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Abstract

An innovative technique for efficient SAS and multi-aspect sonar imaging has been developed and
tested with a software simulation. A reflecting object is modeled with an array of unit-amplitude point
targets with locations corresponding to sample points on a 2-D or 3-D sonar image. Each point target
has a predicted multi-aspect echo consisting of delayed signal samples at the elements of a receiving
array on the SAS vehicle, at a sequence of vehicle transmit/receive locations. Each multi-aspect echo is
used as a basis function, and each point on the object has its own basis function. Although these basis
functions usually are not orthogonal, they can still be used in a minimum mean-square error (MMSE)
estimator that models the object echo as a weighted sum of the multi-aspect basis functions. The
complex-valued weights are estimated and used as image samples. Part of the MMSE estimator forms a
conventional (maximum likelihood) SAS or multi-aspect sonar image via space-time matched filtering.
The MMSE estimator, however, also includes an image sharpening operation that compensates for basis
function non-orthogonality and significantly improves the conventional image, especially for a small
number of observations (e.g., three transmit/receive locations).

The processor is vulnerable to vehicle location/rotation measurement errors that degrade the images.
Various features from maximum likelihood and MMSE images have been tested for image-based error
correction. Although some promising features have been identified, their gradients with respect to
various measurement errors are not sufficiently reliable for consistent location/rotation error
compensation. The current estimator can be used without error compensation for one-pulse multi-
static imaging with one fixed transmitter/receiver and two more fixed receiving arrays. This
configuration can image underwater intruders with a single transmission and can be applied to multi-
static radar imaging. The estimator may be a viable model for animal sonar, especially if the animals
have learned to solve the location/rotation error correction problem.



Introduction

Minimum mean-square error (MMSE) estimation is applied to target imaging with synthetic aperture
sonar (SAS). The estimated parameters are sample values of target reflectivity. A display of these
samples is a sonar image of an object.

Estimated MMSE parameters typically are weights applied to data-independent orthonormal basis
functions. The approach given here, however, defines the kth basis function as the unit-amplitude

point-target echo from the Kth sample location of the imaged object, as observed at all available
receiver array elements and aspects. The resulting basis functions usually are not orthogonal. With this
basis, part of the MMSE target sample estimator uses the same space-time matched filtering as in
standard array processing, including conventional SAS. The full MMSE estimator, however, significantly
improves the imaging performance of the standard (maximum likelihood) process, especially for a
restricted number of observations from different aspects.

SAS processing synthesizes a large array by coherently processing echoes received by a moving vehicle
[1]. SAS mitigates a resolution discrepancy that affects sonar images. Range resolution can be
comparatively accurate when wideband signals are used, but azimuth/elevation resolution is degraded
by beam spreading when the target range is much larger than the size of the receiving array. Azimuth
resolution in radians is proportional to the wavelength at the signal center frequency divided by the
aperture (array) length [2], or the reciprocal of the number of wavelengths contained in the aperture. A
large synthetic aperture reduces the range/azimuth resolution discrepancy.

SAS can be interpreted as a process that compensates for the range/azimuth resolution disparity by
viewing a target from multiple aspects. Good range resolution at one aspect compensates for poor
azimuth resolution at a different aspect. Tomographic SAS estimates target reflectivity samples by
combining echoes from multi-aspect spotlights that have good range resolution and poor azimuth
resolution. The process typically uses the Radon transform [3], which (like conventional SAS) requires
data from many different aspects.

Application of MMSE estimation to SAS yields accurate images with echo data from only a few aspects.
Utilization of three aspects, for example, is demonstrated in this report. This capability has high payoff
for (1) efficient SAS processing, (2) three-dimensional imaging, (3) target imaging with any vehicle
trajectory that allows echo reception from a few different aspects (e.g., approaching a target along a zig-
zag path or hovering), (4) multi-static radar/sonar imaging, and (5) analysis of animal sonar capabilities.

The MMSE estimator requires highly accurate knowledge and/or tracking of target/vehicle locations
and the computational ability to invert high-dimensional complex-valued Hermitian matrices. The
multi-aspect images themselves ideally can be used for correction of location/rotation errors via
sharpness measures and other features. Progress has been made on image-based error correction, but
more research is necessary. This report motivates such work by illustrating the high payoff for MMSE
multi-aspect imaging.



MMSE coefficient estimation in a data model consisting of a sum of weighted basis functions

The relevant MMSE estimator pertains to estimation of the coefficients {ax} in a data model consisting
of a sum of weighted basis functions:

K .
data(t;) = Dt ab (t;) =l lny; k=1,..,K (1)
where the basis functions {b«(t)} are not necessarily orthogonal.
The mean square error is
1 2
MSE(a1,as,...,0k) = Zl";‘“i |data(t;) — >k, a, b, ()" . (2)

A necessary condition for minimizing MSE is that the derivative of MSE with respect to aj equals zero for

j=1,..,K. This condition is satisfied if

% data(t) = Ther by (¢ [b,(ED) =0, j=1,.,K 3)
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(4) can be written
_VvK i
r]. = Yk=1 Cjkak , J=1,..K. (7)
Eqg (7) corresponds to the matrix equation
r=Ca (8)

where the desired parameters a;,0;,...,a¢x are the elements of the column vector @ and (6 ) jndicates

that Ckj = [c]k]* which means that Cis Hermitian. The MMSE estimate of the coefficients {ax} is

dg=c1r. (9)



The mean-square error associated with this estimate is obtained by adding noise samples to the data
vector. Let

r=Ca+n (10)

. . . . . 2
where n is a column vector of K independent zero-mean complex noise samples with variance o /2.

Letting E{*} denote statistical expected value,
A T a *
MSE=(1/K)E{(d -a) (d-a) }
=(1/K)E{(CL r-a) (C-1 r-a)*}
= (1/K)E{[C “L(Ca+n )-a)]" [C -L(Ca+n )-a]* }
= (1/K)E{[ ¢ -1n]T[C-1n] ™). (11)
Further insight is obtained by letting K=2, i.e., by estimating the coefficients of two basis functions that

may not be orthogonal. If both basis functions have unit energy and their correlation coefficient in (6) is
p, then the basis function correlation matrix is

[, ]

In this case [4]
-1 2 1 -
€ =[1/(1-p%)] p
i [—p 1 ] 12
and

c-1n=[1/(1- 92)][_1p _1p] [zé

2 n, — pn
=[1/(1- 1 2
[1/( p)][—pn1+n2 . (13)

The assumed independence of the noise samples nq and n) implies that
E{n1ny*}=0 (14)

and the expected noise power is

2
E{|n1|2} = E{|ny|2}=0, /2. (15)



Substituting these definitions into (11-13),

MSE = (1/K)[ € -2n]"[C-2n]* =0 % [(1+1p12)/11- 0°| ] (16)

The mean-square error increases with |p|. MSE:cyn2 at | p| =0 (orthogonal basis functions) to infinity at
|p|=1 (perfectly correlated basis functions). This increase is very gradual at small |p| values. At
|p|=1/5, for example, MSE=1.13 onz and at |p|=1/3, MSE=1.4 onz_

Space-time echoes from target points as basis functions

The target/environment model is an array of point-targets or sample points, where the distance
between samples is the desired resolution of the sonar imaging system. Although this distance can be
different for range and azimuth/elevation, this report uses 2.5 cm (one inch) sample spacing in range
and azimuth in a 2-D target model. The unknown parameter ay is a complex coefficient (target sample

value) that multiplies a basis function corresponding to the kth target sample. This basis function is the
expected space-time echo from a unit-amplitude point-target at the location of the target sample.

Each point-target echo is measured with a signal transmitted from a small, wide-beam source on the
vehicle and received by the physical elements in a relatively small array mounted on the vehicle. The
signal is assumed to be frequency modulated or coded so as to increase bandwidth, thus improving
range resolution and SNR after the data-basis correlation in (5). The basis functions in (1) include the
outputs from all the elements in the receiving array, and are thus functions of array element index
(denoting relative element location) as well as time samples of the delayed transmitted signal observed
at the output of each element. The correlation of data with basis functions to form the r-vector
components in (5) is equivalent to a combination of delay-and-sum beam forming to focus on a target
point (spatial matched filtering) and temporal matched filtering with the expected echo time series at
each array element (signal samples with delays predicted from the locations of the emitter, the target
sample, and the array element).

Although 2.5 cm range resolution can be implemented, the physical array is much too small to achieve
2.5 cm azimuth resolution. Target samples seen from a single aspect are unresolvable if they are within
the same range resolution cell and within the array beam pattern, which has width proportional to
(range)x(wavelength)/(array length). The resulting C-matrix contains off-diagonal elements that are
nearly as large as the diagonal elements, and is ill-conditioned [5]. The desired inverse of this matrix
may not exist or may be unreliable. Even if a reliable inverse can be found, |p| is close to one and the
MMSE estimation error in (16 ) is large.



The azimuth resolution problem can be mitigated by extending the basis functions to incorporate
predicted echoes from multiple aspects. When the vehicle moves to a new aspect as in Fig. 1, a new

transmission from the new location results in a new set of space-time echoes from the same target
points as before. The new and old basis functions can be combined by adjoining them.

Fig. 1. Construction of a multi-aspect space-time basis function from predicted delays of separate
transmitted signals that are received at vehicle array elements at two path positions

Target point

.T
vvy vRvVYVYVY vyvy vR VYV Y
Physicalarrmay ~ Wide-beam  Physical array Physicalarray ~ Wide-beam  Physical array
receiving elements transmitter receiving elements receiving elements transmitter receiving elements

Direction of vehicle motion

The adjoining process is as follows: (1) The old basis function for target point k is represented as a
vector via a raster scan of all the relevant predicted time samples (corresponding to delayed signal
samples) received at array element #1 followed by all relevant predicted, delayed time samples received
at array element #2, etc. (2) Similarly, the new basis function for target point k is represented by a
raster-scan vector with new predicted signal delays corresponding to the new vehicle position. (3) The
old and new vectors are adjoined to form an extended basis function vector. (4) The same procedure is
applied to observed data, i.e., the observed space-time echo data samples from the old and new vehicle
positions are raster scanned and adjoined to form an extended data vector.

The resulting multi-aspect basis functions contain many delayed signal samples, but each such basis
function refers to a particular target point. The number of multi-aspect basis functions equals the
original number of target points K, and the dimension of the C-matrix (KxK) is unchanged.



The point spread function

It is useful to visualize the estimator response to an isolated, unit-amplitude point-target before

applying the cl sharpening operation. The resulting image represents the r-vector in (8) for the one-
point target distribution. This image corresponds to the point spread function of the sonar imaging
system without sharpening, i.e., to the usual maximum likelihood image that would be formed via
coherent space-time matched filtering of echoes from several different aspects. The conventional SAS
image is such a maximum likelihood representation, obtained via space-time matched filtering of stored
echoes from many observation points along the vehicle path.

The effect on the point spread function of using N observation points is shown in Figs. 2a-2c, where the
physical vehicle array is assumed to have a Gaussian beam pattern. Each unit-amplitude Gaussian beam
pattern is rotated and added to the others, resulting in a point spread function with a central sharp peak
with amplitude N. The peak-to-sidelobe level of the point spread function equals 1/N, where N is the
number of well-separated transmit/receive points along the vehicle path.

A top view of each point spread function resembles an asterisk with a dark dot at its center. Inclusion
of more aspects increases the number of line segments in the asterisk and darkens the center point.

-1
The smearing effect of the line segments on an image is eliminated by the C operation in MMSE
estimation of target image samples or (less efficiently) by increasing the number of observed aspects as
in conventional SAS and as illustrated in Figs. 2a-2c.
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Fig. 2a. Point spread function for three observation points at 0, 50, 100 m along the vehicle path,
corresponding to three adjoined basis functions from widely separated aspects.
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Fig. 2b. Point spread function for five observation points at 0, 25, 50, 75, 100 m along the vehicle path,
corresponding to five adjoined basis functions from widely separated aspects.
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Fig. 2c. Point spread function for seven observation points at 0, 17, 33, 50, 67, 83, 100 m along the
vehicle path, corresponding to seven adjoined basis functions from widely separated aspects.



The c1 operation of the MMSE estimator compensates for an imperfect point spread function; the
ideal version is an impulse. To implement this compensation operation, |p|max (the maximum

magnitude of the basis function cross correlation coefficients in the C-matrix) should be proportional to
the maximum sidelobe level of the point spread function, which is 1/N. The largest possible value of
|p | max €quals one. This value occurs when N=1, i.e., observation from a single aspect where wide

azimuth resolution causes target points at the same range to be unresolvable. The proportionality
constant between 1/N and |p|max Must therefore be unity:

IPlmax = 1/N (17)

where N is the number of different aspects or SAS observation points used for target imaging.

Resolution

System resolution can be investigated by imaging two point-targets placed close together. The
corresponding two-point target image has two basis functions, and K=2 in (1). The example in (12)-(16)
is relevant to this resolution problem. Since the corresponding 2x2 C-matrix has only one off-diagonal
term, the MSE result in (16) can be used with

|p|=|p|max=1/N (18)

where N is the number of target observations from different aspects. From (16) and (18), the mean-
square error for estimating the reflectivities of two closely spaced target points using the complete

MMSE estimator with C-1 sharpening and N different aspects or SAS observation points is

N2(N2+1) _ 2 2
MSEMMSE = m G, =2.220, forN=2

2

=1.410, for N=3 (19)
2

=1.136, for N=5

2
=1.06 0, for N=7

2
where O, /2 is the expected power of the noise samples that are added to the elements of the r-vector,

i.e., after space-time matched filtering. The corresponding SNR can be significantly larger than the SNR
corresponding to environmental noise at the matched filter inputs. For N=1, two points at the same
range cannot be separated to obtain their sample values and MSE is unbounded.
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Conventional SAS (maximum likelihood) processing vs MMSE estimation

The mean-square error for maximum likelihood (beam form and matched filter) SAS processing is
obtained by replacing the basis function correlation matrix C by a diagonal matrix D, where D is obtained
by setting the off-diagonal elements of C to zero or by using an identity matrix if the basis functions are

energy normalized. D1 compensates for a lack of basis function energy normalization, but does not

have the sharpening capability of the ¢ 1-matrix. The mean-square error for the maximum likelihood
estimator is

MSEpg =(1/K)E{(r-a) (r-a) "}
= (1/K)E{[(Ca+n )-a)] " [(Ca+n )-a]* }

= (1/K)E{L (C-)a+n] " [(C-Na+n]]*} (20)

For K=2,
MSEpL= (1/2)5{[ 0 4] [3§]+[Z§”T“2 ]+ 1] 1)
Using (14), (15), and (18),
MSEpy = O+ 101 2(lay12+]a,|2)
=0, % (1a,1241a,12)/Npy;2 (22)

where Ny is the number of observations at various aspects. Since the ML estimator is used in
conventional SAS, Ny, is the number of transmit/receive points along the vehicle path for construction

of a conventional SAS image.

In the maximum likelihood estimator with p#0, the value of the a1 estimate depends on a5 and vice-

versa. This mutual interference causes an increase in MSE.

The SNR after pulse compression (correlation of data with the basis functions) is

211412y 0.2
SNRp1= (lag|“+|az|4)/ Op (23)
and
2 2
MSEmL=C (1+SNRpL/NppLc)- (24)
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Equations (19) and (24 ) can be used to demonstrate the efficacy of the minimum mean-square error
(MMSE) estimator relative to the maximum likelihood (ML) version, which is the conventional SAS
receiver. For a two-point target, the MMSE estimator generally requires significantly fewer multi-aspect
observations N, where the difference depends on SNR. For targets with many more points, the MMSE
estimator is expected to be even more advantageous because of interdependence between a larger

number of estimated parameters (target sample values).

Before making numerical comparisons, it is important to understand the significance of the SNR
measured after computation of the r-vector in (5). Each component of the r-vector is computed by
forming the inner product of the data vector with a conjugated basis vector. Each of the basis vectors is
formed by a raster scan of delayed signal time samples from a particular target point received by vehicle
array element #1, followed by delayed signal time samples from element #2, etc. The resulting number
of space-time samples can be very large if the signal is modulated to increase its time-bandwidth

product.

The noise-free data vector is modeled by a weighted sum of the basis vectors, where the weights are
the unknown complex values of the target sample points. The correlation process in (5) forms a
weighted sum of the data space-time samples, with different weights for different target points. If
independent noise is added to each sample, then the noise variance after summation equals the sum of
the noise variances of individual samples before summation, and the signal amplitude after summation
equals the sum of the signal sample amplitudes before summation. The signal power after summation is
the square of the corresponding amplitude, and the ratio of signal power to noise variance after
summation (the internal SNR) is the external SNR multiplied by the number of samples in the space-time

data or individual basis vectors.

For multi-pulse coherent processing, the data vector from a new observation is adjoined to the data
vector from previous observations, and the basis vector corresponding to a given target point from the
new observation is adjoined to the previous basis vector corresponding to the same target point. The
resulting number of samples in the data vector or individual basis vectors equals the product of the
number of delayed time samples corresponding to the signal, the number of physical array elements on
the vehicle, and the number of independent multi-aspect observations N. Even for a relatively small
physical array with (say) 11 elements, a relatively short signal with (say) 100 independent complex time

samples, and only 3 observations from different aspects, the internal SNR associated with noise added

12



to the r-vector is the external (environmental) SNR multiplied by 3300 or increased by 35 dB.
Conversely, the externally measured SNR (average input signal power divided by average environmental
noise power) is smaller than the internal SNR by a factor of 0.0003 or -35 Db. If the echo amplitude
varies, the processing gain is best represented as the ratio of total multi-element, multi-aspect echo
energy to noise power, which corresponds to the usual pulse compression gain of 2E/Ng for

phase/frequency modulated signals, where N/2 is the noise power spectral density.

The ML and MMSE estimators can be compared by setting the mean-square error of the maximum
likelihood (conventional SAS) processor with N, multi-aspect observations in (24) equal to the mean-

square error of the MMSE estimator with N observations in (19):

2 N2(N2+1) _ 2
Oh (1+SNRML/NML2) = mcn (25)
or
NiL = {SNRyg /I N2V2+1) — 17322 (26)
(N2-1)2

where SNR), is internal to the processor, after correlation of the data vector with K basis functions

corresponding to K different target points. For the current example, K=2.

A MMSE estimator with N=3 observations corresponds to a ML processor with Ny, observations,

where (26) indicates that
_ %
Nt = [SNRp1/0.406] “°. (27)

If the internal SNR of the ML processor after pulse compression and array processing is 100 (20 dB) then
Npgr = 16 when N=3. If the MMSE estimator uses N=5 observations from different aspects, then the

corresponding ML processor with internal SNR=20 dB needs N = 20 such observations for equivalent

performance.

If the off-diagonal elements of C are set to zero, the inverse of the resulting diagonal matrix D can be
used to compensate for a lack of basis function energy normalization, but D1 does not have the
sharpening or decorrelation capability of the full ¢ 1 matrix. Standard array processing methods
(including SAS) generally disregard the full MMSE solution by using D instead of C, where D=I when basis
functions are pre-normalized. This formulation is useful, since (1) the resulting receiver corresponds to
maximum likelihood detection and still benefits from space-time correlation processing (beam forming
and pulse compression), (2) the two methods are nearly identical for small |p]|, which corresponds to a
large number of observations (transmit/receive points) at different aspects as in conventional SAS, and

(3) the dimension of the € matrix can become very large, making €1 difficult to calculate. This report,

13



however, will demonstrate the advantages of the full MMSE formulation for fast SAS imaging via
relatively few observations with spotlights and for other applications that utilize coherent multi-aspect
processing. In these applications, |p| can be reduced but often is not negligible.

Computer simulation with perfectly known vehicle locations and rotations

The simulation starts with a specification of the transmitted signal. The chosen signal is currently a
linear chirp with center frequency fp=37.5 KHz and bandwidth B=15 KHz, between a low frequency of

30 KHz and a high frequency of 45 KHz. The wavelength at the center frequency is A=0.04 m. The
nominal two-way range resolution cell (with SNR=1) is AR = ¢/(2B) = 0.05m. Signal duration is T=4 ms,
corresponding to a minimum range of cT/2=3m to avoid simultaneous transmission and reception. The
complex-valued signal is oversampled by a factor of 4, resulting in IT\yjax=720 complex time samples or

180 statistically independent samples for SNR calculations.

A wide-beam transmitter is at the center of the receiving array, which consists of 11 elements spaced
by the average wavelength (d=0.04m). The total receiving array length is 0.4 m. Echoes from the wide-
beam transmitter are assumed to be measured at each array element and stored, so that receiving
beams (spotlights) can be formed from stored data. The spotlights are steered via relative delays of the
element outputs in order to focus on the same target point from different locations along the vehicle
path.

The capability of the MMSE estimator is demonstrated by transmitting and receiving from only three
points along the vehicle path: x=0 m, 50m, and 100m. Fig. 2 (left side) shows the point spread function
corresponding to the chosen signal/array parameters and the three transmit/receive locations.

A target consisting of at least K=25 sample pointsin a k1/2 x k1/2 (at least 5x5) array is centered at
x=50m, y=50m. The distance between target sample points is 2.5cm in both x and y directions. This
distance is chosen to be half the signal range resolution cell (at SNR=1) in order to demonstrate MMSE
sharpening capability in multiple directions.

The distance from the transmitter to each target point and from each receiver array element to each
target point is computed for each of the three transmit/receive locations. These distances are used to
compute the corresponding delays along the ray paths shown in Fig. 1.

At each transmit/receive location, the signal, delays and specified target samples are used to obtain
the expected echo time samples at each of the receiver array elements from a target point with unit
reflectivity at each target sample location. The collection of these delayed signal samples constitutes a
partial space-time basis function corresponding to the chosen target point. This partial basis function
corresponds to one of (say) three transmit/receive locations along the vehicle path.

A different partial basis function is obtained for each chosen transmit/receive location. Each partial
basis function is converted into a vector of delayed signal samples by adjoining all the time samples from
the second array element to all the time samples from the first array element, and continuing until time
samples from all the array elements at a given transmit/receive location have been adjoined.

14



A multi-aspect basis vector by for target point k is obtained by adjoining the partial basis vectors from

all relevant (e.g., three) transmit/receive locations. There are K such vectors altogether, one for each
target point. The by vectors are used to construct the C-matrix for MMSE estimation of the a-vector

containing the K target samples as in (6). The dimension of the C-matrix is KxK.

A data vector corresponding to target point k with multi-aspect basis vector by is constructed by
multiplying all the elements of by by a simulated complex target sample ay and adding an independent

noise sample to each element.

The complete data vector corresponding to (1) is the sum of the data vectors corresponding to each of
the target points, and represents a space-time echo from the whole target, as observed at all specified
locations along the vehicle path.

The inverse of the C-matrix is computed with a customized complex version of subroutine MATINV
from Numerical Recipes [6]. For a 5x5 target image, C and ¢1 have dimension 25x25.

ML and MMSE target sample estimates of a 5x5 one-point image for various input (environment) SNR
values are shown in Fig. 3. Larger, multi-point images are in Fig. 4.

The imaging capability illustrated by the examples is impressive, but it will be shown that this
performance depends on very accurate measurement of transmitter/receiver location and orientation.
If the required measurement accuracy is unavailable, high-performance MMSE imaging depends on an
image-based correction method that can compensate for small location/rotation measurement errors.

Computer simulation with imperfectly known vehicle locations and rotations

The multi-aspect space-time basis functions depend on delays between the transmitter, various target
points, and receiver array elements at transmit/receive points along the vehicle path. These delays are
sensitive to differences between measured vehicle locations/rotations and their true values. Degraded
ML and MMSE images may contain information about the measurement errors that caused the
degradation. This information ideally could be used to mitigate the effects of the errors. A sharper
image is expected when the measured location/ rotation parameters are closer to their true values, but
it is not certain that an image sharpness measure can provide reliable corrections in a gradient search
optimization process. Since the C-matrix depends strongly on measured location/rotation, the MMSE
image is more strongly affected than the ML image by location/rotation errors. This sensitivity
difference provides additional information for error correction.

To appreciate the effects of location/position error, a one-point target sample distribution is used to
investigate a simple error in the computer simulation: The actual transmitter/receiver is 0.5 cm further
along the vehicle path at the first observation point than measurements indicate. Other errors at all
observation points are set to zero. The resulting images at SNR=1 (0 dB) are shown in Fig.5. The error-
free versions are in Fig. 3c.

The ML image in Fig. 5 is much less sensitive to vehicle location error than the MMSE image. Without
Fig. 3, an observer would not know the shape of the error-free MMSE image from inspection of Fig. 5.
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Fig. 3a. True sample values of a

one-point target located 50m from

th hicl th as in Fie.2. Th .000 .000 .000 .000 .000
€ vehicle path asintig.2. the .000 .000 1.000 .000 .000

samples are 2.5 cm apart in both 000 .000 .000 .000 .000

directions (half of a range .000 .000 .000 .000 .000
resolution cell at SNR=1).

.000 .000 .000 .000 .000

Fig. 3b. Amplitude normalized target sample estimates without noise or unknown transmitter/receiver
displacements, using echoes from three transmit/receive locations (Fig. 2a). Left: Maximum likelihood
(ML) estimate of the target samples in Fig. 3a. The ML estimate uses only the diagonal elements of the
C-matrix (the multi-aspect basis function correlation matrix), which implements basis function
normalization without sharpening. Right: MMSE estimate using the multi-aspect basis normalization
and sharpening capability of the full C-matrix. Samples are 2.5 cm apart. Range varies between 50m
and 71 m.

354 .231 .225 .231 .354 .000 .000 .000 .000 .000
.453 .306 .360 .306 .453 .000 .000 .000 .000 .000
.245 .635 1.000 .635 .245 .000 .000 1.000 .000 .000
487 .310 .347 310 .487 .000 .000 .000 .000 .000
331 .213 .225 .213 331 .000 .000 .000 .000 .000

Fig. 3c. Amplitude normalized target sample estimates with external SNR (ratio of average signal power
to average noise power at the receiver input) equal to 1 (zero dB). Transmitter/receiver
locations/rotations are known exactly. Both estimators use echoes from three transmit/receive locations,
as shown in Fig. 2a. Left: Maximum likelihood (ML) estimate of the target samples in Fig. 3a. Right:
MMSE estimate using the full C-matrix. Samples are 2.5 cm apart. Range varies between 50m and 71 m.

356 .227 .227 .231 .359 .033 .047 .036 .028 .027
457 .303 .357 .307 .459 .038 .007 .019 .041 .036
.244 627 1.000 .638 .242 .010 .061 1.000 .064 .045
485 .313 .340 .299 .482 .028 .064 .075 .043 .031
333 .225 .226 .218 .330 .023 .031 .028 .039 .013

Fig. 3d. Amplitude normalized target sample estimates with external SNR (ratio of average signal power
to average noise power at the receiver input) equal to 0.1 (-10 dB). Transmitter/receiver displacements
are known exactly. Both estimators use echoes from three transmit/receive locations, as shown in Fig.
2a. Left: Maximum likelihood (ML) estimate of the target samples in Fig. 3a. Right: MMSE estimate
using the full C-matrix. Samples are 2.5 cm apart. Range varies between 50m and 71 m.

362 .218 .230 .232 .369 .108 .155 .119 .091 .088
467 .295 .353 .309 .470 126 .023 .062 .133 .117
.242 .608 1.000 .644 .236 .034 .199 1.000 .209 .147
482 318 .327 .274 473 .093 .210 .245 .141 .101
339 .251 .228 .228 .331 .077 .100 .090 .128 .042
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Fig. 4. True target images (left), ML image estimates (center), and MMSE estimates (right) using three
aspects as shown in Fig. 2a. Input SNR=10 (10dB). Image samples are 2.5 cm apart. Range is 50m to
71m. Vehicle location/rotation parameters are known exactly.
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0000000
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Fig. 5. ML (left) and MMSE (right) images of a one-point target at SNR=1 (0dB) as in Fig. 3c, but with an
uncompensated 0.5 cm translation of the vehicle along its path at the first of three observation points.

376 .250 .266 .259 .363 .023 459 317 .716 .156
490 .296 322 .218 .406 395 .832 .769 .469 .358
.219 571 1.000 .750 .321 .245 468 1.000 .773 .447
501 .344 372 385 .522 181 207 449 212 .094
341 211 219 .228 .342 128 254 145 117 .073

Since the ML image in Fig. 5 is not very different from the ML image in Fig. 3c, what error magnitude
causes the ML image to degrade significantly? To answer this question, the position error was increased
from 0.5 cm to 1 cm. Fig. 6 shows that this increase is enough to significantly degrade an ML image
constructed from three observations. More observation points increase the likelihood of
location/rotation errors, but averaging may result in better images.

Fig.6. ML (left) and MMSE (right) images of a one-point target at SNR=1 (0dB) as in Fig. 3¢, but with an
uncompensated 1 cm translation of the vehicle along its path at the first of three observation points.

422 350 .187 .411 411 136 .282 .028 .389 .070
.764 710 .203 .419 .050 118 .706 .694 .590 .248
.538 .505 .770 1.000 .583 .239 422 1.000 .842 .651
485 .610 .436 .691 .652 271 .260 .961 .326 .435
494 353 125 415 371 515 771 162 .608 .478

The above experiments imply that very small perturbations of location/rotation parameters can have
large consequences. A gradient optimization process for location/rotation error correction should
estimate the gradients of an image quality measure using very small location/rotation differences, and
the constant that multiplies the gradients should be small to limit step size.

Since the MMSE image is very sensitive to location/rotation error, perhaps it can be used to correct
such errors if appropriate MMSE image features (e.g., sharpness measures) are used. The different
error sensitivity of ML and MMSE images provides another feature design opportunity; measures of the
disparity or similarity of the ML and MMSE images may be useful for location/rotation error correction.

An important criterion for choosing image features for error correction is that the change of the image
feature values for a small parameter change in a location/rotation model should reliably indicate the
direction of change of the investigated parameter in order to better model or correct the parameter.
This criterion should apply even when current estimates of the other parameters are erroneous. If an
image feature that satisfies this criterion exists, then it can be used in a gradient optimization procedure
for error correction.

Many image features have been tested, but none has consistently satisfied the above reliable gradient

criterion for MMSE location/rotation error correction. Some of the tested image features are described
in the following paragraphs.
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Minimum image entropy was considered as a focus criterion but was rejected because it tends to
make location/rotation corrections such that the estimated image is concentrated at a single point, even
if the true target image is different.

To understand this result, assume that the image consists of K unit-amplitude pulses, with all other
image samples set to zero. This image is very sharp and well-focused, since the pulses are not smeared.
The entropy of the pattern is obtained by first normalizing the sum of the pulses to one, resulting in K
pulses with amplitude (1/K) and all other samples equal to zero. The entropy of the normalized pattern
is

H= — Z',lepklog(pk)) (28)

where py = 1/K. The zero-valued points are neglected because as € approaches zero, € log(e) also

approaches zero. Substituting py = 1/K into (28),

H=-(1/K)[K log(1/K)]=log(K). (29)

Since log(K) is a monotone increasing function of K, the entropy gets larger as the number of pulses
increases. H is minimized when K=1, which corresponds to a one-pulse image.

Various sharpness measures were considered, with best results for the following version:

(1) The d-vector of estimated complex target samples is converted into a 2-D image.

(2) For each image sample, the magnitude of the difference between the sample and each of its
nearest neighbors is computed.

(3) The maximum nearest neighbor difference magnitude for each sample is obtained.

(4) The M largest maximum nearest neighbor differences for all image samples are found and their
average is calculated. Good performance was obtained for M=7, but this parameter can be
adjusted as required.

(5) The resulting sharpness measure is divided by the average magnitude of the d-vector
components for normalization.

An alignment measure was used to quantify translation and/or non-uniform sample weighting of a
MMSE image relative to the corresponding ML image. These effects are caused by the extra sensitivity
of MMSE estimates to vehicle location/rotation errors, relative to ML estimates. The alignment
measure is computed as follows:

(1) The ML and MMSE vectors containing estimated complex target samples are converted into 2-D
real-valued images of sample magnitudes, f(x,y| ML) and f(x,y | MMSE).

(2) Each of the 2-D images is normalized by dividing each sample magnitude by the average of all
sample magnitudes in the image.

(3) For each normalized image, the first moments in the x and y directions are computed, e.g.,
E(x| ML)=sum over x and y of x[f(x,y| ML)] and E(y| ML)=sum over x and y of y[f(x,y | ML)].

(4) The differences between first moments are squared and summed:

d2=[E(x| MMSE)-E(x| ML)]2 + [E(y| MMSE)-E(y | ML)]2 . (30)
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(5) The alignment measure is exp(-ad), where the constant a is used to control sensitivity. Perfect
alignment (as measured by first moment differences) corresponds to an alignment measure of
one; the measure decreases as first moment mismatch increases.

A composite measure consisting of a weighted sum of sharpness and alignment measures was used to
estimate location/rotation errors. The composite measure was incrementally maximized by choosing a
location/rotation adjustment proportional to the gradient of the measure. This gradient is the change in
the measure value divided by a very small increase in an estimated location/rotation parameter that
causes the change. A small adjustment of each parameter was made in turn, followed by another
sequence of small adjustments, until no further adjustments were required (convergence of the
gradient ascent procedure).

This process did not adequately compensate simulated location/rotation errors because the gradients
did not consistently indicate the correct sign (positive or negative) for required parameter changes.
Additional and/or better image features are needed for reliable image-based compensation of vehicle
location/rotation errors. As in the alignment measure, the utilization of two images (ML and MMSE)
with different error sensitivities should be helpful.

Three-dimensional imaging

Generalization to 3-D imaging is straightforward:

(1) The sparse sampling permitted by MMSE imaging allows time for the vehicle to move out of the
range-azimuth plane and back into the plane (if necessary) for the next in-plane observation.
The vehicle can weave up and down through the range-azimuth plane.

(2) Extra transmit/receive operations are performed while the vehicle is outside the range-azimuth
plane (at nonzero elevations).

(3) The kth basis vector is extended to include an extra out-of-plane observation by adjoining
delayed signal time samples from a raster scan of the receiver array elements to the previous

version of the kth basis vector. The new signal delays correspond to a new, out-of-plane echo

from the kth target sample point, which is now part of a cube rather than a square.

A zig-zag target approach trajectory may look more like a corkscrew pattern if 3-D imaging is used.
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Consequences of MMSE estimation with non-orthogonal basis functions

MMSE estimators generally avoid non-orthogonal basis functions because there is no well-defined
limit to the number of such basis functions that should be used (lack of completeness), resulting in extra
design constraints or specifications [7], e.g., the order of an autoregressive predictor [8]. In the present
case, the number of basis functions equals the number of estimated target samples, which depends on
the sample density (resolution) and size of the target image. In a cluttered environment, the minimum
image size is determined by the spotlight width, since the image can be adjusted to include fewer
samples in the range direction and more samples in azimuth. Assuming uniform sample spacing in range
and azimuth, the sample density is related to the range resolution cell AR, which varies inversely with
signal bandwidth and the square root of SNR.

Even if the basis functions were orthogonal rather than non-orthogonal, the same considerations as
above would apply if the number of basis functions equals the number of estimated target samples.

The consequences of specifying the density of estimated target samples {and thus the number of basis
functions for a given target size) are illustrated in Fig. 3, which illustrates SAS simulation results for a
sample spacing of AR/2, where AR corresponds to SNR=1. Accurate MMSE estimation with three
transmit/receive locations is obtained for SNR > 1, but accuracy is lost for a smaller SNR. Denser
sampling could have been used to take advantage of better resolution for SNR>1, and sparser sampling
could have been used for better efficiency when SNR<1.

Summary and conclusion

Synthetic aperture sonar (SAS) target imaging can be formulated as a minimum mean-square error
(MMSE) estimation problem instead of the usual maximum likelihood (ML) approach. Each basis
function for MMSE target sample estimation is associated with a different target point and is described
by predicted echoes received from that point. Multi-aspect SAS data are modeled as a weighted sum of
these basis functions, with weights corresponding to complex samples of the target image.

The first part of the MMSE estimator involves correlation of data with conjugated basis functions, and
corresponds to a conventional ML receiver or space-time SAS processor. The second part is a
sharpening operation performed with the inverse of the basis function correlation matrix.
Implementation of both parts of the MMSE receiver allows efficient imaging with only a few (e.g., three)
transmit/receive (T/R) operations at different aspects, and with a relatively small physical array (0.4 m at
37.5 kHz center frequency). If the vehicle position is known at each T/R location, the T/R points are not
constrained to lie on a straight-line vehicle path. The path should allow for observations at different
aspects, e.g., weaving above and below the range-azimuth plane for 3-D SAS imaging. Excessive input
signal-to-noise ratio (SNR) is not required, and low input SNR can be compensated by using a signal with
more independent time samples, a larger receiving array, or more T/R observations.

Impressive multi-aspect MMSE target images from only three T/R locations requires (1) highly accurate
vehicle location/rotation measurements with errors less than 5mm or (2) error correction via image
quality assessment. Extra image quality features are obtained by comparing ML and MMSE images,
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since MMSE is more sensitive than ML to location/rotation errors. Some promising features have been
found, but currently they are insufficient to solve the image-based error compensation problem. Some
motion-based errors can be minimized by using a Doppler tolerant signal with no range-Doppler
coupling [9].

MMSE multi-aspect imaging has some important applications in addition to SAS. A low-risk application
is to radar/sonar imaging from several fixed T/R platforms or a single fixed transmitter and several fixed
receivers (multi-static imaging). The risk is low because fixed transmitter and array element locations
can be accurately measured. Surface ships with locations/rotations that can be measured with lasers
also provide good potential platforms for multi-aspect MMSE radar/sonar imaging.

If receivers are already in place at the three locations in Fig. 2a, then one transmission from (say) the
center location is sufficient to generate a MMSE target image estimate. Subsequent transmissions can
be used to scan the environment, for tracking, or to monitor changes in a target image. This one-pulse
imaging capability is important for many applications, including underwater intruder identification with
fixed array positions.
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