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Abstract. Studies in recent years have demonstrated that neural organization 

and structure impact an individual’s ability to perform a given task. Specifical-

ly, more efficient functional networks have been shown to produce better per-

formance. We apply this principle to evaluation of a working memory task by 

providing two novel approaches for characterizing functional network connec-

tivity from electroencephalography (EEG). Our first approach represents func-

tional connectivity structure through the distribution of eigenvalues making up 

channel coherence matrices in multiple frequency bands. Our second approach 

uses a connectivity matrix at each frequency band, assessing variability in aver-

age path lengths and degree across the network. We also use features based on 

the pattern of frequency band power across the EEG channels. Failures in digit 

and sentence recall on single trials are detected using a Gaussian classifier for 

each feature set at each frequency band. The classifier results are then fused 

across frequency bands, with the resulting detection performance summarized 

using the area under the receiver operating characteristic curve (AUC) statistic. 

Fused AUC results of 0.63/0.58/0.61 for digit recall failure and 0.57/0.59/0.47 

for sentence recall failure are obtained from the connectivity structure, graph 

variability, and channel power features respectively. 

1 Introduction 

Recent studies have investigated neural efficiency as a way of measuring an individu-

al’s ability to perform a specific task. Neural efficiency was examined by Neubauer, 

where he showed that individuals with a higher functional ability also showed lower 

event related desynchronizations [11] while performing the task. This principle has 

been employed along with network analysis to represent the changes in the properties 

of the functional connectivity network [6, 8, 9]. This has resulted in studies demon-

strating increased task proficiency is exhibited by a network exhibiting more “small 
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world” properties (i.e. where the network has a higher clustering coefficient and lower 

average shortest path length). In this paper, we examine changes in network proper-

ties during a working memory task, and provide a comparison using alternate ap-

proaches to characterizing network connectivity, and a non-network based approach 

that assess changes in power across a set of frequency bands.  

2 Materials 

This work leverages a previously collected database published in [1]. This database 

provides an IRB approved working memory protocol where subjects are asked to 

retain a series of digits, followed by a sentence in memory. After a pause period the 

subjects were asked to repeat the memorized sentence, and then to repeat the memo-

rized digits. A trial was defined as the memorization and repetition of one sentence, 

and one set of digits. Performance was identified based on whether the subject could 

correctly repeat the entire sentence (sentence performance), and the entire sequence of 

digits (digit performance). 

During this protocol, speech, video data, and electroencephalography (EEG), were 

collected. This paper presents an analysis of the predictive performance of EEG in 

identifying sentence performance and digit performance on a per trial basis. EEG was 

collected on 14 subjects, where each subjects’ data were preprocessed with a highpass 

filter at 0.1 Hz, a notch filter at 60 Hz, and had blinks removed using independent 

component analysis. 

3 Methods 

3.1 Coherence as a Measure of Functional Connectivity 

In order to obtain sensitive multivariate measures of frequency-band dependent com-

munication between brain regions, we utilize features based on the full set of signal 

coherences obtained between channels within previously used neurologically repre-

sentative frequency bands (theta, alpha, beta, gamma) [4]. The coherence between 

channels indicates the amount of cross-channel power in a frequency band relative to 

the amount of within-channel power. This provides a measure of how closely related 

the signals are within a given frequency band.  

 



 

 

Fig. 1. Coherence matrices for the same subject on a trial with correct (left) and incorrect (mid-

dle) digit recall, (right) rank-ordered eigenvalues from the two coherence matrices. 

Specifically, channel-pairwise coherences are computed to yield a 64x64 coher-

ence matrix for each frequency band in each trial. Figure 1 shows, for example, co-

herence matrices (in the Theta band) from a single subject in two nearby trials from 

the middle of the subject’s 2-hour session. The matrix on the left corresponds to a trial 

when the subject reported the four digits correctly, and the matrix on the right corre-

sponds to a trial when they reported the digits incorrectly. There is a striking differ-

ence in the appearance of the two coherence matrices, with the incorrect trial showing 

a larger number of strong pairwise coherences. 

3.2 Connectivity Structure 

To obtain features that are sensitive to changes in the overall structure of coherences 

among EEG channels, while being invariant to the particularities of coherence pat-

terns among specific channel pairs, we propose the use of coherence structure features 

[1].  Coherence structure refers to the distribution of eigenvalues in a coherence ma-

trix, which encodes the overall shape of the multivariate coherence distribution, invar-

iant to axis assignments. Figure 1 (right) plots the coherence structure features, which 

are the rank-ordered eigenvalues from the two coherence matrices, illustrating that the 

digits correct case (blue) produces greater power in the small matrix eigenvalues than 

the incorrect case (red), thereby indicating a more isotropic pattern of coherences 

during correct performance, which we take as an indicator of greater complexity in 

cortical communication. 

The coherence structure patterns in Figure 1 depict two trials from a single subject. 

How do these patterns generalize to all the trials and subjects in the dataset?  To an-

swer this question, we first normalize (z-score) the eigenvalues at each rank across all 

the trials in the data set, and then plot in Figure 2 the average of these normalized 

eigenvalues for the digit correct (blue) and digit incorrect (red) cases for the four fre-

quency bands.  Figure 2 shows that a similar difference is found across all four fre-

quency bands, with an interesting leftward shift in the eigenvalue differences as we 

move to higher frequency bands.  

 



 

 

Fig. 2. Averages, computed across all trials, of normalized eigenvalues for digit correct (blue) 

and digit incorrect (red) recall in four frequency bands.    

3.3 Graph Measures of Functional Connectivity 

Recent work has considered network (or graph) features of brain activity. This section 

de-fines the construction process for the functional connectivity graph and the fea-

tures used in the classifier. 

A graph G=(V, E) is a pair of sets: a set of vertices, V, representing entities, and a 

set of edges, E, representing connections or interactions between the entities. In the 

context of this paper, the vertices are EEG channels and the edges denote functional 

synchrony between the channels. This is measured by coherence between the meas-

urements in the channels, as described in Section 3.1. 

The coherence values are stored in a matrix, which is thresholded to define undi-

rected connections (E) between nodes (V). A set of thresholds are used, where each 

threshold is set to keep a constant density (as defined below). This approach builds off 

[7], where density is controlled to keep a similar number of connections across sub-

jects. However, instead of using one threshold as done in [7], we aggregate features 

across thresholds and then use dimensionality reduction to remove redundancies. 

After thresholding each coherence matrix to form a graph, the following features 

are extracted for classification. 

Density. The proportion of possible edges that exist in the graph, |𝐸|/(|𝑉|

2
). This 

is used for normalization of the data: each graph has equal density.  

Average path length. For a given vertex v, the average distance from v to any other 

vertex in the graph, 

 
ℓ(𝑣) =

1

|𝑉| − 1
∑ 𝑑𝐺(𝑣, 𝑢) 

𝑢∈𝑉

 (1) (1) 

Average path length is small in small-world graphs. 

Degree. The number of edges adjacent to a given vertex, denoted 

 𝑘𝑣 = |{𝑢 | {𝑢, 𝑣} ∈ 𝐸}| (2) (2) 

Small-world networks tend to have some “hub” vertices with high degree, to 

facilitate short paths through the network. 

As in [2], we consider statistics of the vertex-based features (average path length, 

and degree) across all vertices in the graph. Specifically, we consider the maximum 

value, the mean, and the standard deviation. This provides information about the dis-

tribution of features across vertices without expanding the space to consider all fea-

tures on all vertices. This information was reduced to the standard deviation of the 



 

 

above features, as it showed the most variability across trials. Figure 3 depicts differ-

ences in graph features as a function of frequency band summarized across correct 

and incorrect trials. 

 

Fig. 3. Differences in graph features as a function of frequency band 

4 Machine Learning Approach 

4.1 Dimensionality Reduction via Principal Component Analysis.  

The power and coherence structure feature sets are high dimensional, with 64 power 

and coherence structure features in each frequency band. The network features pre-

sent complimentary information with some overlap across density thresholds. In order 

to obtain lower dimensional and less redundant features that can be easily utilized to 

detect digit and sentence recall failure, we use a common principal component analy-

sis (PCA) dimensionality reduction procedure for each feature set. To avoid overfit-

ting, we apply an identical procedure for each feature set by selecting the minimum 

number of principal component features needed to explain 90% of the total variance 

in the feature set. 

4.2 Detecting Digit and Sentence Recall Failure.  

For each subject, detection of digit recall failure is done using statistical models ob-

tained solely from the other 13 subjects. The statistical models we use are multivariate 

Gaussian distributions for each feature set. The Gaussian classifier output for feature 

set in a given trial is a log-likelihood ratio of recall failure (Class 1) and recall success 

(Class 2).  The results are summarized using the area under the receiver operating 

characteristic (ROC) curves, or AUC, for each feature set (Table 1).  Fusion across 

feature sets is done by adding log-likelihood ratios.  The fused power feature results 

combines only the classifier results from the Beta and Gamma bands, and the fused 

coherence structure and graph feature results combine results from all four bands. 



 

 

5 Experimental Results 

For this experiment we report prediction results obtained using leave one subject out 

cross validation. Table 1 displays the predictive ability of each set of features on iden-

tifying mistakes on the digit repetition portion of the experiment, and the sentence 

repetition portion of the experiment.  

 

 

Freq 

Band 

Digit Failure AUC Sentence Failure AUC  

 Connect. 

Structure 

Graph 

Var. 

EEG 

Power 

Connect. 

Structure 

Graph 

Var. 

EEG 

Power 

 

Theta 0.62 0.49 0.51 0.55 0.49 0.39  

Alpha 0.57 0.54 0.45 0.60 0.54 0.40  

Beta 0.60 0.57 0.60 0.57 0.57 0.41  

Gamma 0.58 0.54 0.59 0.49 0.59 0.42  

Comb. 0.63 0.58 0.61 0.57 0.59 0.47  

Table 1. Number of principal components and area under ROC curves for power and coherence 

structure features at four frequency bands. 

In our analysis, the power, graph, and structure features show similar performance 

on the digit recall task, with coherence structure consistently performing at or above 

the other two feature sets. However, the power features lose predictive ability on the 

the sentence failure task. Additionally, only a subset of bands are informative when 

combining across the three feature types. Through combining the three different 

feature sets, we were able to achieve a performance of 0.66 on the digit recall task, 

and 0.60 on the sentence recall task. The ROC curve for the digit recall task is shown 

below. 

 

Fig. 4. Receiver operating characteristic (ROC) curve for best performing system, which fuses 

classifier outputs from power features in the Beta and Gamma bands, and from coherence struc-

ture and graph metrics in all four bands. AUC = 0.66.  
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6 Conclusion 

In this paper we examined the use of features derived from network connectivity 

structure to predict performance on a digit and sentence recall task. Additionally, we 

compare our network features’ performance to detection ability using simple power 

band features computed over equivalent frequency bands.  
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