

Portable Map-Reduce Utility for MIT SuperCloud
Enviornment

Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Vijay Gadepally, Matthew Hubbell,
Peter Michaleas, Julie Mullen, Andrew Prout, Albert Reuther, Antonio Rosa, Charles Yee

MIT Lincoln Laboratory, Lexington, MA, U.S.A

Abstract— The MIT Map-Reduce utility has been developed
and deployed on the MIT SuperCloud to support scientists and
engineers at MIT Lincoln Laboratory. With the MIT Map-
Reduce utility, users can deploy their applications quickly onto
the MIT SuperCloud infrastructure. The MIT Map-Reduce
utility can work with any applications without the need for any
modifications. For improved performance, the MIT Map-Reduce
utility provides an option to consolidate multiple input data files
per compute task as a single stream of input with minimal
changes to the target application. This enables users to reduce
the computational overhead associated with the cost of multiple
application starting up when dealing with more than one piece of
input data per compute task. With a small change in a sample
MATLAB image processing application, we have observed
approximately 12x speed up by reducing the application startup
overhead. Currently the MIT Map-Reduce utility can work with
several schedulers such as SLURM, Grid Engine and LSF.

Keywords—MIT Map Reduce; performance; scheduler; Grid
Engine; SLURM; LSF

I. INTRODUCTION

Rapidly increasing data volume, velocity and variety has
created a growing gap between data and users. This is true for
the scientists and engineers at MIT Lincoln Laboratory as well.
The common big data architecture, which is designed to
address these challenges, is made of the computing resources,
scheduler, central storage file system, databases, analytics
software and web interfaces [1]. These components are
common to many big data and supercomputing systems. The
platform is designed to support standardized data access and
dynamic compositions of functionalities.

In particular, addressing data volume requires a large
computing cloud. The MIT SuperCloud [1] has evolved to
merge the four common cloud computing ecosystems, namely
enterprise, compute, database and big data clouds. In big data
cloud computing, the open-source Map Reduce programming
model is a very popular and widely used tool first described in
2004 by Google [2]. The open source community has its own
implementations such as Hadoop MapReduce framework [3].

Although its underlying concept has existed in other
programming models such as map and reduce primitives in
Lisp and many other functional languages [3], Map Reduce
programing became popular with the Hadoop MapReduce
framework for the Java community. The Map Reduce
programming model provides a number of benefits such as

automatic parallelization and fault-tolerant features for Java
programmers [3]. However, although the support has been
extended to other languages such as Python [4], it still requires
a steep learning curve for programmers who are not familiar
with the framework.

 In addition, scientists and engineers at MIT Lincoln
Laboratory must work with legacy codes which may not be
written in Java or Python. So we developed and deployed the
MIT Map-Reduce utility to MIT SuperCloud systems [5],
which works on a central storage system instead of distributed
filesystem such as Hadoop distributed filesystem (HDFS) [6].
The Map-Reduce utility can launch any program onto the MIT
SuperCloud with the use of the scheduler running on it. It can
distribute the workloads in a block or cyclic distribution
fashion. Since the initial deployment, the utility has evolved
with more features. One of the new features is that it can
reduce the runtime by consolidating the multiple launches of
the mapper application into a single application launch per
each compute task. This requires the modification of the
mapper application so that it can process the input stream
automatically generated by the utility. With the input
consolidation, we have observed more than 2x speedup with
toy examples and approximately 12x speedup for a user
application. Currently, the MIT Map-Reduce utility can work
with the majority of schedulers such as SLURM [7], open and
commercial distribution of Grid Engine [8, 9, 10] and IBM
Platform LSF [11]. However, the utility was written with the
support for a wide range of schedulers in mind; it is reasonably
trivial to add support for any other schedulers.

II. PORTABLE MAP REDUCE UTILITY

The Map-Reduce parallel programming model is the
simplest of all parallel programming models; it is much easier
to learn than message passing or distributed arrays. The Map-
Reduce parallel programming model consists of two user
written programs: Mapper and Reducer. The input to Mapper is
a file and the output is another file. The input to Reducer is the
set of Mapper output files. The output of Reducer is a single
file. Launching consists of starting many Mapper programs
each with a different input file. When the Mapper programs all
have completed, the Reduce program is run on the Mapper
outputs.

The MIT Map-Reduce utility has been deployed on the
MIT SuperCloud systems by utilizing a centralized high-
performance parallel filesystem such as the Lustre filesystem

Distribution A: Public Release. This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-
05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States
Government.

[12]. Since any high-performance supercomputing facility runs
a scheduling or resource management software, the MIT Map-
Reduce utility is designed to use the existing scheduler to
manage its workloads. Finally, the MIT Map-Reduce utility
assumes that users will have their data already partitioned into
many smaller segments. Such segmentation is natural for many
application areas; when collecting data from various sensors,
they are collected in a large number of segmented files instead
of one large, holistic file. This allows users to deploy their
applications rapidly and efficiently.

Fig. 1. A schematic diagram showing how MIT Map-Reduce works. The
Map Reduce process identifies input files which are used to generate an array
job with the help of the HPC scheduler. By setting a dependency between the
mapper and reducer jobs, the output of completed jobs are passed through a
reducer to generate the final result.

The MIT Map-Reduce utility, called LLMapReduce,
identifies the input files to be processed by scanning a given
input directory or reading a list from a given input file as
shown in the step 1 in Fig. 1. It generates all the necessary
temporary files under the directory, .MAPRED.PID, where the
PID is the process identification number of LLMapReduce
process in which it was executed.This new feature has been
added so that users can build a nested call to LLMapReduce for
their hierarchical data processing construction. Then, by
accessing the scheduler at step 2, it creates an array of many
tasks, called an array job, which is denoted as “Mapper Task
1”, “Mapper Task 2”, and so on. LLMapReduce was originally
written to work with the open source Grid Engine [9, 10], and
more recently it has been extended to work with SLURM [8]
and LSF [11] as well.

Once the array job is created and dispatched for execution,
each input file will be processed by one of the tasks with the
specified application at the command line, noted as “Mapper”
in Fig. 1. The application can be any type of executable
written in any language, such as a shell script, a Java program
or a MATLAB script. In addition, there is an option to do
further processing on the results, if there are any, by creating a
dependent task at the step 3. This is noted as “Reduce Task” in
Fig. 1. The reduce task will wait until all the mapper tasks are
completed by setting a job dependency between the mapper
tasks and reduce task. The reduce application is responsible to
scan the output files from the mapper tasks at step 4 and to
process them into the final results at step 5.

The map application of the MIT Map-Reduce utility requires
two input arguments: one for the input filename and the other
for the output filename. Subsequently, the reducee application
takes two arguments as input, which are the directory path
where the results of the map tasks reside and the output
filename for the reduce result. The reduce application may use

the input path to scan and read the output generated by the map
tasks.

Fig. 2. Available options of MIT Map-Reduce utility.

The available options of the current MIT Map-Reduce
utility are shown in Fig. 2. After we deployed the utility
initially, we found out that some users tried to launch their
applications with the number of data files exceeding the limit
that the scheduler array job could accommodate. So we
modified the --np option in such a way that it not only limits
the total number of compute tasks it generates, but also
calculates the number of data files per each task to be assigned.
The --ndata option allows users to define how many data files
are to be assigned per each task, which will override the --np
option. The --ext option allows changing the default extension,
“out”, with the user-defined extension name. Along with the --
ext option, the --delimiter option allows the change of the
default, “.” extension with a user-defined delimiter when
adding the extension. The --distribution option enables
changing how the input data is distributed among the given
number of task processes; the default is the block distribution.
The --subdir option is useful if your data files are stored in a
hierarchical directory structure. By defining this option with
the top directory path of your input data, the utility will
traverse all the sub-directories to process all the data files. The
--exclusive option enables the use of entire compute nodes for
your jobs, but this option is limited to pre-approved users as
configured in the current Grid Engine scheduler running on the
MIT SuperCloud systems. By default, the utility will delete the
.MAPRED.PID directory after the job is completed. However,
users can keep the temporary directory for debugging purpose
with the --keep=true option. By default, the utility expects that
the map application to take single input and single output path
(siso) at a time. However, this will incur overhead associated
with repeated startups of the map application.We have
observed that some applications such as MATLAB codes can
save significant overhead cost with the minor change of having
the map application start only once and read many lines of
input/output path pairs to process the given data. For this
purpose the --apptype=mimo option will generate the input
files for the modified map application that will read the input
file with the multiple lines of input/output filename pairs.

LLMapReduce --np=Np \
 --input=input_dir \
 --output=output_dir \
 --mapper=myMapper \
 --reducer=myReducer \
 --redout=output_filename \
 --ndata=NdataPerTask \
 --distribution=block|cyclic \
 --subdir=true|false \
 --ext=myExt \
 --delimeter=myExtDelimiter \
 --exclusive=true|false \
 --keep=true|false \
 --apptype=mimo|siso \
 --options=<scheduler_options_to_add>

Finally, the utility allows adding some additional scheduler
options when generating the job submission scripts with the --
options option. This is handy when some data processing
requires more memory than the standard allowance.

III. USE CASES

In this section, we present a couple of use cases to
demonstrate how to use the utility. First, a MATLAB application
that converts an RGB image into a gray-scale image is used
with a small number of image files. It demonstrates the use of
the Mapper and assigning multiple input files to one
application execution. Next, a Java application that counts the
number of unique words in the given text files illustrates the
use of the Mapper and Reducer.

A. A MATLAB Application

An image conversion function, called imageConvert(), is
shown in Fig. 3. The function takes two arguments, the input
and output image names. It reads in an RGB image file and
converts it into a gray scale image. Then, it saves the gray scale
image into the file of the output name. This satisfies the MIT
Map-Reduce API requirements.

Fig. 3. A MATLAB application that convert an image file from RGB to gray
scale.

However, it still needs a wrapper script to receive the input
and output file names that are provided by the utility. Then, the
wrapper script will execute MATLAB with the corresponding
input and output files when dispatched for execution by the
scheduler. An example wrapper script is shown in Fig. 4.

Fig. 4. An example wrapper script, MatlabCmd.sh, for the imageConvert()
function.

In the above wrapper script, the variables, $1 and $2, are
the two input arguments (input and output file names), which
are provided by the MIT Map-Reduce utility. The script will
execute the imageConvert() function with MATLAB when it is
called by the run script, which is generated by the utility. With
the wrapper script, the image conversion job can be launched
with one line of the MIT Map-Reduce command as shown in
Fig. 5. In this case, each input image file in the input directory
becomes a compute task of an array job automatically
generated by the utility. The resulting gray images are saved in
the output directory as specified.

When the MIT Map Reduce command is called, some
temporary files are created in the .MAPRED.PID directory,

Fig. 5. An example Map Reduce job with the MIT Map-Reduce utility.

where PID is the process identification (PID) number of the
MIT Map-Reduce command. These temporary files are
generated for the specific scheduler being used on a particular
MIT SuperCloud system. The files are one job submission
script and a number of run scripts for all compute tasks, one
per each compute task as shown in Figs. 6 and 7, respectively.
The job submission script shown in Fig. 6 is written for the
open source Grid Engine scheduler, which has a number
options specific to the scheduler. The -t 1-M option specifies
an array job of M tasks, starting from 1 to M with an increment
of one. The number M is determined by the MIT Map-Reduce
utility, which is the number of input image files in the input
directory. Each compute task keeps its own log file, uniquely
named with its job and task numbers. If there is any standard
output, it goes into these log files.

Fig. 6. An example job submission script written for the Grid Engine
scheduler.

Fig. 7. A number of run scripts for all compute tasks generated by the MIT
Map-Reduce utility.

The run script for each compute task is written to feed one
input and one output argument to the wrapper script shown in
Fig. 4. This meets the MIT Map-Reduce Application
Programming Interface (API) requirement. As mentioned
above, the MIT Map-Reduce utility generates M number of
run scripts, one run script per each compute task. As shown in
Fig. 7, the output file name is determined by the name of the
input file with the default extension, “.out”.

However, the example shown in Fig. 5 has an issue if there
are a large number of input files in the given input directory.
As discussed earlier, we have observed that some users tried
to launch a job with more than 100,000 data files. This can
easily break the scheduler limit for how many tasks a job array
can have. For example, the default maximum number of tasks
of an array job is 75,000 for the open source Grid Engine

function imageConvert(inFile,outFile)
I=imread(inFile); J=rgb2gray(I);
dicomwrite(J,outFile);

#!/bin/bash
cat<<EOF|matlab -nodisplay -singleCompThread
inFile='$1'; outFile='$2';
imageConvert(inFile, outFile);
EOF

$ LLMapReduce –-mapper MatlabCmd.sh \
 –-input input –-output output

#!/bin/bash
#$ -terse –cwd –V -j y -N MatlabCmd.sh
#$ -l excl=false -t 1-M
#$ -o .MAPRED.1120/llmap.log-JOB_ID-TASK_ID
./.MAPRED.1120/run_llmap_$SGE_TASK_ID

$ cat .MAPRED.1120/run_llmap_1 (for task 1)
#!/bin/bash
export PATH=${PATH}:.
MatlabCmd.sh input/image_1.jpg \
 output/image_1.jpg.out
. . .

$ cat .MAPRED.1120/run_llmap_M (for task M)
#!/bin/bash
export PATH=${PATH}:.
MatlabCmd.sh input/image_M.jpg \
 output/image_M.jpg.out

scheduler. In order to handle this case, the --np option can be
used to specify how many compute tasks the MIT Map-
Reduce utility should create. For example, if the --np=100
option is used, only 100 compute tasks are created and each
compute task will process a block of the total input data
instead of a single data. The block size is determined by the
MIT Map-Reduce utility.

With the --np option, one can handle a large number of
input data files easily. However, this approach executes the
application multiple times – as many as the number of input
data files. There is a significant overhead cost associated with
the repeated startup of the application, especially program
environments such as MATLAB. One way to eliminate the
overhead cost is to launch the application once and process all
the data assigned to each compute task. This requires
modifying the wrapper script shown in Fig. 4 in addition to
modifying the job submission script and the run scripts shown
in Figs. 6 and 7. This feature can be invoked by an example
command as shown in Fig. 8. In this case, the command
specifies a wrapper script, MatlabCmdMulti.sh, to handle the
multiple lines of input and output file lists, created with the
--apptype=mimo option. Also, with the --ext=gray option, the
extention is renamed as “.gray” instead of the default, “.out”.

Fig. 8. An example Map-Reduce job to eliminate the overhead cost
associated with the multiple execution of an application in the default
processing model.

An example wrapper script, MatlabCmdMulti.sh, for the
--apptype=mimo option is presented in Fig. 9. This script
reads in the input and output file names from the generated
file and provided through the run scripts, which are also
generated by the MIT Map-Reduce utility. This script
launches the application (MATLAB in this case) once and
processes all the data, assigned by a dynamically generated
file.

Fig. 9. A wrapper script, MatlabCmdMulti.sh, to accept multiple lines of
input and oout file names with the --apptype=mimo option.

With the --apptype=mimo option, the MIT Map-Reduce
utility still generates a similar job submission script as shown
in Fig. 6. However, it will generate different run scripts,
named as run_llmap_x, which is shown in Fig. 10. The
number x ranges from 1 to N, where N is the number of tasks

defined by the --np option. In these run scripts, the wrapper
script takes one input file, which is automatically generated by
the MIT Map-Reduce utility. The input files named as
input_x, that are also generated by the MIT Map-Reduce
utility, have the list of input and output file names, one line
per each input data file.

Fig. 10. A number of run scripts for all compute tasks generated by the MIT
Map-Reduce utility.

B. A Java Application

One of the common Map-Reduce examples is a word
frequency count application. In this example, a couple of java
codes, WordFrequencyCmd.java and ReduceWordFrequency
Cmd.java along with a few auxiliary codes, written by Fred
Swartz [13] have been used. The WordFreqCmd.java code
requires three command line inputs: input, output, and
reference files. The reference file contains a list of words to be
ignored for word counting. In order to comply with the MIT
Map-Reduce API requirement, a wrapper script,
WordFreqCmd.sh, has been created as shown in Fig. 11. In
this wrapper script, the variables, $1 and $2, represent the input
and output files, respectively.

Fig. 11. A wrapper script for the WordFreqCmd.java code.

Also another wrapper script, ReduceWordFreqCmd.sh, is
used to execute the ReduceWordFrequencyCmd.java code to
collect the map process results as shown in Fig. 12. The reduce
code scans the map results in the output directory and merges
the results into a single file. The first argument ($1) for the
reduce application is the location of the map process results
and the second argument ($2) is the output name of the reduce
application. Both arguments are provided by the MIT Map-
Reduce utility.

Fig. 12. A wrapper script for the ReduceWordFreqCmd.java code.

With these two wrapper scripts, a Map Reduce job for the
word frequency count can be launched by using the MIT Map-
Reduce utility as shown in Fig. 13. In this example, the
--distribution=cyclic option is used. With this option, the MIT
Map-Reduce utility distributes the input data among the given
number of compute tasks in a cyclic fashion. As mentioned in
the previous MATLAB example, the Map-Reduce job launched

$ LLMapReduce –-mapper MatlabCmdMulti.sh \
 –-input input –-output output \
 --np N --apptype mimo --ext gray

cat<<EOF|matlab -nodisplay -singleCompThread
inFile='$1'; fid=fopen(inFile);
tline=fgets(fid);
while ischar(tline)
 myStr=strsplit(tline);
 indata=deblank(myStr{1});
 outdata=deblank(myStr{2});
 imageConvert(indata, outdata);
 tline=fgets(fid);
end
fclose(fid);
EOF

$ cat .MAPRED.2188/run_llmap_1 (for task 1)
#!/bin/bash
export PATH=${PATH}:.
MatlabCmdMulti.sh ./.MAPRED.2188/input_1
. . .

$ cat .MAPRED.2188/run_llmap_N (for task N)
#!/bin/bash
export PATH=${PATH}:.
MatlabCmdMulti.sh ./.MAPRED.2188/input_N

#!/bin/bash
java WordFrequencyCmd $1 $2 textignore.txt

#!/bin/bash
java ReduceWordFrequencyCmd $1 $2

by the command in Fig. 13 also incurs the computational
overhead associated with the multiple startup of the word count
application. The run script for the reduce task is submitted as a
dependent job to the mapper job, which only uses one task
currently. The java application, ReduceWordFrequencyCmd,
scans the results in the given directory (output) and merges
them into a single file (default name: llmapreduce.out).

Fig. 13. A Map Reduce job for word frequency count using the MIT Map-
Reduce utility.

In order to reduce the overhead cost, as was done in the
MATLAB example, a new Map-Reduce job can be launched
with the --apptype=mimo option as shown in Fig. 14. As
mentioned previously, this option also requires the application
modification so that it can read in multiple lines of input and
output pairs provided by the MIT Map-Reduce utility.

Fig. 14. A Map Reduce job for word frequency count using the MIT Map-
Reduce utility with overhead cost reduction.

The WordFreqCmdMulti.sh script is shown in Fig. 15. It is
similar to the script shown in Fig. 11 but executes a modified
java application called WordFrequencyCmdMulti.

Fig. 15. A modified wrapper script for the WordFreqCmdMulti.java code.

The modified java code, WordFrequencyCmdMulti.java,
has some additional lines, which reads in multiple lines of the
input and output filename pairs. The input to the modified Java
code is automatically generated by the MIT Map-Reduce
utility. The original section of the code processes the given
input file and writes the results to the given output file. As a
result, the java code is invoked only once and processes all the
input data assigned to its compute task.

IV. PERFORMANCE

In this section, we present the performance results of the
--apptype=mimo (MIMO) option. We used the two example
use cases from the previous section in addition to a user
MATLAB application. Furthermore, we present the behavior of
the three different options (DEFAULT, BLOCK, and MIMO)
by varying the number of processes and the number of input
data files.

The toy examples that we described previously are small in
terms of number of input data files. The MATLAB application

converts 6 images over 2 compute tasks. The Java application
counts word frequency of 21 text files over 3 compute tasks.
The Map-Reduce jobs were executed with the BLOCK and
MIMO options, and the total processing time was measured.
The speed up is calculated by the ratio between the time with
the BLOCK option and the time with the MIMO option. The
results are presented in Table 1. Although there are only a
small number of data files assigned to each compute task in
both cases, both examples show modest speed up with the
MIMO option.

TABLE I. SPEED UP WITH TOY EXAMPLES

Example Type
Speed

up

Matlab
Multiple app launches (BLOCK) 1

Single app launch (MIMO) 2.41

Java
Multiple app launches (BLOCK) 1

Single app launch (MIMO) 2.85

A performance study with a user MATLAB application has
been performed and the results are presented in Table 2. The
MATLAB application does image processing, and the image
files were distributed to 256 compute tasks. The number of
input data files was 43,580 in this example. As MATLAB takes
relatively significant time to launch as compared to other
programs, the performance difference was significant. By using
the MIMO option, the Map-Reduce job was able to run almost
12 times faster than that of the BLOCK option when
comparing the job elapsed times between the two runs.

TABLE II. SPEED UP WITH A REAL WORLD APPLICATION

Example Type
Speed

up

Matlab
Multiple app launches (BLOCK) 1

Single app launch (MIMO) 11.57

For the scalability study, we used the three different MIT
Map-Reduce options (DEFAULT, BLOCK, and MIMO) with
a MATLAB code that reads in a list of square matrix sizes and
does multiplications of the given matrices. First, we created
512 input data files. For the scalability study, we run the
simulation with various number of compute processes, ranging
from 1, 2, 4, 8, 16, 32, 64, 128, and 256 for three different
options. The results are presented in Figs. 16 and 17.

Fig. 16 shows the computational overhead associated with
the cost of multiple application start-ups when dealing with
more than one input data file per compute task. While the cases
for the DEFAULT and BLOCK options show that the average
overhead cost per compute process decreases linearly as the
number of compute processes is increased, the overhead cost
for the MIMO option remains relatively flat. As far as the
overhead cost is concerned, both DEFAULT and BLOCK
options show similar overhead, although the BLOCK option
shows slightly smaller cost. The MIMO overhead cost is
significantly smaller than those of the other two options. Thus
the gap in the overhead cost between the MIMO and the other
two options becomes significant especially when each compute

$ LLMapReduce –-np 3
 –-mapper WordFreqCmd.sh \
 --reducer ReduceWordFreqCmd.sh \
 –-input input –-output output \
 --distribution cyclic

$ LLMapReduce –-np 3
 –-mapper WordFreqCmdMulti.sh \
 --reducer ReduceWordFreqCmd.sh \
 –-input input –-output output \
 --apptype mimo

#!/bin/bash
java WordFrequencyCmdMulti $1 $2 \
 textignore.txt

task processes a large number of data files. Fig. 16 clearly
shows the benefits of the MIMO option when dealing with a
large number of input data files per compute task.

Fig. 16. The computational overhead cost when varying the number of
compute processes, which changes the number of the input data files per
compute task.

Fig. 17 shows the speed-up based on job elapsed times for
the three different options with varying number of compute
processes. The speed-up is calculated by the ratio between the
DEFAULT job elapsed time obtained with one compute
process and the other job elapsed times. Throughout all the
numbers of the concurrent processes, the MIMO option
performed the best, consitently outperforming the other two
options. The BLOCK option performed slightly better than the
DEFAULT option but the difference is marginal. As the
number of concurrent processes is increased and because the
overhead cost per compute task is diminishing, the gap
between the speed up of MIMO job and the other two results
gets closer. If each compute task processes only one data, the
results of all three options will converge at the same point.

V. SUMMARY

MIT Map-Reduce utility has been developed and deployed
on the MIT SuperCloud to support scientists and engineers at
MIT Lincoln Laboratory. With the MIT Map-Reduce utility,
users can deploy their MapReduce-style applications quickly
on to the MIT SuperCloud infrastructure. The MIT Map-
Reduce utility can work with any executable application
without the need for any modifications. However, for improved
performance, the MIT Map-Reduce utility provides an option
to consolidate multiple input data files per compute task as a
single stream of input with minimal changes to the target
application. This enables users to cut down the computational
overhead associated with the cost of repeated application start-
ups when dealing with more than one input data file per
compute task. With a small change in a sample MATLAB image
processing application, we have observed approximately 12x
speed up by reducing the overhead associated with the repeated

application start-ups. Currently the MIT Map-Reduce utility
can work with handful of schedulers including SLURM, Grid
Engine and LSF.

Fig. 17. The speed-up of job elapsed times with respect to the default job
elapsed time with one compute process when varying the number of compute
processes, which in turn changes the number of the input data files per
compute task.

REFERENCES

[1] A. Reuther, J. Kepner, W. Arcand, D. Bestor, W. Bergeron, C. Byun, M.

Hubbell, P. Michaleas, J. Mullen, A. Prout, & A. Rosa,
“LLSuperCloud: Sharing HPC Systems for Diverse Rapid Prototyping,”
IEEE HPEC, Sep 10-12, 2013, Waltham, MA.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Proceedings of the 2004 OSDI Conference, December
5, 2004, San Francisco, CA.

[3] Apache Hadoop (http://hadoop.apache.org/).

[4] Apache Hadoop 1.2.1 Documentation: Hadoop Streaming
(http://hadoop.apache.org/docs/r1.2.1/streaming.html).

[5] C. Byun, W. Arcand, D. Bestor, W. Bergeron, M. Hubbell, J. Kepner,
A. McCabe, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A.
Reuther, A. Rosa, C. Yee, “Driving Big Data With Big Compute,” IEEE
HPEC, Sep 10-12, 2012, Waltham, MA.

[6] Apache Hadoop 1.2.1 Documentation: HDFS
(http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html).

[7] Slurm workload Manager (http://slurm.schedmd.com/slurm.html).

[8] Univa Grid Engine Software (http://www.univa.com/products/grid-
engine.php).

[9] Open Grid Scheduler/Grid Engine
(http://gridscheduler.sourceforge.net/).

[10] The Son of Grid Engine project (https://arc.liv.ac.uk/trac/SGE).

[11] IBM Platform LSF (http://www-
03.ibm.com/systems/platformcomputing/products/lsf/).

[12] The OpenSFS and Lustre Community Portal (http://lustre.opensfs.org/).

[13] F. Swartz, a word frequency count example written in Java
(https://code.google.com/p/nealsproject/source/browse/FHXExtraction/s
rc/wordcomparison/?r=38).

