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Abstract

Motor actions in speech production are both rapid and highly dexterous, even though speed

and accuracy are often thought to conflict. Fitts’ law has served as a rigorous formulation

of the fundamental speed-accuracy tradeoff in other domains of human motor action, but

has not been directly examined in the domain of speech production. The present work

seeks evidence for Fitts’ law in speech articulation kinematics by analyzing USC-TIMIT, a

large database of real-time magnetic resonance imaging data of speech production. A

theoretical framework for considering Fitts’ law in the domain of speech production is

elucidated. Methodological challenges in applying Fitts-style analysis are addressed,

including the definition and operational measurement of key variables in real-time MRI

data. Results suggest the presence of clear tradeoffs between speed and accuracy for

certain types of speech production actions, with wide variability across syllable position,

and substantial variability also across subjects. Coda consonant targets immediately

following the syllabic nucleus show the strongest evidence of this tradeoff, with correlations

as high as 0.72 between movement time and difficulty. Results are discussed with respect

to potential limitations of Fitts’ law in the context of speech production, as well as the

theoretical context. Future improvements in application of Fitts’ law are discussed.

Significance Statement: Fundamental tradeoffs between speed and accuracy

represents some of the most robust and widely replicated laws of human motor action,

having been reported in a wide variety of motor domains. These tradeoffs have not,

however, been well-established for speech motor actions, which are some of the most rapid

and dexterous that humans execute. Trading relationships between speed and accuracy can

provide a window into speech control mechanisms in that they hold promise for explaining

specific kinds of speech variability, and also directly relate to prominent functional and

neural models of control of directed movement. The present work develops a theoretical

basis for speed-accuracy tradeoffs in speech kinematics, and establishes the extent of such

tradeoffs in speech through novel analysis.
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Speed-Accuracy Tradeoffs in Human Speech Production

Introduction

The present work constitutes an effort to apply certain influential ideas of Paul Fitts (Fitts,

1954) to the domain of speech production, specifically his formulation of speed-accuracy

tradeoffs in human motor action. Fitts was expressly concerned with quantifying the

capacity of the human motor system to perform motor actions. One important outcome of

that work was a rigorous formulation of perhaps the most robust and widely replicated

laws of human motor action. It was shown that for discrete, targeted actions, the time

taken to complete a movement displays a linear relationship with task difficulty, where

difficulty is a function of movement distance and the tolerable error in reaching the target.

This now well-known relationship has subsequently been referred to as Fitts’ law, and has

been used widely to model speed-accuracy tradeoffs in a variety of human movement

domains. Example application domains include manual pointing and reaching (as in Fitts’

original study), targeted foot movements (Drury, 1975), balance and posture (Duarte &

Freitas, 2005), and computer device interaction (Card et al., 1978). Fitts’ law has also been

applied to ballistic movements, including eye saccades (Ware & Mikaelian, 1987), although

there is meaningful debate over whether movements that do not rely heavily on feedback

are subject to the same law (Carpenter, 1988; Sibert & Jacob, 2000; Drewes, 2013).

It is not well-established whether this pervasive law of human movement is obeyed by

speech motor actions. Despite evidence that speech articulation obeys related tradeoffs

among metrics of speed, distance and curvature (Lofqvist & Gracco, 1997; Perrier & Fuchs,

2008; Kato et al., 2009), Fitts’ law has not been directly examined in the context of speech

production. Motor actions associated with speech production are some of the most rapid

and dexterous that humans execute. The presence of speed-accuracy tradeoffs would imply,

however, that it is not necessarily possible to attain high levels of speed and accuracy at

the same time. Moreover, in speech production, there are potentially multiple domains in

which accuracy may be demanded, ranging from articulatory and acoustic, to prosodic and
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communicative, with all of these demands being possibly simultaneous and overlapping.

Kinematics are the present focus because many human motor actions exhibit a clear

kinematic tradeoff between speed and accuracy. The present paper examines one aspect of

accuracy in speech actions: the kinematics of “reaching” for maximal articulatory targets.

Articulatory speech actions can be conceptualized as discrete motor actions

Speed-accuracy tradeoffs can provide a window into the control mechanisms of directed

movements. While it is possible that biomechanical constraints exist that give rise to such

tradeoffs, there is also good reason to believe that they are the result of properties of

planning and control. It can be shown that Fitts’ law is consistent with traditional models

of feedback-driven motor control (Langolf et al., 1976). Moreover, it is closely related to

models of neural dynamics of movement trajectory formation (Bullock & Grossberg, 1988).

If it is true that control mechanisms bring about speed-accuracy tradeoffs, it implies that

changes in timing can be used to assess demands in accuracy and, conversely, that changes

in accuracy can be partially attributed to speaking rate demand.

The presence of Fitts-type tradeoffs in speech production would help to explain a variety of

observed phenomena. It has been argued that speech motor actions vary considerably in

difficulty, and that differences in difficulty relate to elements of timing. Hardcastle (1976)

asserted that the difficulty (or complexity, to use his terminology) of an articulatory action

should be defined in terms of both the number of articulatory variables that are recruited

over the course of that action, and in terms of the precision required for each of those

variables. The issue of articulatory precision and its kinematic consequences is entirely

compatible with Fitts’ law. Hardcastle goes on to make direct reference to a

speed-accuracy tradeoff in speech production, while arguing that fricatives require more

precision than stop consonants: “One of the possible effects of this greater precision is that

the articulators involved in the production of a fricative might move more slowly than for

the production of a stop." Hardcastle notes that this may help to explain why vowels are

often lengthened in advance of fricatives (i.e., more time is required to execute the more
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difficult fricative articulation) – as originally suggested by MacNeilage (MacNeilage, 1972)

– and lower vowels are longer than higher vowels (Lehiste, 1970) (i.e., more time is required

for the tongue to travel the longer distance). This is also a possible explanation for the

observation that fricatives have longer durations, in general, than stops (Kuwabara, 1996).

Speed-accuracy tradeoffs may also aid in explaining changes in speed and accuracy during

speech acquisition and loss. Speaking rate decline is associated with various kinds of

neurological decline (Yunusova et al., 2008; Williamson et al., 2015). Change in speaking

rates are perhaps a compensatory mechanism in order to maintain accuracy when difficulty

increases. Even in normal speakers, accuracy and intelligibility decline at markedly

increased speaking rates (Kleinow et al., 2001; Krause & Braida, 2002). The notion of

articulatory difficulty may also help to explain why fricatives tend to be acquired later

than stops (Templin, 1957), and why some productions are more quickly impacted when

the condition of the motor system changes, as in the idea that sleepiness and alcohol

intoxication lead to the salient changes in fricatives associated with “slurred speech” (Chin

& Pisoni, 1997; Schuller et al., 2014). Better knowledge of the presence and nature of

speed-accuracy tradeoffs in speech, therefore, would have natural applications toward

identifying those elements of speech production that are early indicators of neurological

change or decline.

The purpose of this paper is three-fold. The primary goal is to analyze speech articulation

using a large database of real-time magnetic resonance (rtMRI) data, in order to assess

whether articulatory kinematics conform to Fitts’ law. A second, associated goal is to

address the methodological challenges inherent in performing Fitts-style analysis on rtMRI

data of speech production. Methodological challenges include segmenting continuous

speech into specific motor tasks, defining key variables of Fitts’ law in the domain of speech

articulation, and deciding how to operationalize these definitions and extract related

measures from complex and high-dimensional rtMRI data. Finally, a third goal is to

present a novel mathematical argument for Fitts’ law in speech production, and make a
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theoretical argument for why one would expect to observe behavior consistent with the

law. Section 2 gives a brief introduction to the concepts and mathematics behind Fitts’

law, and presents an argument for Fitts’ law in speech production. Section 3 describes the

data used in the present study, and the necessary pre-processing for the task being

considered. Section 4 explains the present approach to applying Fitts’ law in the domain of

speech production data. The results of applying the proposed methodology to rtMRI data,

and a discussion of the results in terms of the goals of the paper, are given in Section 5.

Lammert et al. (2016) have previously reported on an initial effort to meet some of the

goals of the present work by analyzing portions of the USC-TIMIT database and forming

necessary elements of the data analysis. This paper constitutes a substantial expansion of

that work, providing a more extensive and deeper analysis on more subjects, as well as a

better developed framework for considering speed-accuracy trade offs in a speech

production context. In particular, the present work provides (1) an analysis of six

additional subjects, altogether comprising the entirety of the real-time data from the

USC-TIMIT database, (2) a more detailed look at speed-accuracy relationships in speech

tasks of different varieties, specifically tasks situated in different parts of the syllable, and

(3) elucidation of a theoretical framework for considering Fitts’ law in the domain of

speech production, and its mathematical connection to prominent models of speech motor

control and neural control of movement.

Background

Fitts’ law can be stated precisely in mathematical terms. It has deep connections with

several prominent frameworks of directed human motor control. This section is intended to

provide an overview of Fitts’ law, including the mathematical statement thereof, as well as

connections to the Task Dynamics control framework Saltzman & Kelso (1987); Saltzman

& Munhall (1989), and the VITE model of neural control of directed human movement

(Bullock & Grossberg, 1988).
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Statement of Fitts’ Law

Given a target associated with a given task, as well as an initial position (also, context), key

parameters of that action can be defined, and incorporated into a simple framework that

represents the difficulty associated with that task. One parameter is the distance to the

target from the initial position. Longer distances are assumed to make a task more

difficult. The other parameter is the width of the target, which represents the tolerable

error in reaching the target. A wider target is assumed to make a task less difficult,

perhaps corresponding to more slack being permitted in declaring an action successful.

The ratio of the distance to the target, D, and its width, W, are then associated with the

index of difficulty (ID) in the following way:

ID = log2

(2D
W

)
(1)

The ratio D/W constitutes one definition of the precision of a task. Taking the base-2

logarithm of this precision, then, gives the ID units that can be interpreted as bits, inspired

by Claude Shannon’s information theory (Shannon & Weaver, 1949). The ID, having

encapsulated a notion of precision of action, should then be related to the movement time

(MT) associated with a given task, under the hypothesis that a tradeoff exists between

speed and accuracy of that task. This relationship, Fitts’ law, is commonly formulated as a

simple, linear one:

MT = a · ID + b, (2)

where a and b are constants, the values of which depend on the task and characteristics of

control. Fitts’ law has been derived in various ways since the original formulation

(Crossman & Goodeve, 1983; Bullock & Grossberg, 1988; Beamish et al., 2006).

Note that, whereas the distance associated with a task is typically fairly straightforward to

define given an initial position and a target (e.g., the Euclidean distance), the width

parameter has been defined in many different ways. Fitts’ original experiments included

targets with a literal, physical width of varying size, but many experimental setups have
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only a point target (as assumed in many human actions). In the domain of speech

production, however, one is faced with an added complication stemming from a lack of

consensus regarding how an articulatory target should be defined, or indeed whether an

articulatory target (as opposed to acoustic) exists at all. In the present work, it is assumed

that articulatory targets do exist, following the specific definition explained below.

It is worth noting certain subtleties with regard to the interpretation of Fitts’ law as an

expression of a speed-accuracy trade off. Much of the literature related to Fitts’ law

interprets the law as such a trade off, either implicitly or explicitly. For example, Fitts &

Radford (1966) discuss the variables MT and W as representing speed and the reciprocal of

accuracy. The law, under this interpretation of the variables, is therefore an expression of a

speed-accuracy trade off, with that additional caveat that accuracy must always be

considered relative to D. This interpretation of Fitts’ law assumes that “speed” is the

reciprocal of MT – essentially an expression of the speed of completion of the task – rather

than articulator speed, as in the classical-mechanical sense of |D/MT |. A classical

definition of the speed-accuracy trade off might be W1 = cD/MT , stating that W1 is

proportional to articulatory velocity, given some coefficient c. This classical definition is

not exactly the same as Fitts’ law, but the two can be related be rewriting Equation 2 2 as:

MT = log2(cD)− log2(W2), implying that W2 = cD/2MT (ignoring coefficients, for

simplicity, and substituting c for the value 2). The quantity cD/2MT is still not the

classical definition of speed, but it similarly decreases monotonically with MT , and the

quantities W1 and W2 from the Fitts’ and classical definitions can be related by a

multiplicative factor, W1 = ηW2, where η = 2MT/MT .

Theoretical Framework

Fitts’ law has substantial mathematical connections with the dynamical systems view of

coordination and control of human movement (e.g., Turvey (1990); Davids et al. (2003)).

This section attempts to elucidate those connections, and to provide a novel argument for
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expecting behavior consistent with Fitts’ law in speech production on the basis of

prominent theories of speech motor control and neural dynamics. Within the dynamical

systems perspective, one representative body of work that has had an impact on modeling

and explaining speech articulation is that of Task Dynamics Saltzman & Kelso (1987);

Saltzman & Munhall (1989). Task Dynamics constitutes a control system that allows for

the description and achievement of directed actions in a relatively high-level task space, as

opposed to the relatively low-level articulator space, defined by variables of mobility such

as muscle activations. An example of a task space for a manual reaching task would be

three-dimensional Cartesian space, as opposed to the articulatory space of joint angles at

the shoulder, elbow and wrist. Task space for a speech production action could be the

space defined by the first three formant frequencies, or the space defined by vocal tract

constriction degree and location, as in Articulatory Phonology (Browman & Goldstein,

1992). These high-level spaces are the natural spaces in which to define the goals of directed

action, and Task Dynamics defines a rigorous framework in which motor commands can be

generated in articulator space toward the completion of movements in task space.

In Task Dynamics, the targets of directed movement are assumed to be points in task

space. Those targets are achieved by point-attractor dynamics, governed by 2nd-order

equations of motion consistent with a critically damped harmonic oscillator. the dynamics

of which are well understood from classical mechanics. For the sake of simplicity, consider

a one-dimensional task space. The equations can be written as follows:

Ẍ = −cẊ
m
− k(X −X0)

m
, (3)

where X is the displacement of the controlled variable and X0 is the target. The forward

dynamics take the form of a second-order dynamical system, conforming to Equation 3,

that transforms the error signal, ∆X, into the second derivative of the articulator-space

variable u. An overview of the control flow in Task Dynamics is shown in Figure 1.

Equation 3 is contained within the box labelled “Forward Dynamics”, which computes the

acceleration of u from ∆X = X0 −X. Note that the low-level articulator variables, u, and
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the relevant kinematic transformations between task and articulator spaces are not

discussed in the present context. This is because dynamics in task space only are sufficient

to account for Fitts’ law.

Fitts’ law can be seen as a direct consequence of such dynamics. A mathematical

connection can be made through an examination of the step response of the system, which

corresponds to the sudden appearance of a new target in task space. The relevant quantity

then becomes the settling time of the damped harmonic oscillator, that is, the time

required for the system to converge within a certain percentage of the final target value,

beginning at rest. It is well known from classical mechanics that, in the case of critical

damping, the rate of convergence in the step response to a change in target follows a

decaying exponential. That is, the displacement of the system at time t is Xt = X0e
−ω0ζt,

in a system where the natural frequency is ω0 =
√
k/m, and the damping ratio is

ζ = c/2mω0. In the case of critical damping, ζ = 1, and Xt = X0e
t
√
k/m.

Several of these quantities can be related directly to those in the formulation of Fitts’ law.

The value t can be considered as MT , the time at which the system is considered to have

settled, or completed its action. Given that the movement takes time t to complete, and Xt

is the residual displacement of the controlled variable after the action has completed, Xt

can be equated with the error tolerance W . Furthermore, X0 is equivalent to the

movement distance, D, if the movement is considered to begin at X = 0. Following from

these identities, we can express the step response equation above with a change of

variables, as W = De−
√
k/mMT . This can be easily rewritten as:

MT = 1√
k
m

· ln
(
D

W

)
, (4)

which is already similar to Fitts’ law in form. We can find the conditions under which they

are equivalent by setting this new formula for MT equal to the one taken from Fitts’ law.

Beginning – for the sake of clarity – with a change of logarithm base from the law expressed
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in Equation 2 (corresponding to a switch of units in ID from bits to nats), we have:

a · ln
(2D
W

)
+ b = 1√

k
m

ln
(
D

W

)
(5)

It is easy to show that this equation holds for certain values of a and b. For instance,

assuming that a = 1√
k/m

(the reciprocal of the natural frequency of oscillation), one can

solve to find that b = ln(2)√
k/m

. Therefore, Fitts’ law conforms to the predicted kinematic

behavior of a damped harmonic oscillator, which is consistent with the behavior of a Task

Dynamic control system when acting to achieve a specific movement target.

In addition to the kinematic considerations of the Task Dynamics model, Fitts’ law also

has substantial mathematical connections with models of the neural dynamics underlying

the dynamical systems view of human motor control. An influential neural-inspired

network model for explaining kinematic trajectory formation of directed movement is the

VITE model (Bullock & Grossberg, 1988). This model’s predictions are highly consistent

with those of the Task Dynamics model, owing to the fact that VITE is a 2nd-order

dynamical system much like Task Dynamics (as pointed out by, e.g., Beamish et al.

(2006)). VITE comprises a network of interacting hypothesized neural populations which

generate a movement command, given some target position. The neural populations are

configured in order to code distinct quantities that are needed in the generation of the

motor command. Among the interacting neural populations, there is (a) a population

representing the target position command (TPC), (b) a population representing the

present position command (PPC), and (c) a population referred to as the difference vector

(DV) population, which represents the difference between the PPC and TPC.

The specific structure of VITE’s interacting network is shown in Figure 2. Note the many

similarities of this structure to that of Task Dynamics in Figure 1. TPC, as a

representation of the target position, produces a target position X0. The DV population

compares the target to the system’s current position, and computes the task-space

dynamics of the network. The PPC population, meanwhile, integrates the DV population

activation into position information, in analogy to the physical plant in the Task Dynamics
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control flow. The network dynamics have the following form:

V̇ = α(X0 −X − V ), (6)

and

Ẋ = GV (7)

where the parameter α has been termed the “convergence coefficient” and G is the "go"

signal, which initiates and sustains movement. These equations also compare easily to the

equations of motion for Task Dynamics given above in Equation 3. There are important

differences, however 2. First, all computations are done at the level of tasks, with no

mention of the articulator space. Therefore, there is no need for kinematic transformations

between task space and articulator space in VITE. Second, the inclusion of G has no

equivalent in Task Dynamics, where it is assumed (implicitly) that movement toward a

target is always active as long as the target exists.

As with Task Dynamics, Fitts’ law can be seen as a direct consequence of these

neural-inspired dynamics. This can be shown by demonstrating the mathematical

relationship between the equations of motion in Equation 6 and Equation 3. If G = 1, then

V = Ẋ, and subsequently that 6 and 7 collapse into the single equation:

Ẍ = α(X0 −X − Ẋ), (8)

which is the same as Equation 3, if α = −k/m = −c/m. Therefore, VITE is consistent

with Task Dynamics control, and Fitts’ law can be seen as related to both those models in

a general sense, and as a direct consequence of them under the specified conditions and

parameters. Note, incidentally, that because the damping coefficient in VITE is fixed at

c = −αm, in order for the system to be critically damped (i.e., c = 2
√
mk), as in Task

Dynamics, that m = k/4. Overdamping will occur with m > k/4, and underdamping with

m < k/4.
2Also, this presentation glosses over a nonlinearity in the original VITE formulation, where V is not

allowed to go negative. This detail was not seen as important in the present context.
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Practical Framework

To apply Fitts-style analysis to speech production data, it is necessary to operationally

define the targets of articulation in space and time. To that end, it is assumed that a single

articulatory target is associated with each phoneme. Targets might not be reached during

continuous speech for a variety of reasons, including undershoot, misarticulation, or

tolerance of the controller to some deviation from the target. However, it is assumed that

the action associated with a given phone comes closest to achieving its target at the

temporal center of the associated phone interval. Thus, each targeted task in continuous

speech can be conceptualized as movement from one phoneme target to another,

constituting a specific diphone. Tasks conceptualized this way can also be referred to by

diphone, which represents a context-target task pair. It is further assumed that the target

of a given phoneme is a vector in high-dimensional articulatory space. The location of that

vector is estimated as the mean of all tokens with a given phoneme label. The initial

position for a given task is assumed to be the target immediately preceding the current

one. All these notions will be defined formally below and in Figure 3.

It has been well-established that the temporal relationship between speech gestures varies

as a function of their positions within the syllable (Browman & Goldstein, 1995; Krakow,

1999; Byrd et al., 2009). Therefore, it was hypothesized that adherence to Fitts’ law might

vary depending on the task type, where type was determined by syllable position. To

facilitate analysis of speech tasks conditioned on syllable position, a syllabification was

performed five categories of interest were defined with respect to syllable structure (see

Figure 6):

• Category 1: Onset-Nucleus Task (initial position: final onset consonant; target:

syllable nucleus)

• Category 2: Nucleus-Coda Task (initial position: syllable nucleus; target: first coda

consonant)
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• Category 3: Onset-Onset Task (initial position: onset consonant; target: succeeding

onset consonant)

• Category 4: Coda-Coda Task (initial position: coda consonant; target: succeeding

coda consonant)

• Category 5: Coda-Onset Task (initial position: final coda consonant; target: first

onset consonant of succeeding syllable)

Note that the tasks in category 5 are across syllables, whereas the tasks in categories 1–4

are all within a single syllable.

Method

Data, Pre-Processing & Feature Extraction

Data used in the present study are from the USC-TIMIT database (Narayanan et al.,

2014). USC-TIMIT is a publicly-available collection of speech production data from

speakers of American English. Speech articulation data were gathered for the database

using two different modalities, rtMRI and electromagnetic articulography (EMA). The

rtMRI data were used in the present analysis. Resolution of the rtMRI data is 68 by 68

pixels, with pixels 2.9 by 2.9 mm in size, at a frame rate of 23.18 frames/s. Audio was

simultaneously recorded at a sampling frequency of 20 kHz, and later subjected to noise

cancellation (Bresch et al., 2006).

The rtMRI data from all five male (M) and five female (F) subjects from the database (i.e.,

M1-5 and F1-5) were used in the present analysis. Forced phoneme alignment was carried

out using SAIL-Align (Katsamanis et al., 2011). Subjects were analyzed separately, due to

concerns about the proper method of combining articulatory features across subjects.

Subjects read aloud the 460 sentences constituting the MOCHA-TIMIT corpus (Wrench,

1999). For three of the speakers, software-related difficulties resulted in MRI frames going

unrecorded in the data, which makes ideal audio-video synchronization impossible.
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Sentences in which this problem arose were discarded. In the end, 346 of the 4600 total

sentences were discarded, including 175 from F4 (sentences 286 to 460), 166 from M5

(sentences 295-460) and only five sentences from M3 (sentences 331-335). All 460 sentences

were represented in the data for the other seven subjects.

The analysis presented here began by treating the gray-scale intensity values of each pixel

in the image plane as a candidate articulatory feature (Lammert et al., 2010; Lammert,

Ramanarayanan, et al., 2013). These candidate features were pre-processed and

recombined prior to analysis, in order to produce new features that are fewer in number

and more specific to speech articulation (details below). Such a pixel-wise approach may

seem unintuitive, but it provides the opportunity to analyze data about the entire

midsagittal plane, while making minimal assumptions about what information might be

important for describing articulation. Pixel-wise analysis is also relatively robust compared

to a more traditional edge-detection and boundaries-extraction approach when applied to

low-contrast, low spatial-resolution rtMR images (Lammert et al., 2014).

The rtMRI image sequences were pre-processed to facilitate further analysis, in particular

to (a) isolate frames of interest, and (b) reduce the high dimensionality of the data to a

manageable number. Analysis began with an image sequence, X, of the form

X = [I1I2I3 . . . In]T , comprising all n image frames Im in the corpus from a single subject,

where the images Im are vectorized in column format. That is, pixels located at (i, j) in

rectangular r by c image format are now located at c(i− 1) + j in the vector I, and I is of

length rc. Prior to further analysis, images underwent an intensity correction procedure to

compensate for the reduction in coil sensitivity moving posteriorly, from the lips toward the

pharynx (i.e., at increasing spatial distance from the coil). A retrospective correction

scheme was implemented, incorporating a nonparametric, monotonically increasing

estimate of coil sensitivity, which was derived from all pixel values in the video sequence

(Lammert, Ramanarayanan, et al., 2013). Decreasing coil sensitivity results in lower mean

and smaller dynamic range of intensity values for pixels at large distances from the coil.
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Intensity correction must be done to ensure that pixel intensity values can be compared

and interpreted across all spatial locations. Image intensity correction results in a matrix

Xc of corrected image vectors.

Pixels that are unrelated to vocal tract action were eliminated by a simple threshold

procedure. Pixels representing the air around the head, or representing static spinal or

brain tissue, have intensities that change very little over the image sequence. These pixels

can be identified by calculating the variance along columns of Xc, and selecting only

columns with highest variance. Such pixels represent approximately 75% of all pixels in the

images analyzed in the present work, as identified by visual inspection of the images.

Therefore, the matrix Xc
sub was formed, which contained only those columns of Xc with

variance above the 74th percentile across all columns.

The matrix Xc
sub is therefore n by rc/4 in size, but only a subset of the n data vectors

represent vocal tract configurations temporally close to an articulatory target. Using the

above operational definition of articulatory targets, the row vectors in Xc
sub corresponding

to the temporal centers of phones are identified and extracted. From the forced alignment,

each phone is assigned a starting boundary Am, and an ending boundary Bm, both in

seconds. From these, the temporal center of a phone can be calculated as

Γm = (Am +Bm)/2, and the corresponding image frame is argm min(Γm − τm)2 for

timestamps τ1, . . . , τn associated with each original image frame. In this way, a new matrix

Y is formed, which is P by rc/4 in size, where P is the total number of phones represented

in the image sequence, P ≈ 15121.

Principal Component Analysis (PCA) was employed to further reduce the data

dimensionality. Z = Y CL was computed, where C is the matrix whose columns are

eigenvectors of Y Y T , and CL is a matrix containing only L columns that represent

eigenvectors with the highest eigenvalues (i.e., the largest principal components). The

magnitude of L was chosen so as to retain ≥ 85% of the variance for each subject being

analyzed. Across the subjects analyzed in the present study, L was approximately equal to
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50. The resulting P by L matrix Z, which contains a reduced-dimension representation of

each vocal tract configuration nearest to an articulatory target, was used for all subsequent

analyses. Images illustrating the key stages in this image pre-processing pipeline are shown

in Figure 4. It is worth noting that PCA performed with the correlation matrix, rather

than the covariance matrix, might provide an alternative method of dimensionality

reduction that would also obviate the need for image intensity correction.

Syllabification was performed based on the forced alignment results, beginning with the

word-level transcription from the adaptive forced alignment procedure. Words were

translated into phoneme sequences finding their entries in the CMU Pronouncing

Dictionary, which are already syllabified. Syllables were subsequently divided into onset,

nucleus and coda by identifying the vowel as the nucleus, and considering all phones

preceding the nucleus as part of the onset, and all phones following the nucleus as part of

the coda. This syllabification allowed for (a) partitioning tasks into the meaningful

categories of interest with respect to syllable structure, and (b) calculation of syllable

position-specific movement times.

Distance & Width Calculations

For the purposes of analysis, a phoneme vector Π is defined, which is of length P . The pth

element of Π, Πp, is a numerical index from 1 to 35, uniquely specifying an American

English phoneme, and representing the phoneme associated with row p of Z. The vector

Sg, which is of length P , is associated with a given phoneme index g from 1 to 35. Spg = 1

whenever Πp = g, and 0 elsewhere. The mean configuration vector associated with the

phoneme indexed by g is

F g = 1Tdiag(Sg)Z
‖ Sg ‖1

(9)

where 1 is a vector of ones. The vector F g represents our operationally-defined articulatory

target associated with the phoneme indexed by g.

For every pair of phoneme indices g and h, it is now possible to state precisely the spatial



SPEED-ACCURACY TRADEOFFS IN HUMAN SPEECH PRODUCTION 19

distance between the associated phonemes. Using the Euclidean distance in the

L-dimensional articulatory space, the distance Dgh =‖ Fg − Fh ‖. A graphical

representation of this can be seen in Figure 5.

To calculate the time to reach phoneme h from g (indices), assume that Sgh is a vector that

is 1 whenever both Πp = h and Πp−1 = g. Similarly, Shg is 1 whenever both Πp = g and

Πp+1 = h. The mean time, then, between the phonemes indexed by g and h across all

instances is

Tgh = 1Tdiag(Sgh)Γ− 1Tdiag(Shg)Γ
‖ Sg ‖1

(10)

As mentioned in the discussion of syllabification above, it was hypothesized that adherence

to Fitts’ law might vary depending on syllable position, because the temporal relationships

between speech gestures are known to vary as a function of syllable position. Therefore,

Tgh was, in fact, calculated also for each of the five syllable position-based categories listed

above. When the linear relationship between ID and T was assessed on the

category-by-category basis, it was this category-specific value for Tgh that was used.

There are many possible definitions for the width of the target in a speech production task.

There are no hard physical limits around the target, as in Fitts’ original experiments, which

necessitates exploring other definitions. Width could be defined in terms of variability

about the target, as in later measures of “effective" width (Welford, 1968; Fitts & Peterson,

1964). Other definitions have been based on the amount of under/overshoot associated

with a particular movement (Bullock & Grossberg, 1988). However, the nature of speech

being such that phonetic contrasts can be made with very small changes in vocal tract

configuration, allows for the possibility of another definition based on the density of targets

in articulatory space. Consider the distance values Dfh for a given h and all f = 1, . . . , 35.

These distance values with respect to h can be sorted and ranked, and – given a parameter

k – we can select the distance between Fh and the kth closest vector Ffk
. That distance can

be used as the basis for a high-dimensional k-nearest-neighbor density calculation. The
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probability density of configuration vectors in the neighborhood of Fh will be:

Qh = k

35 πL/2

Γ( L
2 +1)D

L
fkh

(11)

where Γ(x) is the gamma function and 35 is the number of phonemes under consideration

(24 consonants and 11 vowels, with no diphthongs or rhoticized vowels). The width can be

calculated from this probability density as Wg = − log2(Qg). Note that the final width

value does not depend on the context.

Fitts’ law can be calculated directly using Dgh, Tgh and Wh for any phoneme indexed by h,

and presented in the context of another phoneme g. Applying Equation 1, it is possible to

calculate IDgh = log2(2Dgh/Wh). Furthermore, by Equation 2, we expect that

Tgh = a · IDgh + b, for some coefficients a and b. Images of initial positions and targets for

one example each of high- and low-ID tasks are shown in Figure 7.

Results and Discussion

The strength of the relationship between MT and ID was assessed using linear correlation

(Pearson’s r), in keeping with the linear form of Fitts’ law. The correlation coefficients are

shown in Table 1, divided by syllable position-specific category and by subject. Performing

this analysis separately for each subject, and once for each task category, means that a

total of 5× 10 = 50 individual correlations were calculated, with 50 corresponding tests for

statistical significance. It therefore became necessary to consider the significance of these

results in light of some kind of multiple comparisons adjustment. It is not clear whether or

how much these individual correlations are dependent, so statistical significance of the

correlation coefficients is shown at three distinct threshold values: α = 0.05 (Fisher’s

traditional value), α = 0.01 (an intermediate value) and α = 0.001, which is the

conservative, Bonferroni-adjusted threshold value.

Subject M2 had the generally highest correlation values of all subjects, indicating that the

Fitts-style relationships were strongest and clearest for that subject. Figure 8 shows MT

versus ID for subject M2, showing the strength and nature of those relationships for each of
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the syllable position-specific task categories. The correlation values corresponding to each

category, and the associated p-values, are shown above each plot.

Articulatory Difficulty

Results suggest that the difficulty associated with targeted articulatory kinematics is

highly variable in speech production. ID ranges from approximately 0.25 to 1.75 bits for all

subjects. A few general patterns in the distribution of ID can be noted. Difficulty was

assessed by looking at the overall average ID associated with a given target position. ID

values for each subject were normalized between 0 and 1, in advance of taking the mean ID

for each task across subjects. The mean ID was then calculated for each task with a

consonant target, given a vowel initial position. These tasks, listed from most difficult to

least difficult, were: Z, Ù, T, h, S, p, w, Ã, D, b, g, k, j, f, N, v, z, s, m, l, d, r, n, t. The mean

ID was also calculated for each task with a vowel target and a consonant initial position.

These tasks, listed from most difficult to least difficult: U, o, A, O, e, æ, u, E, i, I, @. Figure 4

shows example low- and high-ID tasks for subject M2.

Consonant tasks involving labial articulation, whether primary (/p/, /w/, /b/, or

secondary /S/), tend to have a higher difficulty. Nasals and liquids all ranked as lower

difficulty. Fricatives /S/, /T/, /D/ and affricates show higher ID, a fact that is consistent

with Hardcastle’s assertion that fricatives – and perhaps by extension, affricates – are the

sounds of speech requiring the greatest accuracy. This does not necessarily include all

fricatives, however, as /z/ and /s/ were ranked relatively lower. The difficulty associated

with producing fricative and affricates is particularly evident when examining in the

context of low, back vowels, where the distance from the initial position to the target

position is lengthened. One can also observe that these articulatory tasks require more

time to complete than other tasks. Also consistent with Hardcastle is the observation that

stop consonants – particularly alveolar – require little accuracy, and are therefore not

difficult. Since distance is a factor under consideration, one can see that this effect is again
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emphasized when the initial position is a high, front lax vowel. It is important to

remember that sibilants may have complex aerodynamic requirements that will not

necessarily show up in the purely kinematic analysis in the present work.

Vowel targets that were low and back had a higher level of difficulty, as compared to the

relatively lower difficulty high and front vowels. Vowels that were not directly along this

primary low-back/high-front axis, including the high-back vowel /u/ and the low-front

vowel /æ/ appeared, together toward the middle of the vowel difficulty ranking. Schwa was

ranked as the least difficult vowel to produce. This ranking is consistent with the

importance of D in computing ID. With a schwa target, the speech articulators should

have, on average, a shorter distance to travel from other initial positions. It has been

shown that, although it has a distinct phonetic identity, schwa is perceptually and

articulatory similar to “articulatory setting”, which is the neutral posture from which

speech actions are deployed and to which they tend to return (Ramanarayanan et al.,

2013). This neutral posture is hypothesized to be kinematically advantageous, just as there

is evidence that it is mechanically advantageous (Ramanarayanan et al., 2014). Conversely,

low-back vowels should require the speech articulators to travel longer distances from a

variety of initial positions, in order to reach kinematic targets in the region of the pharynx.

One other issue of note concerns that fact that the distance and width parameters do not

seem to contribute equally to the index of difficulty, given the present definitions, and

current data. Although both parameters influence the final value of ID, difficulty seems to

be determined to a much larger degree by distance than by width. For instance, for subject

M2, the correlation between D and ID across all diphones is substantially greater

(Spearman’s ρ = 0.987, n = 1190, p� 0) than the correlation between W and ID

(Spearman’s ρ = 0.222, n = 1190, p� 0). Similar trends are seen across all subjects. Note

that this correlation between W and ID is in the opposite direction from expected, based

on the equation for ID. This may be due to the fact that, for these data, D and W seem to

be positively correlated (e.g., for subject M2: Spearman’s ρ = 0.3565, n = 1190, p� 0).
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Speed-Accuracy Tradeoff

Results suggest that targeted speech actions exhibit a clear tradeoff between speed and

accuracy in certain task categories, and with substantial interspeaker variability.

Significant correlations can be seen in the data that correspond to the relationship between

MT and ID predicted by Fitts’ law. The strength of that relationship varies across speaker

and task type. The strongest and most highly significant of such relationships are seen for

Nucleus-Coda tasks across all subjects. Onset-Nucleus and Coda-Onset tasks also showed

generally high correlations that were significant for at least three subjects (M2, F1 and F2,

but also M4 for Coda-Onset tasks). Note that many fewer Onset-Onset and Coda-Coda

tasks exist, as compared to other task types. For speakers that display significant

correlations between ID and MT , the relationships appear linear (see, e.g., Figure 8), but

with abundant added noise around the trend line. There is also a notable deviation from

linear at small ID values, where MT appears to hit a minimum value around 50ms. This

floor effect may reflect physiological constraints on the production apparatus.

Despite several significant correlation values between MT and ID, the correlations observed

in the present analysis are relatively modest compared to those observed in other domains

of human movement. Correlation coefficients above 0.9 are commonly reported in the

literature (MacKenzie, 1992), whereas the best correlation value observed in the present

analysis was 0.72 (Subject M2, Nucleus-Coda task). The correlation values are also highly

dependent on the task type and the subject under consideration. One question raised by

such results is why this seemingly fundamental tradeoff, that has been well-established in

other motor domains, appears to be somewhat weakly and variously obeyed in the domain

of speech production. There are several potential explanations, which are considered below.

The class of movements considered ballistic (i.e., occurring without feedback control while

movement is underway) provide an example explanation to consider. It has been argued

that ballistic movements, including eye saccades, do not obey Fitts’ law because a lack of

feedback means that movement time does not depend on the required accuracy of the task,
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but only on the movement amplitude (Carpenter, 1988; Drewes, 2013). It is possible that

certain speech production actions implement ballistic control. However, even despite their

rapidity, speech motor tasks are typically not modeled as being ballistic in nature. Major

models of speech motor control involve feedback at fine temporal scales. It has already

been discussed that the Task Dynamics model relies on feedback, and leads naturally to

precisely the kind of speed-accuracy trade offs described by Fitts law (Saltzman &

Munhall, 1989). Other prominent models of speech motor control, such as the DIVA model

(Guenther et al., 1998) and State Feedback Control (Houde & Nagarajan, 2011), also rely

on feedback, although the connection to Fitts’ law has not been explicitly made. Therefore,

rather than concluding that each of these models is inaccurate, and that ballistic control of

speech movements provides a better explanation of the present data, a more likely

explanation for the weak and variable observed relationships is that the definition of speech

tasks used in the present work needs to be revised in one of several ways.

One way to reconsider the presently-used definition of speech tasks is to make them

multimodal, for instance by incorporating prosodic constraints. As mentioned above,

speech has multiple levels in which accuracy may be demanded. Speech motor actions have

communicative and prosodic goals, in addition to kinematic requirements. Temporal

constraints exist as part of those goals, both at the level of phonetic segments (e.g.,

lengthening as a phonemic contrast) and suprasegmentally (e.g. accenting). Indeed, the

objective function for speech motor control might be formulated as an

information-theoretic measure exemplifying both the achievement of the kinematic goal

and any temporal information encoding, including active and incidental temporal aspects.

A modification of speech tasks (and, perhaps, Fitt’s law itself) is needed to account for

these various levels of task requirements, and associated timing requirements.

Another important change to the presently-used definition of speech tasks may be to

account for non-sequential, overlapping articulatory targets, as opposed to the purely

sequential tasks considered in this work. In fact, the results already indicate the need for
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such an enhancement. It has been well established that speech articulatory gestures at

certain positions in the syllable are highly overlapping, whereas others are more sequential

(Browman & Goldstein, 1995; Krakow, 1999; Byrd et al., 2009). Specifically, onset

consonants would be expected to overlap with each other extensively, and would overlap

with the succeeding nucleus, as well. The nucleus, in contrast, should overlap very little

with the succeeding consonant in the coda. The present results clearly show that the

correlations are strongest for the Nucleus-Coda tasks across all subjects, which is exactly

what would be predicted by the sequential, non-overlapping nature of the gestures involved

at that position in the syllable. The Onset-Onset tasks, for which the assumption of

sequential targets may be inappropriate, show the poorest overall correlations. Moreover,

speech tasks should potentially also allow for contextually modified targets. Enhancing

speech tasks in this way would also allow for a natural way to capture co-articulation in

targets, as opposed to the fixed targets considered in this work.

There are substantial interspeaker differences in the strength of correlations between ID

and MT. These differences are evident in the Nucleus-Coda tasks, where most subjects

displayed significant correlations, but to different degrees. Interspeaker differences are also

evident for other tasks, such as the Onset-Nucleus tasks, where some subjects showed

marginal correlations (e.g., M3 and F5) and others (e.g., M2 and F2) showed highly

significant correlations. Important questions remain regarding an explanation for this

prevalent interspeaker variability. These differences may reflect interspeaker differences in

control strategies, that in turn are a function of speaking rate, age, social community,

morphological (i.e., physical) variation, and a variety of other factors. Morphological

variation, being by definition a fundamental influence on kinematics, holds potential as an

explanation for interspeaker differences even in a seemingly fundamental law of motor

control and behavior like Fitts’ law. It is known that speakers vary widely in terms of a

number of morphological characteristics, including vocal tract length (Vorperian et al.,

2005, 2009) and relative proportions (Fitch & Giedd, 1999; Vorperian & Kent, 2007), as
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well as hard palate and posterior pharyngeal wall shape (Lammert, Proctor, & Narayanan,

2013b), and many other parameters. There is growing evidence that differences in

morphology of the speech apparatus all influence the production of specific speech sounds

at the level of articulatory goals and kinematics (Dart, 1991; Brunner et al., 2009; Fuchs et

al., 2008; Lammert, Proctor, & Narayanan, 2013a). A particularly intuitive example comes

from indications that individuals vary in terms of their tongue size relative to the size of

the entire speech apparatus (Lammert, Hagedorn, et al., 2013). It seems reasonable to

expect that a smaller relative tongue size will result in longer articulatory distances

travelled within the oral and pharyngeal cavities, on average, resulting in a wide range of

values for ID. This wider range of ID might, in turn, cause the relationship between ID and

MT to stand out against any noise in the data. The potential effects of morphology also

points at specific hypotheses. For instance, it has already been discussed in the present

work how low-back vowels appear to be the most difficult vowels to produce, and it was

suggested that this may be the result of longer articulatory distances associated with

producing them. It has been well-documented that males have a proportionally longer

pharynx than females (Vorperian et al., 2011), which would amplify the distances required

for the tongue to travel, causing further increases in ID associated with low-back vowels,

and likely a wider range of ID overall. The potential connection between vocal tract

morphology and Fitts’ law for speech production merits further attention.

It should be noted that there are many sources of variability in the present analysis that

may have had an impact on the correlation values, and may limit the generality of these

results. One limitation relates to the accuracy of finding a video frame near the temporal

center of a given phone, which is limited by the temporal resolution of rtMRI and the

quality of forced phoneme alignment. Recent advances in rtMRI protocols may alleviate

this limitation (Lingala, Sutton, et al., 2016; Lingala, Zhu, et al., 2016). If speaking rate is

a factor, then the correlation values from Table 1 should, in turn, be correlated with

speaking rate. Speaking rate was computed for all subjects by looking at the mean time
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between adjacent syllable nuclei to get an estimate of syllable rate. Pearson’s correlations

were found between these values and the correlation values for Nucleus–Coda Consonant (r

= -0.64, p = 0.047) and Onset Consonant–Nucleus (r = -0.63, p = 0.049). The fact that

speaking rate is a factor indicates that the current data may have frame rates that are at

the boundary of usefulness for the analysis done in this study. Higher frame rates would be

preferable in future work. Additional variability may stem from non-Gaussian noise on

pixel intensity values that rtMRI images often contain. Added variability in the data and

analysis would have the clearest impact on the Onset-Onset and Coda-Coda task results,

due to their much smaller number. Data are also limited to a midsagittal view of the

speech articulators, meaning not all kinematic aspects are captured in the data.

Conclusion

This paper has presented an analysis of speech articulation from a large database of

real-time magnetic resonance (rtMRI) data, in order to assess whether articulatory

kinematics conform to Fitts’ law. It appears that certain aspects of speech production do

conform to Fitts’ law, with the strength of that relationship varies across speaker and

context-target type. The strongest such relationships are seen for VC context-target tasks,

with CV tasks showing nearly as strong correlations. Also presented was a novel

methodology for addressing the challenges inherent in performing Fitts-style analysis on

rtMRI data of speech production, from defining the key quantities to extracting them from

rtMRI data. Finally, a novel mathematical argument was presented for the expectation of

Fitts’ law in speech production, and why one expects to observe behavior consistent with

the law on the basis of Task Dynamics and the VITE neural model of directed movement.

Future work should focus on addressing the remaining methodological challenges. Among

these challenges are higher frame rate data, and exploring additional definitions of the key

relevant quantities.
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Onset - Nucleus Nucleus - Coda Onset - Onset Coda - Coda Coda - Onset

M1 r = -0.06 r = 0.21* r = -0.01 r = -0.08 r = 0.05

p=0.48 (n=141) p<0.05 (n=92) p=0.96 (n=29) p=0.72 (n=25) p=0.40 (n=266)

M2 r = 0.49*** r = 0.72*** r = -0.13 r = 0.52*** r = 0.37***

p<0.001 (n=183) p<0.001 (n=127) p=0.48 (n=33) p<0.001 (n=40) p<0.001 (n=384)

M3 r = 0.03 r = 0.29*** r = -0.25 r = -0.28 r = 0.05

p=0.70 (n=187) p<0.001 (n=125) p=0.18 (n=32) p=0.07 (n=41) p=0.34 (n=411)

M4 r = 0.07 r = 0.33*** r = -0.35* r = -0.30 r = 0.15**

p=0.32 (n=184) p<0.001 (n=126) p<0.05 (n=33) p=0.05 (n=42) p<0.01 (n=413)

M5 r = -0.01 r = 0.38*** r = -0.21 r = 0.18 r = 0.03

p=0.89 (n=147) p<0.001 (n=97) p=0.26 (n=30) p=0.38 (n=26) p=0.56 (n=312)

F1 r = 0.36** r = 0.41*** r = 0.02 r = 0.46** r = 0.24***

p<0.01 (n=183) p<0.001 (n=126) p=0.91 (n=32) p<0.01 (n=41) p<0.001 (n=389)

F2 r = 0.30*** r = 0.49*** r = 0.40** r = 0.38* r = 0.17***

p<0.001 (n=182) p<0.001 (n=127) p<0.01 (n=33) p<0.05 (n=41) p<0.001 (n=388)

F3 r = -0.04 r = 0.30*** r = 0.20 r = -0.33* r = 0.05

p=0.56 (n=182) p<0.001 (n=126) p=0.27 (n=32) p<0.05 (n=41) p=0.34 (n=413)

F4 r = -0.11 r = 0.31** r = -0.26 r = -0.18 r = -0.03

p=0.19 (n=153) p<0.01 (n=102) p=0.17 (n=30) p=0.37 (n=28) p=0.60 (n=291)

F5 r = 0.06 r = 0.28** r = -0.12 r = -0.04 r = 0.06

p=0.41 (n=184) p<0.01 (n=126) p=0.50 (n=32) p=0.80 (n=40) p=0.26 (n=407)Table 1

Pearson’s r (and p-values) between movement time (MT) and index of difficulty (ID) for

all subjects, divided by syllable position-specific category. Correlation coefficients significant

at the α = 0.05, α = 0.01 and α = 0.001 level are marked with ∗, ∗∗ and ∗ ∗ ∗, respectively.
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Speech Motor Control: Task Dynamics 
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Figure 1 . Schematic representation of the Task Dynamics framework. The variable X is

the displacement of the controlled variable in task space and X0 is the target. The Forward

Dynamics component implements a second-order dynamical system, conforming to

Equation 3, that transforms (via inverse kinematics) the error signal, ∆X, into the second

derivative of the articulator-space variable u. The integrals u̇ and u function as motor

commands to the Plant, or speech production apparatus.
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Figure 2 . Schematic representation of the VITE neural model (Bullock & Grossberg, 1988).

Note the many similarities of this structure to that of Task Dynamics in Figure 1. TPC is

a representation of the target position, which produces a target position X0. The DV

population compares the target to the system’s current position, and computes the task-space

dynamics of the network. The PPC population integrates the DV population activation into

position information. The network dynamics have the form described in Equations 6 and 7.
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Speech Targets 

                          s                             ɛ                v            "                  n 

time 

rtMRI 

speech audio 

Key Concept: Speech articulation as sequence of movements toward and 
away from target points in articulatory space 

•  Initial Position 1 
•  Target 1 
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Figure 3 . A key concept behind the methodology developed in the present work is that motor

tasks in speech articulation can be viewed as a sequence of movements toward and away

from target points in articulatory space. Those targets are assumed to be approached and

approximated, but not necessarily reached, at the temporal center of each phone interval.

The initial position for a given task is assumed to be the target immediately preceding the

current one.
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(a) (b) (c)

Figure 4 . Images illustrating stages in the data pre-processing pipeline for a single vocal

tract posture. Shown are (a) an image of a single posture, in its original form, (b) the same

image with low-variance pixels masked out (c) the image again, reconstructed as an image,

but using only the L PCA-generated features.
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Figure 5 . Illustration of the key relationships in calculating ID from articulatory data,

with most variable names taken from the text. Target vectors are defined in the

high-dimensional articulatory space, represented in the illustration by features x1, x2, x3.

In the analysis, this articulatory space is actually composed of L total features. The

articulatory target vector Fg is the target of the previous movement, and represents the

starting point of the current movement. The target of the current movement is Fh. The

distance to the target is the Euclidean distance between these two vectors. The width

around the target is calculated with respect to a hypersphere around the current target,

which is used to estimate the density of other target vectors that are not the current one.
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Syllable Categories 

σ1 

Onset Rhyme 

Nucleus Coda 

V C C C C 

σ2 

Onset 

C 

…

1 2 3 4 5 

Figure 6 . Illustration of the different syllable position-specific task categories used in the

present analysis, shown on a traditional, generic syllable structure tree. Categories are

numbered outward from the nucleus, and include tasks leading into and out of the nucleus

(1 & 2), tasks between consonants in the onset and coda (3 & 4) and tasks leading from

one syllable to the next (5).
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(a) initial position: A (b) target: S

(c) initial position: i (d) target: d

Figure 7 . Example high- and low-ID tasks for subject M2. The top row, (a)-(b), represent

one of the highest ID tasks, while the bottom row (c)-(d) represents one of the lowest.

Images were reconstructed from the L articulatory features in Z (see text).



SPEED-ACCURACY TRADEOFFS IN HUMAN SPEECH PRODUCTION 44

(a) Category 1: Onset-Nucleus Task (b) Category 2: Nucleus-Coda Task

(c) Category 3: Onset-Onset Task (d) Category 4: Coda-Coda Task

(e) Category 5: Coda-Onset Task

Figure 8 . Movement time (MT) vs. index of difficulty (ID) for subject M2. All

context-target tasks are shown, divided by syllable position-based category (see text for

details concerning categories).


