which reg-

isters implementation functions that ap_run_dirwalk_stat() (shown in Figure 3-3)

can later invoke for the functionality of dirwalk_stat. The intended behavior of the

ICS shown at line 23 in Figure 3-3 is to only call implementation functions registered

via ap_hook_dirwalk_stat() in Figure 3-8.

The example code in Figure 3-3 and Figure 3-8 highlights the following challenges

for the static analysis:

∙ Global Struct: The analysis has to distinguish between different fields in

global variables. Hence, field-sensitivity is important to stop Control Jujutsu

using CFI. _hooks in Figure 3-3 and Figure 3-8 is a global struct variable in

Apache HTTPD. Each field of _hooks contains an array of function pointers

to registered implementation functions for a corresponding functionality. For

example, the link_dirwalk_stat field contains function pointers to implemen-

tation functions of the functionality dirwalk_stat.

∙ Customized Container API: The analysis has to capture inter-procedural

data flows via customized container APIs. Hence, context-sensitivity is impor-

tant to stop Control Jujutsu using CFI. The code in Figure 3-3 and Figure 3-8

uses customized array APIs apr_array_push() and apr_array_make() to store

and manipulate function pointers.

∙ Macro Generated Code: The code shown in Figure 3-3 and Figure 3-

8 is generated from macro templates found in Apache Portable Runtime li-

brary. For example, for a functionality malicious, there are pairs of functions

54

ap_hook_malicious() and ap_run_malicious() that are structurally similar

to the code shown in Figure 3-3 and Figure 3-8. This imposes a significant

additional precision requirement on the static analysis, as it needs to consider

a (potentially) large number of similar functions that can manipulate the data

structures inside _hooks.

Data Structure Algorithm (DSA)

As discussed above, the combination of context sensitivity and field sensitivity is crit-

ical for generating a precise CFG that can stop the attack described in Section 3.4.2.

We next present the results of using the DSA algorithm [38] to generate a CFG for

Apache HTTPD. We chose the DSA algorithm because, to the best of our knowledge,

it is the only analysis that 1) is context-sensitive and field-sensitive, 2) can scale to

server applications like Apache HTTPD and Nginx, and 3) is publicly available.

The DSA algorithm is available as a submodule of the LLVM project [2] and is well

maintained by the LLVM developers. It works with programs in LLVM intermediate

representation (IR) generated by the LLVM Clang compiler [1].

Unfortunately, the DSA algorithm produces a CFG that cannot stop the attack

in Section 3.4.2. Specifically, the CFG specifies that the indirect call at line 26

in Figure 3-8 may call to the function piped_log_spawn(). We inspected the de-

bug log and the intermediate pointer analysis results of the DSA algorithm. We

found that although as a context-sensitive and flow-sensitive analysis the DSA al-

gorithm should theoretically be able to produce a precise CFG to stop the attack,

the algorithm in practice loses context sensitivity and flow sensitivity because of

convoluted C idioms and design patterns in Apache HTTPD and the APR library.

As a result, it produces an imprecise CFG. Fine-grained CFI systems that disallow

the calling of functions whose address is not taken can prevent the proposed at-

tack through piped_log_spawn(). The attack can succeed, however, by targeting

piped_log_spawn() indirectly through functions such as ap_open_piped_log_ex(),

whose address is directly taken by the application. We describe some of the sources

of imprecision in more detail below.

55

∙ Struct Pointer Casts: We found that struct pointer-cast operations in Apache

HTTPD cause the DSA algorithm to lose field sensitivity on pointer operations.

Pointer casts are heavily used at the interface boundaries of Apache components.

There are in total 1027 struct pointer conversion instructions in the generated

bitcode file of Apache HTTPD.

For example, pointers are cast from void* to apr_LINK_dirwalk_stat_t * at

line 8 in Figure 3-8 when using the array container API apr_array_push().

Apache HTTPD also uses its own set of pool memory management APIs and

similar pointer casts happen when a heap object crosses the memory manage-

ment APIs. When the DSA algorithm detects that a memory object is not

accessed in a way that matches the assumed field layout of the object, the al-

gorithm conservatively merges all fields into a single abstract variable and loses

field sensitivity on the object.

∙ Integer to Pointer Conversion: Our analysis indicates that the Clang com-

piler generates an integer to pointer conversion instruction (inttoptr) in the

bitcode file for the APR library function apr_atomic_casptr(), which imple-

ments an atomic pointer compare-and-swap operation.

For such inttoptr instructions, the DSA algorithm has to conservatively as-

sume that the resulting pointer may alias to any pointers and heap objects

that are accessible at the enclosing context. Although such instructions are

rare (apr_atomic_casptr() is called three times in the Apache HTTPD source

code), they act as sink hubs that spread imprecision due to this over-conservative

aliasing assumption.

∙ Cascading Imprecision: The struct pointer casts and integer to pointer

conversions are the root sources of the imprecision. One consequence of the

56

imprecision is that the DSA algorithm may generate artificial forward edges

(calls) for indirect call sites.

Although initially such artificial forward edges may not directly correspond to

attack gadgets in the Apache HTTPD, they introduce artificial recursions to

the call graph. Because maintaining context sensitivity for recursions is unde-

cidable, the DSA algorithm has to conservatively give up context sensitivity for

the function calls between functions inside a recursive cycle (even they are artifi-

cially recursive due to the analysis imprecision). This loss of context sensitivity

further introduces imprecision in field sensitivity because of type mismatch via

unrealizable information propagation paths.

In our Apache HTTPD example, this cascading effect continues until the DSA

algorithm reaches an (imprecise) fix-point on the analysis results. As a result, 51.3%

of the abstract struct objects the DSA algorithm tracks are merged into single ab-

stract variables (i.e., the loss of field sensitivity); we observed a phenomenal artificial

recursion cycle that contains 110 functions (i.e., due to the loss of context sensitivity).

Some of this imprecision may be attributed to changes in LLVM IR metadata since

version 1.9. Previous versions relied on type annotations that used to persist from the

llvm-gcc front-end into the LLVM IR metadata that are no longer available. LLVM

DSA prior to version 1.9 used a set of type-based heuristics to improve the accuracy of

the analysis. Aggressive use of type-based heuristics is unsound and could introduce

false negatives (opening up another possible set of attacks).

CFG Construction using DSA

We next evaluate the precision of CFG construction using the DSA algorithm on four

popular server applications: Apache HTTPD, Nginx, vsftpd, and BIND. Specifically,

we evaluate the loss of context sensitivity by measuring the maximum size of strongly

connected components and the loss of field sensitivity by measuring the number of

merged objects. We performed all of our experiments on an Intel 2.3GHz machine

running Ubuntu 14.04.

57

Program LoC LLVM IR Max. SCC Size Merged% Time

HTTPD 272K 318K 110 51.3% 14s

Nginx 123K 358K 38 10.8% 10s

vsftpd 16K 24K 255 70.5% 1s

BIND 462K 1167K 1023 41.2% 14m52s

Table 3.7: DSA analysis statistics

Table 3.7 summarizes the results. The first column presents the application name.

The second and third columns represent the source code line count and LLVM IR

count respectively. The application size ranges from 17K LoC for vsftpd to approxi-

mately 460K LoC for BIND.

The fourth column presents the number of functions in the largest (potentially

artificial) recursion cycle DSA algorithm found for each application. High numbers

translate to high loss of context sensitivity. The fifth column presents the percentage

of the abstract struct objects that the DSA algorithm tracks which the DSA algorithm

merges conservatively. High percentage numbers indicate high loss of field sensitivity.

Together, columns four and five show that the DSA algorithm is unable to produce

satisfactory results on any of the four applications due to the loss of field sensitivity

and context sensitivity. DSA loses field sensitivity on up to 70.5% of tracked struct

objects and detects artificial recursion groups that contain up to 1023 functions.

Note that even for Nginx, where the relative loss is small, the generated CFG is

unable to stop the ASICS gadgets index Section 3.4.3. The CFG allows the ICS found

in core/ngx_output_chain.c:74 (line 27 in Figure 3-6) to call the target function

ngx_execute_proc shown in Figure 3-7 due to the pointer analysis imprecision.

The sixth column presents the running time of the DSA algorithm on each applica-

tion. Our results show that the running time of the DSA algorithm grows non-linearly

to the amount of analyzed code. For BIND, the algorithm needs more than 14 min-

utes to finish. This result highlights the difficult trade-offs between the accuracy and

the scalability in pointer analysis algorithms.

58

Discussion

Complete memory safety techniques that enforce both temporal and spatial safety

properties can defend against all control hijacking attacks, including Control Jujutsu.

The recently published Indirect Function-Call Checks (IFCC) [?] is forward-edge

enforcement variant of CFI designed for C++ programs. In addition to forward-edge

enforcement, it further imposes a restriction that the arity of call sites and target

functions must match. IFCC is capable of more powerful restrictions, but they limit

themselves to checking arity.

IFCC may limit the number of available ACICS, but it cannot prevent the Control

Jujutsu attack in general. In particular, using our ACICS discovery tool, we were

able to easily expand on our original exploit for Apache and develop an additional

full exploit based on an ACICS with an arity that matches its ICS with its target

function.

One way to restrict ACICS gadgets is to use a runtime type checker for C. The most

precise runtime type checker would need access to the program source for type name

information that is typically removed by C compilers. Although some information

(e.g., the width in words of arguments) is inferrable purely from binary analysis with

the use of an interpreter and runtime environment, as in the Hobbes checker [12], but

the guarantees of runtime type checking are substantially weakened.

Unfortunately, runtime checks based on source code inference would break com-

patibility with a large subset of real-world code. Qualifiers such as const are routinely

violated at runtime; a recent paper [18] found that for const pointers alone, each of

thirteen large FreeBSD programs and libraries examined contained multiple “deconst”

pointer idioms which would be broken if const had been enforced at runtime. In gen-

eral, real-world programs do not always respect function pointer types at runtime, as

the IFCC paper noted when they explained that their approach could support one

tag per type signature, but that this “can fail for function-pointer casts.”

59

60

Chapter 4

Conclusion

The lack of memory safety in low-level languages (C/C++) allows attackers to alter

the program’s behavior or take full control over it by hijacking its control flow.

Although a vast number of potential solutions have been proposed to mitigate

control flow hijacking, real world exploits show that all currently deployed protections

can be defeated. Our results provide additional evidence that techniques that trade

off memory safety (security) for performance are vulnerable to motivated attackers.

In particular, we present an attack on the recently proposed CPI technique as well

as an attack that is able to bypass fine-grained enforcement of CFI.

For CPI, we show that the use of information hiding to protect the safe region

is problematic and can be used to violate the security of CPI. Specifically, we show

how a data pointer overwrite attack can be used to launch a timing side channel

attack that discloses the location of the safe region on x86-64. We evaluate the

attack using a proof-of-concept exploit on a version of the Nginx web server that

is protected with CPI, ASLR and DEP. We show that the most performant and

complete implementation of CPI (simpletable) can be bypassed in 98 hours without

crashes, and 6 seconds if a small number of crashes (13) can be tolerated. We also

evaluate the work factor required to bypass other implementations of CPI including

a number of possible fixes to the initial implementation. We show that information

hiding is a weak paradigm that often leads to vulnerable defenses.

For CFI, Control Jujutsu is an attack that exploits the imprecision of scalable

61

pointer analysis to bypass fine-grained enforcement of CFI. The attack uses a new

"gadget" class, Argument Corruptible Indirect Call Site (ACICS), that can hijack

control flow to achieve remote code execution while still respecting control flow graphs

generated using context- and field-sensitive pointer analysis.

We show that preventing Control Jujutsu by using more precise pointer analysis

algorithms is difficult for real-world applications. In detail, we show that code design

patterns for standard software engineering practices such as extensibility, maintain-

ability, and modularity make precise CFG construction difficult.

Our results, in addition to attacks on practical defensive techniques, highlight

the need for complete memory safety. This indicates that the true cost of memory

protection is higher than what is typically perceived.

Even though software based complete memory mechanisms are costly, hardware

support can make complete memory safety practical. For instance, Intel memory pro-

tection extensions (MPX) can facilitate better enforcement of memory safety checks.

Additionally, the fat-pointer schemes and tagged architectures present a possible di-

rection for mitigating control hijacking attacks such as the attacks presented in this

thesis.

62

This work is sponsored by the Assistant Secretary of Defense for Research &

Engineering under Air Force Contract #FA8721-05-C-0002.

Opinions, interpretations, conclusions and recommendations are those of the au-

thor and are not necessarily endorsed by the United States Government.

63

64

Bibliography

[1] Clang. http://clang.llvm.org/.

[2] The LLVM Compiler Infrastructure. http://llvm.org/.

[3] Linux cross reference, 2014.

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proc. of ACM CCS, 2005.

[5] Manuel Costa Miguel Castro Akritidis, Periklis and Steven Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-bounds
errors.

[6] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In
USENIX Security Symposium, pages 177–192, 2010.

[7] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with wit. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 263–277. IEEE, 2008.

[8] Lars Ole Andersen. Program analysis and specialization for the c programming
language. Technical report, 1994.

[9] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
Hacking blind. In Proceedings of the 35th IEEE Symposium on Security and
Privacy, 2014.

[10] T. Bletsch, X. Jiang, V.W. Freeh, and Z. Liang. Jump-oriented programming:
A new class of code-reuse attack. In Proc. of ACM CCS, 2011.

[11] Ryan Roemer Hovav Shacham Buchanan, Erik and Stefan Savage. When good
instructions go bad: Generalizing return-oriented programming to risc. In In
Proceedings of the 15th ACM conference on Computer and communications se-
curity, 2008.

[12] Michael Burrows, Stephen N. Freund, and Janet L. Wiener. Run-time type
checking for binary programs. In Proc. of the CC, 2003.

65

[13] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In
USENIX Security, 2015.

[14] Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[15] Vincenzo Iozzo Charlie Miller. Fun and games with mac os x and iphone payloads.
BlackHat Europe, 2009.

[16] Hai Jin Deqing Zou Bing Bing Zhou Zhenkai Liang Weide Zheng Chen, Gang
and Xuanhua Shi. Safestack: automatically patching stack-based buffer overflow
vulnerabilities. 2013.

[17] Zongwei Zhou Yu Miao Xuhua Ding Cheng, Yueqiang and Huijie DENG.
Ropecker: A generic and practical approach for defending against rop attack.
2014.

[18] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff,
Munraj Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G.
Neumann. Beyond the pdp-11: Architectural support for a memory-safe c ab-
stract machine. SIGPLAN Not., 2015.

[19] Scott A Crosby, Dan S Wallach, and Rudolf H Riedi. Opportunities and limits of
remote timing attacks. ACM Transactions on Information and System Security
(TISSEC), 12(3):17, 2009.

[20] Lucas Davi, Daniel Lehmann, Ahmad-Reza Sadeghi, and Fabian Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow in-
tegrity protection. In USENIX Security Symposium, 2014.

[21] Colin Blundell Milo MK Martin Devietti, Joe and Steve Zdancewic. Hardbound:
architectural support for spatial safety of the c programming language.

[22] Ulrich Drepper. Elf handling for thread-local storage, 2013.

[23] Isaac Evans, Sam Fingeret, Julian Gonzalez, Tiffany Tang, Howard Shrobe, Ste-
lios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Missing the point
(er): On the effectiveness of code pointer integrity. In In IEEE Symp. on Security
and Privacy, 2015.

[24] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Stelios
Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Control jujutsu:
on the weaknesses of fine-grained control flow integrity. In Proc. of ACM CCS,
2015.

[25] Ivan Fratric. Ropguard: Runtime prevention of return-oriented programming
attacks. 2012.

66

[26] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis.
Out of control: Overcoming control-flow integrity. In IEEE S&P, 2014.

[27] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In
Proc. of POPL, 2009.

[28] Rebecca Hasti and Susan Horwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In Proc. of PLDI, 1998.

[29] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[30] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proc.
of PASTE, 2001.

[31] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural
pointer alias analysis. ACM Trans. Program. Lang. Syst., 1999.

[32] intel. Introduction to intel memory protection extensions, 2013.

[33] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of c. In USENIX Annual
Technical Conference, General Track, pages 275–288, 2002.

[34] Tim Kornau. Return oriented programming for the arm architecture. Master’s
thesis, Ruhr-Universitat Bochum, 2010.

[35] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. Code-pointer integrity. 2014.

[36] Albert Kwon, Udit Dhawan, Jonathan Smith, Thomas Knight, and Andre De-
hon. Low-fat pointers: compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security,
pages 721–732. ACM, 2013.

[37] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. 2011.

[38] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In Proc. of
PLDI, 2007.

[39] Ali Jose Mashtizadeh, Andrea Bittau, David Mazieres, and Dan Boneh. Cryp-
tographically enforced control flow integrity. arXiv preprint arXiv:1408.1451,
2014.

[40] Microsoft. A detailed description of the data execution prevention (dep) feature
in windows xp service pack 2, windows xp tablet pc edition 2005, and windows
server 2003. Online, September 2006.

67

[41] Vishwath Mohan, Per Larsen, Stefan Brunthaler, K Hamlen, and Michael Franz.
Opaque control-flow integrity. In Proc. of NDSS, 2015.

[42] Jianzhou Zhao Milo MK Martin Nagarakatte, Santosh and Steve Zdancewic.
Softbound: highly compatible and complete spatial memory safety for c.

[43] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
Cets: compiler enforced temporal safety for c. In ACM Sigplan Notices, 2010.

[44] George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe
retrofitting of legacy code. ACM SIGPLAN Notices, 37(1):128–139, 2002.

[45] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan Notices, volume 42, pages
89–100. ACM, 2007.

[46] Aleph One. Smashing the stack for fun and profit. 1996.

[47] OpenBSD. Openbsd 3.3, 2003.

[48] Vasilis Pappas. kbouncer: Efficient and transparent rop mitigation. 2012.

[49] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive
pointer analysis of c. ACM Trans. Program. Lang. Syst., 30(1), November 2007.

[50] Colin Percival. How to zero a buffer, September 2014.

[51] Vincenzo Iozzo Ralph-Philipp Weinmann. Ralph-philipp weinmann & vincenzo
iozzo own the iphone at pwn2own.

[52] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang.
Syst., 16(5):1467–1471, September 1994.

[53] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2, 2008.

[54] Thomas Reps. Undecidability of context-sensitive data-dependence analysis.
ACM Trans. Program. Lang. Syst., 22(1):162–186, January 2000.

[55] Radu Rugina and Martin Rinard. Pointer analysis for multithreaded programs.
In Proc. of PLDI, 1999.

[56] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming. In
Proc. of IEEE S&P, 2015.

[57] Jeff Seibert, Hamed Okhravi, and Eric Soderstrom. Information Leaks Without
Memory Disclosures: Remote Side Channel Attacks on Diversified Code. In Proc.
of ACM CCS, 2014.

68

[58] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX Annual
Technical Conference, pages 309–318, 2012.

[59] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proc.of ACM CCS, 2007.

[60] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In Proc.
of ACM CCS, pages 298–307, 2004.

[61] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effective-
ness of fine-grained address space layout randomization. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 574–588. IEEE, 2013.

[62] Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-
to analysis for java. In Proc. of PLDI.

[63] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lach-
mund, and Thomas Walter. Breaking the memory secrecy assumption. In Proc.of
EuroSec ’09, 2009.

[64] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in
memory. In Proc. of IEEE Symposium on Security and Privacy, 2013.

[65] The PaX Team. Address space layout randomization. March 2003.
http://pax.grsecurity.net/docs/aslr.txt.

[66] Tom Roeder Peter Collingbourne Stephen Checkoway Úlfar Erlingsson
Luis Lozano Tice, Caroline and Geoff Pike. Enforcing forward-edge control-flow
integrity in gcc & llvm. 2014.

[67] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On the
expressiveness of return-into-libc attacks. In Proc. of RAID’11, 2011.

[68] Robert NM Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Ben Laurie,
Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, Munraj Vadera,
and Khilan Gudka. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In IEEE Symposium on Security and Privacy,
2015.

[69] Yoav Weiss and Elena Gabriela Barrantes. Known/chosen key attacks against
software instruction set randomization. In Computer Security Applications Con-
ference, 2006. ACSAC’06. 22nd Annual, pages 349–360. IEEE, 2006.

[70] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proc. of PLDI, 2004.

69

[71] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. Practical control flow integrity and random-
ization for binary executables. In Proc. of IEEE S&P, 2013.

[72] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In USENIX
Security, pages 337–352, 2013.

70

