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Abstract.
Remote sensing of chemical vapour plumes is a difficult but important task with many military and civilian appli-

cations. Hyperspectral sensors operating in the long wave infrared (LWIR) regime have well demonstrated detection
capabilities. However, the identification of a plume’s chemical constituents, based on a chemical library, is a multiple
hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional
performance metric for identification based on the so-called Dice index. Our approach partitions and weights a con-
fusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics,
we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when
incorporating performance information beyond the standard detection metrics.

Keywords: Hyperspectral, LWIR, detection, identification, performance estimation.

1 Introduction

Passive hyperspectral sensors operating in the longwave infrared (LWIR) provide high resolution
measurements in a region of the electromagnetic spectrum where many chemicals have unique
absorption profiles. The high spectral and spatial resolution of these sensors allows for the iden-
tification of the individual chemicals within a gaseous plume.1 A library of chemical absorption
signatures is often all the prior knowledge available, and it is the job of the signal processing
algorithms to decide if chemicals are present, and also which ones; the process of finding which
chemicals are present in the plume is known as identification. A simple but effective system design
consists of separate detection and identification algorithms, as shown in Fig. 1. In order to assess
the performance of such a system, and to compare performance of different algorithms, it is nec-
essary to define metrics that address both the detection and identification tasks. In this paper, we
propose such a performance evaluation methodology based on confusion matrices. Furthermore,
we employ this methodology to demonstrate that the design of a state-of-the-art detection algo-
rithm followed by an identification algorithm is superior to that of either algorithm individually.

The difference between detection and identification is somewhat subtle. We categorize prob-
lems depending on the number of chemicals in the library and whether mixtures of chemicals can
be present or not. These distinctions can be summarized as
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Fig 1: Practical chemical detection-identification system. The identifier has one output for each
chemical in a known library.

1. Looking for a specific gas;

2. Looking for a single gas from a library of L gases;

3. Looking for mixtures of up to m gases from a library of L gases.

The first case is a detection problem where the library contains a single gas whose presence or
absence needs to be decided; detection is inherently a binary hypothesis problem. When the library
contains L chemicals and we are trying to determine which one is present, we no longer have a pure
detection problem as there are multiple hypotheses to choose from. In Case 2, not only do we have
the presence or absence of the plume to decide, but also which single chemical is actually present.
In Case 3, instead of only picking a single chemical, a mixture of chemicals can be present.

Chemical identification can be formulated as a multiple hypothesis testing problem where each
hypothesis represents a subset of the library gases, including the empty set. Each pixel in the scene
has a true and an output hypothesis or class, which may differ. A natural way to represent the
performance of such a system is through a confusion matrix, or error matrix, where each pair of
truth and output is represented by a single entry of the matrix. Each entry of the matrix contains
tallies of the number of pixels with the corresponding truth and output. A particular dataset and
threshold produces a single realization of the confusion matrix, which can then be summarized
in several useful performance metrics. For detection problems a single threshold determines the
operating point and the confusion matrix can be used to estimate probability of detection (PD)
and probability of false alarm (PFA). Sweeping a range of thresholds leads to a plot of PD versus
PFA, called a receiver operating characteristic (ROC) curve. A ROC curve fully characterizes
performance for detection problems.2 In cases 2 and 3, the confusion matrix becomes larger and
more difficult to interpret and in general may not be governed by a single threshold. When multiple
thresholds are used, the construction of a ROC surface which characterizes performance is possible,
but is not easily visualized and is still difficult to interpret.3 The algorithms we consider use only a
single threshold, considerably simplifying analysis. Evaluating the system for a range of thresholds
then produces a performance curve for each metric used, from which general performance trends
can be assessed.

The appropriate metrics to use in summarizing a confusion matrix depend on the particular
application. In hyperspectral chemical detection and identification problems, the number of back-
ground (no gas) pixels is far larger than the number of plume pixels, making the false alarm rate
one of the most important metrics of performance when operating a real system. Therefore, our
approach partitions the confusion matrix into two parts: one involving the false alarm rate, and the
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other involving the pixels that contain plume. For the portion of the confusion matrix containing
plume pixels, we utilize two different metrics, the correct detection rate and the Dice index. The
correct detection rate is the fraction of pixels for which at least one chemical is correctly detected.
The identification metric we choose is known as the Dice index and is based on the amount of
agreement between the truth and output hypotheses.4, 5 Unlike the correct detection rate, the Dice
index considers both the number of correct chemicals in the output and the number of incorrect
chemicals. Since identification deals with mixtures of chemicals and the correct detection rate does
not incorporate mixtures, the Dice index is the metric we choose for evaluating identification per-
formance. Ultimately, a good system should have: a low false alarm rate, a high correct detection
rate, and high identification performance as measured by the Dice index.

The system we evaluate is a detector bank followed by an identifier. The detector bank is
composed of adaptive coherence (cosine) estimator (ACE) detectors,6 while the identifier is the
Bayesian model averaging (BMA) approach.7, 8 Intuitively, using a bank of detectors as an identi-
fier should perform worse as an identifier than an algorithm designed for identification; similarly,
an identifier should perform worse at detection than a detector. We use the proposed identifica-
tion metric and standard detection metrics to demonstrate that the ACE detector bank has better
detection performance than BMA, but also has lower identification performance than BMA. These
results suggest using the detector bank followed by the identifier for improved performance over
either individually, which we demonstrate to be the case.

For single gas problems, algorithms can generally be categorized as classical detection algo-
rithms or regression based algorithms. Classical detection algorithms include the matched filter,
matched filter variants, the spectral angle measure (SAM), and the the adaptive cosine estimator
(ACE).2 Regression based algorithms fit the data to a regression model and then use either a sig-
nificance test or a threshold on the model coefficients to determine whether or not a particular gas
is present.9 We choose the ACE algorithm as a detector since it is a very effective and popular
detection algorithm for hyperspectral imagery.

Identifiers are designed for when mixtures of gases are permissible, and the constituents un-
known. Several identification techniques have been proposed including using a bank of detec-
tors,6 using linear regression models with significance testing,10, 11 using step-wise regression,12

and Bayesian techniques.7, 13, 14 Compared to a detector, identifiers make a decision for each chem-
ical in the library, whereas detectors only consider a single gas. BMA was selected for the identifier
because it is considered state-of-the-art for identification.

To understand how performance is affected by the parameters of the plume, we used a plume
embedding procedure to produce synthetic plume data that preserves the variability of the back-
ground data. Plume thickness has a non-linear relationship with the measured signal, which can
be exploited by non-linear fitting algorithms, but causes additional fitting error in linear techniques
like the ones we consider.15 Both algorithms were tested individually on embedded data for a range
of thickness parameters. The cascaded system was then tested for the same parameter ranges.

The key results of our study show that both the detector and the identifier are needed for overall
good performance, a result that has not been demonstrated in the literature before. To our knowl-
edge, using a confusion matrix to develop a series of performance metrics, and the use of the Dice
index as a performance measure have not been done in this field. Our approach provides a starting
place for comparative analysis of other system designs.

The remainder of this paper is organized as follows. Section 2 presents background material
on the phenomenology of the data and explains the simplifications used in deriving useful models.
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In Section 3, we discuss confusion matrices and the proposed identification performance metric.
In Section 4, the two identification algorithms are defined, and the key formulas are presented. In
Sections 5.1 and 5.2, we compare the detection and identification performance of the two identi-
fication algorithms individually. The effect of plume thickness on identification performance for
each algorithm is explored in Section 5.3. Performance of the cascaded system with respect to
plume thickness is examined in Section 5.4. Finally, in Section 6, we provide a short summary of
the paper and discuss future work.

2 At-Sensor Radiance Signal Model

A simple but useful model for the at-sensor radiance in the longwave infrared (LWIR) can be
developed from a full radiative transfer model with a few key assumptions:

1. The plume is optically thin and the distance between the plume and background are small
enough to neglect the atmospheric transmittance in that region;

2. The plume is homogeneous in temperature and composition;

3. Scattering and reflections can be neglected.

These simplifications allow the use of the three layer model of Fig. 2 which can be used to
derive our primary measurement equations using Kirchoff’s law.16 From Fig. 2 the measured
radiance for an off-plume pixel is

Loff(λ) = (1− τa(λ))B(λ, Ta) + τa(λ)Lb(λ)

where λ is in wavelengths or wavenumbers, Ta is the temperature of the atmosphere, τa is the trans-
mittance of the atmosphere, Lb is the background radiance, and B(λ, T ) is the Planck function,
which describes a black body at temperature T .

Fig 2: Simplified 3 layer radiance model for thin plumes.

The measured radiance for a pixel with plume becomes

Lon(λ) = (1− τa(λ))B(λ, Ta) + τa(λ)(1− τp(λ))B(λ, Tp) + τa(λ)τp(λ)Lb(λ).

where τp is the transmittance of the plume. In terms of Loff, we instead have

Lon(λ) = (1− τp(λ))τa(λ)(B(Tp, λ)− Lb(λ)) + Loff(λ). (1)
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The model in Eq. 1 is useful for analysis and gives a clear method for generating synthetic data
under certain circumstances; namely, that the plume and atmosphere are in equilibrium.

The transmittance of the plume τp is governed by Beer’s law:16

τp(λ) = exp

(
−

m∑
i=1

αisi(λ)

)
(2)

where m is the number of gases in the plume, αi is the concentration path length (CL) for gas i and
si is the gas’ absorption spectrum. When the thermal contrast ∆T = Tp−Tb between the plume and
background is small, and the background radiance is slowly varying with respect to wavelength,
the difference B(Tp, λ) − Lb(λ) is approximately proportional to ∆T . Using the approximation
(1− ex) ≈ x, we obtain

x(λ) ≈ ∆T τa(λ)
m∑
i

αisi(λ) + Loff(λ) (3)

which is linear in terms of the gas signatures. Assuming the atmospheric transmission τa(λ) is
known, the signatures are multiplied by the atmospheric transmission τa before further processing
is done. Ultimately, the temperature and CL both need to be estimated, but linear techniques esti-
mate the product of the two. The problem of estimating the individual temperature and emissivity
quantities is known as temperature-emissivity separation. For our purposes we estimate ∆Tαi as a
single quantity bi.

The input signal is convolved with the sensor response function and sampled at a set of band
centers [λ1, . . . , λp] to produce a measurement vector x = [x1, . . . , xp]

T where p is the number of
sensor channels. The atmospheric transmission τa(λ) is applied to library signatures si(λ) and the
product sampled to the sensor’s resolution using the sensor’s spectral response to obtain sampled
signatures si. Organizing the signatures as a matrix S and the bi’s as a vector b, we have

x =
m∑
i=1

sibi + v = Sb + v, v ∼ N (mb,Cb) (4)

where mb is the background clutter mean and Cb is the clutter covariance. The assumption in Eq. 4
is that the clutter v is well modeled by a multivariate Gaussian distribution, which may not hold in
reality, but is a useful model for many practical algorithms. Defining the whitening matrix C

−1/2
b

and whitened vectors

x̃ = C
−1/2
b (x−mb), S̃ = C

−1/2
b S, ṽ = C

−1/2
b (v −mb) (5)

yields the standard regression model

x̃ =
m∑
i=1

s̃ib̃i + ṽ = S̃b̃ + ṽ, ṽ ∼ N (0, I) . (6)

where the clutter is zero mean and has identity covariance. The linear model of Eq. 6 is useful
for developing the identification algorithms we consider, but is a good approximation only for thin
plumes.
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Fig 3: Algorithm independent way for confusion matrix construction.

3 Plume Identification Performance Metrics

The framework we present for evaluating identifiers relies on using the confusion matrix for multi-
class problems. For a single dataset, the confusion matrix has all the performance information
available in detail. However, for ease of interpretation, the confusion matrix may be summarized
using several scalar performance metrics that are appropriate for detection and identification.

Assume that for each pixel we have the identifier output g and the “ground” truth t. These are
binary vectors given by g =

[
g1, g2, . . . , gL

]
T and t =

[
t1, t2, . . . , tL

]
T where gk is an indicator

for the kth gas being present in the identifier output, and tk is an indicator for whether the kth gas
is truly present in the pixel, i.e.

gk =

{
1, Gas k identified in pixel.
0, Gas k not identified in pixel.

tk =

{
1, Gas k is present in pixel.
0, Gas k is absent from pixel.

The binary vectors g and t have M unique configurations depending on the maximum number of
gases allowed in the output. The allowed configurations are denoted gi and tj with i, j ∈ [1, . . .M ].
Each possible truth vector tj is assigned to a column of the confusion matrix (CM), while every
possible identifier output is assigned to a row of the confusion matrix; each cell of the CM corre-
sponds to a particular pair of truth and output vectors, and each pixel is assigned to a particular cell
based on the vectors associated with it. In summary, the CM contains in element (i, j) a tally of
the number of pixels with output gi and truth tj . Operationally, the CM is constructed by tallying
each pixel in the correct entry of the CM based on the identifier output and truth, as illustrated in
Fig. 3.

The confusion matrix varies in size depending on both the size of the library and whether
mixtures are allowed. In terms of hypothesis testing or classification, each hypothesis Hk has a
corresponding binary indicator vector g or t depending on which library chemicals are present and
on whether the hypothesis is the true one or the output from the system. When looking for only a
single gas, the confusion matrix is only 2×2 as in Fig. 4a and a single threshold controls whether a
pixel is assigned to the null-hypothesis (H0) or the gas present hypothesis (H1). When looking for
one gas out of a library of size L, the CM is size [L+1]× [L+1] with the possibility of both correct
identifications and incorrect identifications, as in Fig. 4b. Incorrect identification occur when one
chemical is mistaken for another or when there is no overlap between the chemicals in the truth and
output. In Fig. 4b, the hypotheses H1 and H2 represent each chemical from a library of size two;
the corresponding binary vectors are g, t =

[
1 0
]

or
[
0 1
]
. Hypothesis H3 represents the presence
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Fig 4: Different confusion matrices depending on the particular problem. (a) Detection type prob-
lem. (b) 1 of L gases with library of size 2. (c) Up to two gases with library of size 2. H0 is the
null-hypothesis; H1 and H2 contain gas 1 and 2 respectively, while H3 has both.

of both chemicals in the plume. When looking for up to m of L the CM is of size
∑m

k=0

(
L
k

)
, but

in general when any mixture of chemicals is allowed the CM is size 2L. In Fig. 4c, the full CM
for a library of size two is shown; the hypothesis H3 represents the mixture of both chemicals;
when there is some overlap between the chemicals that are detected and the chemicals actually
present we have a partially correct identification. In general, since the CM, and the number of
hypotheses to test, grows exponentially with the size of the library, it is impractical to fill out the
full confusion matrix or to test all possible models. For even moderately sized threat libraries the
confusion matrix becomes difficult to interpret because of its size necessitating summarization.

The CM can be summarized by partitioning, weighting and then averaging. For plume identifi-
cation applications the CM can be partitioned into several sub-matrices that contain: false alarms,
misses, correct IDs, and incorrect IDs as shown in Fig. 4. Broadly, the false alarm section is the
column where no gases are present (tj = 0) and the other cases occur when at least one gas is
present. Performance metrics can be calculated using portions of the CM as follows: choose a
partition the CM; sum the elements of the partition; apply a weight matrix W with weights wi,j to
the CM; sum the weighted elements of the partition; take the ratio of the weighted and unweighted
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β wi,j Name(s) Description

0
(gi·tj)
|tj |

Sensitivity
Fraction of gases in pixel that are detected.

Recall

1/2
2(gi·tj)
|gi|+|tj |

Dice index Incorporates both number of gases identified
and number actually present.

F-metric Harmonic mean of precision and recall.

1
(gi·tj)
|gi|

Precision Fraction of gases detected that are present in the pixel.

Table 1: Weights derived from Eq. 8 using different values of β.

sums. These operations can be written succinctly as

dperf =

∑
(i,j)∈S [CM�W ]i,j∑

(i,j)∈S [CM]i,j
, 0 ≤ dperf ≤ 1, (7)

where� denotes element-wise multiplication, and the set S represents the sub-matrix to sum over.
The brackets [.] with subscripts indicate a single element of the matrix within the brackets.

Though there are a substantial number of different metrics that can be derived from the CM
depending on the weights used, the metric we use for identification performance comes from the
family of indexes defined by

wi,j =
(gi · tj)

β|gi|+ (1− β)|tj|
(8)

with β ∈ [0, 1]. The numerator in Eq. 8 indicates the number of agreements between the output and
truth, while the denominator has the sum of the number of chemicals in the truth and the number
in the output. The resulting weights incorporate the truth and output vectors to varying degrees
depending on the value of β used. Setting β = 1/2 in Eq. 8 we obtain the Dice index

wi,j =
2(gi · tj)
|gi|+ |tj|

(9)

or F-metric, not to be confused with the F-test from linear regression.17 We choose the Dice index
for identification because it incorporates both the number of gases in the identifier’s output, and
the number of gases in the pixel. Other choices of β lead to metrics that weigh the importance of
g and t in different proportions. For example, when β = 0 the number of incorrect outputs is not
taken into account. Several common weights derived from Eq. 8 that are used in the literature are
presented in Table 1.18

The three metrics we use are the false alarm rate, the correct detection rate, and identification
performance as measured using the Dice index of Eq. 9. These detection and identification metrics
are listed in Table 2, along with the partitions of the CM used in the weighting and summarization
process. The false alarm rate is very important in both detection and identification systems since
it determines how much background data will have to undergo additional scrutiny. In standoff
systems, the vast majority of data does not contain plume and is only background data; having a
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low false alarm rate and having the other metrics as high as possible are desirable system charac-
teristics.

The methodology we have taken for evaluating performance does not depend on any partic-
ular identification system architecture, except that the system must produce a list of identified
gases. The internal workings of an algorithm are not taken into account when using this approach.
However, the algorithms we analyze in this paper use a single threshold to make decisions. At
each threshold we obtain a single realization of the CM from which each performance metric is
calculated.

Statistic Weights Used Portion of CM Used

False Alarm Rate wi,j =

{
1, |gi| > 0

0, |gi| = 0
j = 0 (Gas absent)

Correct Detection Rate wi,j =

{
1, |gi · tj| > 0

0, |gi · tj| = 0
j > 0 (Gas present)

Identification Performance wi,j =
2(gi·tj)
|gi|+|tj |

j > 0 (Gas present)

Table 2: Detection and identification performance measures.

4 Plume Identification Techniques

The two algorithms we compare are a detector bank approach and a model averaging algorithm.
The detector bank has a set of single-gas (single-chemical) detectors, one for each library signa-
ture. Each detector produces a score for a single gas, which is then thresholded to make a decision
about each gas. Similarly, model averaging produces a score for each gas which is then thresh-
olded to make a decision. Of the popular algorithms, the operational similarity of these two makes
comparative analysis simpler, and easy to interpret. In this section we give overviews of the adap-
tive coherence estimator (ACE) detector bank and Bayesian model averaging (BMA) identification
techniques, and provide the relevant formulas for each.

4.1 A Detector Bank for Identification

Detection algorithms are designed to solve binary hypothesis problems with a known target sig-
nal. Perhaps the most common and well known algorithm is the matched filter.2 The normalized
matched filter (NMF) is a simple modification where the matched filter is normalized by the mea-
surement length. The matched filter and NMF can take both positive and negative values depending
on the orientation of the input signal relative to the signature. In the LWIR, the relative direction of
the input and signature may depend on the thermal contrast ∆T from Eq. 3, which may be positive
or negative. To create a sign-insensitive detector the NMF can be squared to obtain the adaptive
coherence estimator (ACE). We define ACE for the kth library signature as

yk =
(x̃Ts̃k)2

||x̃||2 ||s̃k||2
= cos2(θ̃k). (10)
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where θ̃k is the angle between the whitened signature s̃k and the whitened pixel x̃. We use the
term ACE for the squared detector, though various terms are used in the literature.19

To use ACE as an identifier, a bank of detectors can be constructed, where each detector is
tuned to a particular library signature. For detection of a specific gas, only one ACE detector is
needed; for detecting one of L gases, a bank of L detectors can be used and the maximum taken;
for the m of L problem, instead of taking the maximum, the outputs can be thresholded to obtain
a list of gases.

When only the maximum of the detector bank is considered, mixtures are excluded from con-
sideration, which can be problematic when mixtures are present in the data. Picking the maximum
may be appropriate in applications where only a single target is allowed in any pixel; for exam-
ple, in the reflective regions of the electromagnetic spectrum, the ground resolution can be small
enough that only a single target can be in any particular pixel.20 For gaseous plumes, we use the
thresholding approach instead of taking a maximum and then thresholding.

4.2 Bayesian Model Averaging

Bayesian model averaging (BMA) is a technique for estimating parameters using the construction
of a set of models that are fitted to the data. In our case, each model is a linear model for x̃ using
a unique subset of gases from the library S. Specifically, model j is in the form of Eq. 6 but with
a particular library subset in Sj and the estimate of CL×∆T in bj . Each model Mj is defined as

Mj : x̃ = S̃j b̃j + ṽ (11)

where the index j refers to the model, and is a separate index from other sections. Defining Ak as
the event that gas k is present, BMA computes the probability of the event Ak as the average over
all models

pk = Pr {Ak|x̃} =
∑
j

Pr {Ak|Mj, x̃}Pr {Mj|x̃} (12)

where Mj is the jth model being considered. The probability Pr {Ak|Mj, x̃} is an indicator of
whether or not gas k is in the model. The model probabilities can be calculated using Bayes’ rule

Pr {Mj|x̃} =
Pr {x̃|Mj}Pr {Mj}∑
i Pr {x̃|Mi}Pr {Mi}

(13)

where Pr {x̃|Mj} is the likelihood of the data given the model, and Pr {Mi} are the prior probabil-
ities of the models. Typically, the likelihood of the data depends on model parameters that make it
difficult to find expressions for the likelihood. Instead, the likelihood can be approximated using
the model’s Bayesian information criterion (BIC) as

Pr {x̃|Mj} ≈ exp {−BICj/2} .

For linear regression models, as in Eq. 11, the BIC is

BICj = n ln(RSSj/n) + dj ln(n)
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where n is the number of spectral bands, and dj is the number of gases in model j. The first term
in the BIC depends on how well the model fits the data, and the second term is essentially a model
complexity penalty. The residual sum of squares (RSS) is defined as

RSSj = x̃T(I − PS̃j
)x̃ = x̃TP⊥

S̃j
x̃

where PS̃j
= S̃j(S̃j

TS̃j)
−1S̃j

T. The additional penalty on the model complexity in the BIC leads
to smaller models being more likely. Only considering models up to a certain size (mixtures of m)
further favors smaller models.

Finally, assuming all models are equally likely, and that the models are exhaustive, the model
probabilities must sum to one, and Eq. 13 becomes

Pr {Mj|x̃} ≈
exp {−BICj/2}∑
i exp {−BICi/2}

. (14)

Eq. 14 and Eq. 12 together define the probabilities of each model and each gas occurring respec-
tively. In BMA the probability for each gas to be present in Eq. 12 is then thresholded to obtain a
list of gases present in each pixel.

5 Performance Evaluation of Identification Algorithms

To evaluate and compare different plume detection and identification systems, ground truth for the
dataset is a necessity. In data with real plumes, the spatial extent of the plume, the constituent
gases, the concentrations, and temperature of the plume are typically unknown. To obtain a perfor-
mance estimate with known plume parameters, a synthetic plume embedding technique was used.
The embedding technique is based on Eq. 1 and requires a background-only cube and a signature
library.15, 21

We selected a background cube and used the plume embedding algorithm to produce synthetic
plumes with known ground truth at specified concentration pathlength (CL) values. We used a
library of eight gas signatures based on the spectral library described in.22 At least three of the
gases in the library have strong spectral features in the same wavelength region; two of these gases
were selected for embedding. The signatures were normalized to their maxima prior to embedding,
thus the CL values reported can be used to infer the approximate thickness of the plume from Eq. 1
and Eq. 2. The data had 128 channels with centers ranging from 7.6 µm to 13.5 µm; most of
the signatures had appreciable absorption peaks over this range of wavelengths. The plume was
embedded over a ground portion of the image where the embedding model is most appropriate.
Based on an estimate of the background temperature, the plume was simulated to be about 10K
colder than the background; the temperature difference made the plume easily detected.

To compare the ACE and BMA algorithms fairly, the embedding region was excluded from
background mean and covariance estimates, which are substituted into Eq. 5. The inclusion of
the plume in these estimates can lead to substantial performance degradation. Both techniques
processed the entire cube and produced scores for each pixel and each gas. BMA considered
mixtures of up to three gases.

In the following sections we present results for several experiments using the same embedding
region for several embedding scenarios. In Sections 5.1 and 5.2, we consider a single chemical
at a single CL of 0.027. and examine the distribution of ACE and BMA scores with respect to
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threshold. In Sections 5.3 and 5.4, we examine system performance over a range of CLs and
embed both a single gas, and two gases in the same plume region. In Section 5.4, we propose a
cascaded system and examine performance for both the single-gas and two-gas embeddings over
the same CL ranges as in the other sections.

5.1 Detection Performance

Our analysis presents several histograms that were created as follows. For a background pixel,
if any score exceeds the threshold, the result is a false alarm; therefore, if the maximum score
among all the gas scores exceeds the threshold, it is a false alarm. For a plume pixel, there is one
gas that is the correct gas embedded, the other gases are incorrect or wrong. If any other gas is
above the threshold, then the identifier has made a mistake; if the maximum score among incorrect
gases is above the threshold, then a mistake was made. The histograms we present in the following
sections used only these maxima. The goal is to illustrate how important the threshold is to the
performance of the system, and to highlight the difference between good detection performance
and good identification performance.

For perfect detection, there should be perfect separation between background and plume scores.
As shown in Fig. 5, ACE separates the background (red) and plume (green) quite well. Compara-
tively, BMA does not separate the background and plume as well. In Fig. 5a the red histogram is
composed of the maximum scores for each background pixel since only the maximum score needs
to exceed the threshold for the pixel to be a false alarm. The background pixel scores are distributed
close to 0, with very few exceeding a value of 0.1. The green histogram contains the scores for
the correct gas only, and consists only of the pixels within the embedded plume region; the plume
pixel scores are distributed away from 0 with very little overlap between the background and plume
scores. The small overlap of the green and red histograms leads to the ACE bank achieving a high
correct detection rate for a large range of false alarm rates, as shown in Fig. 6 in red.

In Fig. 5b the background scores (red) of BMA are not tightly distributed near 0, and span the
full range of thresholds. There is significantly more overlap between the background and plume
scores (green) of BMA than for the detector bank. The overlap between the distributions means
that for any threshold, the number of false alarms and missed detections will be higher for BMA
than for the ACE bank, as shown in Fig. 6 in blue.

The curves in Fig. 6 were constructed by sweeping a range of thresholds to produce a series of
confusion matrices from which the performance metrics are computed. At any particular threshold,
a single realization of the confusion matrix is obtained. At each threshold PD and PFA were
estimated using the correct detection rate and false alarm rate with the partitions and weights of
Table 2. From Fig. 6 the probability of detection for BMA is lower than ACE for any PFA. Since
the ROC curve of the detector bank is above the one for BMA, the detector bank is a better detector
for this dataset.

5.2 Identification Performance

Detection performance was measured using the background scores for each gas and the plume
scores for the correct gas only. The outputs for the incorrect gases were neglected when consid-
ering the plume pixels, but for identification, the scores for the incorrect gases determine whether
we made a correct identification or not. Since a single threshold is applied to each output of the
identifier, scores for chemicals that are not actually present may exceed the threshold. Multiple
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Fig 5: Scaled histograms of representative outputs for (a) ACE and (b) BMA using embedded data.
Background and plume pixels are easily separated using ACE, but less so by BMA.

Fig 6: Receiver operating characteristic (ROC) curve for ACE and BMA based on the scores for
the correct gas and for the background. The ROC curves can be constructed from the histograms
in Fig. 5.

thresholds could be used, but selecting a threshold for each chemical individually is not practical
without prior knowledge of which chemicals will be present. To have good identification perfor-
mance, the distributions of scores for the correct library gas and the incorrect library gases should
be well separated.

In Fig. 8, the same histograms as in the previous section are presented, but the scores for the
incorrect gases are also included (blue). For each pixel in the plume, the maximum score among the
incorrect gases was used to construct the histogram; since a single threshold is used to determine
which gases were present, if the maximum exceeded the threshold, then an incorrect or partial
identification occurred. If only the correct gas passes the threshold then a correct identification
occurred. In Fig. 8a, the ACE detector bank shows good separation between the background and
the plume for both the correct and incorrect gases; however, the correct gas and maximum incorrect
gas histograms have significant overlap. In this case the ACE bank does a poor job of identifying
exactly which gas is present when compared to BMA’s results in Fig. 8b.

The identification performance curves shown in Fig. 9 were created by selecting a range of
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thresholds, computing a confusion matrix for each threshold, and then using the partitioning and
weighting scheme described in Section 3 with the Dice weighting of Eq. 9. The resulting per-
formance curves demonstrate that ACE achieves a lower maximum than BMA; BMA has higher
identification performance over a wide range of thresholds, achieving its maximum near a thresh-
old of 0.5. The performance curves of Fig. 9 reflect approximately how well the blue and green
histograms of Fig. 8 are separated. Overall, the performance curves indicate that BMA selects the
correct gas more often than ACE for a wide range of thresholds.

We interpret these results as follows. With the chosen embedding parameters, several gases
have similar ACE scores since each ACE detector considers only a single gas. The embedded
chemical’s signature is similar to two of the other library signatures, leading to multiple gases
having similar ACE scores as indicated by the green and blue histograms of Fig. 8a; poor separation
of different gases leads to poor identification performance when compared to BMA, as shown in
Fig. 9. However, the ACE scores for the plume pixels are higher than for the background pixels,
leading to good detection performance as indicated by the ROC curve in Fig. 6, and the green and
red histograms of Fig. 5. In contrast, BMA achieves better separation of the correct and incorrect
gases leading to higher identification performance for a wide range of thresholds.

The identification performance curve has an unusual characteristic compared to detection met-
rics, which monotonically increase or decrease with threshold. The identification performance
curve is the average Dice score for the pixels within the plume at a number of thresholds. Per-
formance initially increases with respect to threshold, reaches a maximum, and then decreases to
zero at the maximum threshold. For small thresholds, several chemicals pass the threshold for
a large portion of the plume pixels. In the low threshold regions, many of the plume pixels are
partial identifications, while for high thresholds there are more misses as in the confusion matrices
of Fig. 4c. The number of chemicals in the output of each pixel determines its Dice weight. For
a library of 8 gases with 1 chemical embedded and 8 chemicals in the output, the weight is about
0.22, which is approximately the score BMA achieves at the lowest thresholds. For high thresh-
olds, many plume pixels do not pass the threshold at all, leading to many pixels with a score of 0,
causing the performance curve to deteriorate. Performance near one indicates that the majority of
plume pixels have been correctly identified, i.e. all of the chemicals actually present are correctly
identified and there are no extras.

Since the maximum identification performance of BMA is higher than ACE in this case, BMA
can perform better as an identifier given an appropriate threshold. Selecting a threshold is usually
accomplished by assuming that each threshold produces constant false alarm rate (CFAR). While
it is possible in principle to select an operating point in this fashion, BMA has a much higher false
alarm rate than ACE, as shown in Fig. 7.

Although BMA has a higher maximum performance than the ACE detector bank, the improved
identification performance of BMA also comes with the undesirable higher false alarm rate. Chain-
ing the two algorithms to have the detector followed by the identifier is an obvious way to have a
lower false alarm rate while having the superior identification performance of BMA, as we discuss
in Section 5.4.

5.3 Effects of Plume Thickness on Performance

The plume’s thickness (CL) and temperature are the major drivers for how easily detected and
identified the plume is. In the previous sections a single CL was used for embedding; in this section,
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Fig 7: False alarm rates of the two identifiers vs. threshold.

Fig 8: Scaled histogram of representative outputs for (a) ACE and (b) BMA using embedded data.
Incorrect gases are not easily separated from the correct gas using ACE, and are better separated
by BMA.

we examine identification performance for a range of CLs. We focus on the effects of CL instead
of temperature because the measured signal is approximately linear in terms of the temperature
contrast, as in Eq. 3. However, the non-linear relation between plume thickness and the measured
signal is one of the reasons chemical identification is challenging. The same background cube and
embedding region as in Section 5.1 were used for this section. First, a single gas was embedded for
a range of CLs and both algorithms run on the data. For consistency, the same gas as Section 5.2
was used. Second, a mixture of two gases was embedded and the experiment repeated. The second
gas used in the mixture was one that was spectrally similar to the first one. In both cases, the
background statistics were the same for each CL. Consequently, at any particular threshold, the
false alarm rate for each algorithm remained the same for all CLs.

Since we expected identification performance to deteriorate for sufficiently thick plumes, em-
bedding was done for two different ranges of CLs. The first range simulated very thin plumes,
while the second range was chosen to show identification performance reduction with thick plumes.
Fig. 10a and Fig. 10c have maximum CLs of 0.1, which corresponds to max(αs(λ)) = 0.1 in
Beer’s law of Eq. 2 and the measurement equation Eq. 1. This corresponds to a minimum trans-
mission of min(τp) = e−0.1 Therefore, the minimum transmission for the plume is about 90%
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Fig 9: Identification performance for ACE and BMA over a range of thresholds.

in this region. The change in signal is approximately linear with respect CL in for the small CL
region; however, in Fig. 10b and Fig. 10d, a larger range of CLs is shown. At a scaled CL of 10,
the plume is almost completely opaque (τp ≈ 0) at its maximum absorption channel.

For the embedded plume with a single gas, the identification performance for both BMA and
ACE for a range of CLs is shown in Fig. 10a. Performance is plotted with respect to CL for thresh-
olds from 0.1 to 0.99 for BMA and from 0.1 to 0.9 for ACE. For most of the selected thresholds,
BMA’s performance increases with CL and is generally higher than ACE’s performance for low
CLs. After peak performance, BMA’s performance slowly decreases, while ACE reaches a peak
quickly and then decreases quickly. As the plume gets even thicker, as in Fig. 10b, the performance
of BMA drops off from the maximum but ACE’s performance has several peaks, depending on the
threshold. The plume becomes too thick for BMA to distinguish individual gases and performance
degrades substantially. However, with a very high ACE threshold, decent performance for very
thick plumes can be achieved. Using ACE, it is possible to set a high enough threshold to separate
the correct gas from the others when the plume is very thick. However, this sacrifices perfor-
mance at small CLs, which is generally where standoff systems are expected to operate. For both
algorithms, the general trend is that as CL increases identification performance increases, then
reaches a peak, and then begins to degrade before completely failing. The poor performance of
both algorithms for very thick plumes indicates that multiple gases have similar scores and cannot
be separated by a single threshold, or that incorrect gases are being identified. When the plume
becomes very thick, both techniques fail in identifying the plume and should not be used.

To test performance for mixtures, two gases were embedded in the same location as the pre-
vious experiment. The CLs of both gases were varied. In Fig. 10c, the performance of both
algorithms is shown for a range of CLs. The trends are similar to the previous experiment except
that performance of the detector bank is uniformly worse than BMA. Again, the problem ACE has
in this case is that multiple gases have similar scores, and that the correct mixture of two gases is
not considered by ACE. BMA gives both correct gases high scores because the model containing
the mixture has a relatively high probability. The result is that BMA performs well for this mixture
relative to ACE. In Fig. 10d, a similar degradation in identification performance is seen as with the
single gas embedding. However, as compared to the single gas embedding, BMA performs better
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for the mixture over a wider range of CLs than ACE.

Fig 10: Identification performance of ACE and BMA with an plume at various concentration
pathlengths (CLs) and thresholds. (a-b) Single gas embedded in cube. (c-d) A mixture of two
gases embedded in cube. Thresholds were uniformly spaced between 0.1 and 0.9 for ACE, and 0.1
and 0.99 for BMA.

5.4 Detection Followed by Identification

The detection performance of the ACE filter bank is relatively high compared to BMA, but the
identification performance of ACE is lower than BMA. We argue that combining the two algo-
rithms in cascade leads to a system with superior performance characteristics compared to either
algorithm individually. The cascaded system uses the ACE detector bank as a first pass and then
passes only the hits to the BMA identifier and is shown in Fig. 11. Using the ACE bank as a
first pass for the data can yield a high plume detection rate at a low false alarm rate. Each pixel
that passes the threshold is then passed to BMA for identification, which makes a final identifica-
tion decision about those pixels. In this section, the cascaded system is evaluated using the same
embedding scenarios as before.
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Fig 11: The cascaded system design.

The cascaded system was run on the embedded data using pairs of ACE and BMA thresholds.
The number of false alarms for a particular threshold is constant with respect to CL, and is de-
termined primarily by the ACE threshold. We selected two ACE thresholds: 0.1 and 0.36. The
corresponding PFAs for both ACE and the cascaded system are 3 × 10−3 and zero; the second
threshold is high enough so that no background pixels pass the ACE threshold. The system was
tested at 10 evenly spaced BMA thresholds ranging from 0.1 to 0.99. The PFAs for BMA alone at
these thresholds are 0.002 at the highest threshold and 0.99 at the lowest threshold.

The resulting identification performance curves for the single-gas embedding are shown for the
low ACE threshold in Fig. 12a and for the higher threshold in Fig. 12b. The results when two gases
were embedded are shown in Fig. 12c and Fig. 12d for the low and high ACE thresholds. The blue
dashed curve shows the performance of the ACE detector bank alone; the solid green curves show
BMA’s performance alone; the red dotted curves are the cascaded system’s performance.

The cost of cascading the two algorithms compared to ACE alone is generally worse identifi-
cation performance at low CLs, which is more pronounced in Fig. 12d. However, at higher CLs,
the cascaded system achieves better performance than the ACE bank for most choices of BMA
threshold. Selecting the lowest BMA threshold of 0.1 actually results in worse performance than
the ACE system alone for the single-gas embedding. Selecting the lower ACE threshold leads to
a smaller difference between the green and red curves at smaller CLs but leads to a higher false
alarm rate. In practice, the maximum operational false alarm rate will dictate what ACE threshold
to select. However, it is unclear how best to set a BMA threshold in the cascaded system. From our
experiments, the trends show that low thresholds lead to higher identification performance when
the plume is very thin, but become comparatively worse as the plume thickens.

The results in Fig. 12d are a case where the combined system does substantially better than
ACE alone because the highest ACE scores occur for a gas that is not present in the plume. In this
case, the plume passes the threshold when the plume is sufficiently thick, but the correct gases are
not detected or identified until the identifier. Instead, the mixture is incorrectly identified by the
ACE detector as a completely different gas in the library. The detector is still performing the vital
role of reducing the overall false alarm rate since using BMA alone has a substantially higher false
alarm rate, as illustrated in Fig 7. The second pass by BMA correctly identifies the mixture more
often and substantially improves identification performance. However, using ACE at the higher
0.36 threshold leads to degraded identification performance for thinner plumes.

Since the probability of false alarm for the identifier is substantially higher than the detector
bank, the overall PFA should be set using the detector bank. It is tempting to set a threshold for the
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identifier that maximizes identification performance; however, the maximum depends on the prop-
erties of the plume, which are known for synthetic data, but are unknown in real data. Even with
good plume models, it is impractical to try and find a good threshold over all possible simulated
scenarios. Based on our results, BMA thresholds greater than 0.5 showed decent performance over
a range of CLs. The identification performance of the system is somewhat insensitive to the BMA
threshold except at the extremes close to 0 and close to 1. How to select the identification threshold
is an aspect for future work.

Fig 12: Performance of the cascaded system for BMA thresholds from 0.1 to 0.99. (a-b) Perfor-
mance for the single-gas embedded data with ACE thresholds of 0.1 and 0.36 respectively. (c-d)
Performance using the two-gas embedded data.

6 Conclusions and Future Work

The two main contributions of this work are the development of a performance metric for the
evaluation of chemical plume detection and identification algorithms, and a demonstration that a
detector followed by an identifier yields superior performance compared to using either alone. The
approach to performance evaluation using a weighted confusion matrix and performance evalu-
ation using the Dice metric are novel in this area of remote sensing. We applied our metric to
quantitatively demonstrate that a cascaded detector and identifier can, attain a high PD and low
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PFA, while also achieving a high ID score. Each constituent algorithm, by contrast, can achieve
only one of these goals.

In the future, other types of algorithms should be evaluated, and the number of datasets ex-
panded. Our study here is not exhaustive, but provides a framework place for further investigations.
In this work, a single dataset with a single synthetic plume was used, but a range of concentrations
and chemical mixtures should be incorporated into future work. As discussed previously, a study
of all possible combinations of parameters is impractical; instead, smart experimental design can
indicate what the overall trends are. In particular, a wider range of parameters and background
clutter data will give insight into the problem of threshold selection for a cascaded system.
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