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Abstract—Interference alignment (IA) has emerged as a
promising technique for the interference channel that guarantees
a constant degree-of-freedom (DoF) gain for each user. Although
successive interference cancellation (SIC) is known to achieve the
sum capacity of the MAC channel, the DoF allocation to the users
depends on the decoding order, e.g., the first few users get zero
DoF, while the last users being decoded see full DoF gain. For a
large number of users K, randomization between decoding order
introduces significant latency in the system. One the other hand,
orthogonal access schemes, e.g., TDMA/FDMA, waste significant
resources for large number of users. To combat these problems,
we propose a novel technique for the K-user multiple access
(MAC) channel with N receivers, called Cooperative Interference
Alignment (C-IA) and derive bounds on the DoF for each user.
Assuming K

2
≤ N ≤ K, we show that C-IA is sum-DoF optimal,

i.e, the sum rate scaling is as RΣ(SNR) = N log2(SNR) +
o(log2(SNR)) and simultaneously achieves a constant DoF-per-
user, i.e., Rk(SNR) = dk log2(SNR) + o(log2(SNR)) where
dk ∈ {1/2, 1}, without randomization between different decoding
strategies and without the use of orthogonal access schemes.

Index Terms—Interference Alignment (IA), Successive Inter-
ference Cancellation (SIC), Degrees of Freedom (DoF), Linear
Precoding, Cooperative Communications.

I. INTRODUCTION

Conventional wireless networks were previously thought to
be interference-limited, where interference is mainly caused
by mobile and base station signals. Interference suppression
increases capacity, spectral efficiency and possibly coverage.
In the seminal paper of Cadambe & Jafar [1], interference
alignment (IA) was proposed as a communication technique
for the interference channel and was shown to achieve half the
interference-free capacity for any number of users K at high
SNR. This fundamental result showed that wireless networks
are not interference-limited as long as the transmitters perform
precoding of their signals to align the aggregate inter-user
interference to half the signaling space at each receiver, and
the desired signal in the remaining half of the space.

There has been prior work studying the impact of transmitter
and receiver cooperation on the degrees of freedom of inter-
ference channels [2], [3]. In this paper, transmitter cooperation
will not be considered, but full receiver cooperation will be.
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The receivers can be thought of as being connected through a
backhaul link, thus being capable of joint decoding of the K
users’ messages. This is applicable in uplink transmissions in
cellular communications, where mobiles transmit independent
messages to a base station. A similar problem was stud-
ied in [4], where a novel technique based on interference
alignment and interference cancellation (IAC) with receiver
cooperation was proposed to combat the antennas-per-access
point throughput limit in MIMO LANs. Gollakota et. al [4]
analytically showed that IAC almost doubles the throughput
of MIMO LANs and also provided experimental validation.
Related work includes the development of network MIMO or
virtual MIMO, where multiple transmitters transmit signals
simultaneously and receivers cooperate for joint decoding.
In practice, this can be realized by utilizing a high-speed
backhaul link connecting the receivers. In network MIMO,
coordination of transmission and reception of signals at mul-
tiple access points allows for significantly higher spectral
efficiencies [5], [6], [7].

Orthogonal access schemes, e.g., TDMA/FDMA, have low
transmitter and receiver complexity and achieve a constant
DoF 1/K per user by splitting the available time (or fre-
quency) resources amongst the users. However, as the number
of users grow the DoF per user vanishes. Methods where all
users transmit information at the same time and frequency
space also exist, but the receiver complexity significantly
increases. While standard successive interference cancellation
and decoding (SIC) achieves the sum capacity of the Gaussian
MAC channel, this approach yields zero degrees of freedom
for the first K − N users being decoded and full degrees
of freedom for the remaining users [8]. Randomization on
the decoding order of the K user signals can be used to
guarantee a nonzero DoF on average, but increases latency
significantly since there are K! possible orderings. Further-
more, in practice, the first few user messages being decoded
will most likely result in errors when all transmitters are
strong, which through the process of successive interference
cancellation cause artificial interference to the remaining users.
In contrast, our approach first aligns the interference from
other strong users in appropriately-designed subspaces and the
desired user signal in the remaining subspace, thus leading to
a fair allocation of degrees of freedom among users and does
not suffer from decoding errors that may occur with high
probability when decoding a strong user in the presence of
multiuser interference.

In this paper, we propose a cooperative communication
scheme based on IA and SIC that can recover the desired
information with optimal sum-DoF and constant DoF per user
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without randomization and linear complexity scaling at the
receiver as a function of K. We stress that while IA is used
as an intermediate stage in our method, our technique and
formulation is different from that of standard IA [1] for the
interference channel.

II. PROBLEM FORMULATION

We consider the K-user multiple access channel with N
receivers as shown in Fig. 1. All nodes are equipped with
a single antenna. The received signal at the lth receiver is
modeled as:

y(l)(t) =

K∑
j=1

h(l,j)(t)x(j)(t) + z(l)(t) (1)

where h(l,j)(t) is the channel fading coefficient between
the jth transmitter and the lth receiver for the tth time
slot. The term x(j)(t) denotes the transmitted signal from
the jth user’s transmit antenna. The term z(l)(t) denotes
complex additive white Gaussian noise at the lth receiver,
i.e., z(l)(t) ∼ Nc(0, σ2). It is assumed that all noise terms
are independent identically distributed zero-mean complex
Gaussian random variables with unit variance. As in [1], we
assume a fully connected network with all channels drawn
i.i.d. from continuous distributions, and assume causal and
globally available channel state information (CSI).

The communication problem is stated as follows. Each of
the K transmitters wants to communicate an independent
message Mk to the receiver, where k indexes users, over a
block length T . It is assumed thatMk is uniformly distributed
over a set with size 2TRk(P ), where there is a power con-
straint P at the transmitters. Let Ht = {h(k,j)(s), g(k,l)(s) :
1 ≤ k ≤ K, 1 ≤ l ≤ L}ts=1 with H0 = and
Yt = {y(1)(s), . . . , y(N)(s)}ts=1. Then, a coding scheme for
block length T consists of K encoding functions f

(T )
k =

{f (T )
k,t }Tt=1, k = 1, . . . ,K such that

x(k)(t) = f
(T )
k,t (Mk,Ht), t = 1, . . . , T

where E[|x(k)(t)|2] ≤ P , and a decoding function such that

M̂ = (M̂1, . . . ,M̂K) = g(T )(YT ,HT ).

We write |Wk(P )| to denote the size of the message set.
For codewords covering T channel uses, the rate Rk(P ) =
log |Wk(P )|

T is achievable for each user k if the probabil-
ity of error for all messages can be simultaneously made
arbitrarily close to zero for large enough T . A rate tuple
(R1(P ), . . . , RK(P )) is achievable if there exists a sequence
of coding schemes such that P

(⋃K
k=1{Mk 6= M̂k}

)
con-

verges to zero as T → ∞. The capacity region C(P ) of the
multiple access channel is the set of all achievable rate tuples
R(P ) = (R1(P ), . . . , RK(P )).

A. Degrees-of-Freedom (DoF)

We adopt the same definition for the degrees of freedom
region as in [1]. We define the degrees of freedom region D
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Fig. 1: Block diagram of K-user multiple access channel with
N receiver nodes.

for the K-user multiple access channel as follows:

D =

{
(d1, . . . , dK) ∈ RK+ : ∀(w1, . . . , wK) ∈ RK+ ,

K∑
k=1

wkdk ≤ lim sup
P→∞

[ supR(P )∈C(P )

∑K
k=1 wkRk(P )

logP

]}
It can be shown that the DoF region D is a convex [9] and
closed [10] set. The total degrees of freedom (sum-DoF) is
defined as dΣ := maxD

{∑K
k=1 dk

}
.

III. MULTIPLE ACCESS CHANNEL (MAC) CAPACITY &
DEGREES OF FREEDOM

The received signal at the N -antenna receiver is given by:

y = Hx̄ + z (2)

where H is the N×K channel matrix and z is complex white
Gaussian noise with covariance σ2IN . The sum-capacity for
the fast-fading Gaussian MAC channel is given by [8]:

CMAC = E
[
log2 det

(
IN + PHH∗K−1

z

)]
(3)

We can rewrite the rate expression as RMAC(P ) =
log2 det

(
IN + P

σ2HH∗
)
. Since rank(HH∗) = N a.s., the

sum-DoF available in the MAC channel can be calculated as
dMAC = limP→∞

RMAC(P )
log2 P

= N .

IV. COOPERATIVE INTERFERENCE ALIGNMENT AND
DEGREES OF FREEDOM

Define L ∆
= K − N as the dimension of the nullspace of

the channel matrix H ∈ CN×K . In this section, we present
the fundamental result of the paper assuming L ≤ K

2
1.

Theorem 1. The following bounds on the degrees of freedom
(DoF) for the MAC channel are achievable with C-IA, given
L ≤ K

2 ,

dΣ = max
d∈D

K∑
k=1

dk ≥ N (4)

In addition, the DoF achievable per user satisfies
1

2
≤ dk ≤ 1,∀k (5)

1We conjecture that a similar method can be applied and performance
guarantees can be derived for the case L > K

2
, but this is beyond the scope

of this paper.
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The achievability proof is based on a cooperative interfer-
ence alignment (C-IA) algorithm, under which the receivers
cooperate to decode the K information streams. This method
consists of three main phases:
• Phase 1: Partial matrix diagonalization, via linear trans-

formation with Rpmd.
• Phase 2: Interference alignment design to recover L

source streams {x(k)}Kk=N+1.
• Phase 3: Successive interference cancellation to recover

the remaining N source streams {x(k)}Nk=1.
Let M = Mn = (n + 1)D + nD. We show that the points

(d1(n), . . . , dL(n), dL+1(n), . . . , dN (n), dN+1(n), . . . , dK(n)) =(
(n+1)D

Mn
, . . . , n

D

Mn
, 1, . . . , 1, (n+1)D

Mn
, . . . , n

D

Mn

)
lies in the DoF

region D for some D ∈ N (which depends on L only).
As the block length n grows, this sequence converges to
( 1

2 , . . . ,
1
2 , 1, . . . , 1,

1
2 , . . . ,

1
2 ), which implies that the bounds

(4) and (5) hold, thus proving Theorem 1.
We consider communication over a symbol extension of the

original channel as in [1]. Collecting the received signal at the
ith receiver over M = Mn time slots, we obtain from model
(1):

y(i)(t) =

K∑
j=1

H̄(i,j)(t)V(j)x(j)(t)︸ ︷︷ ︸
=x̄(j)(t)

+z(i)(t) (6)

where the channel matrices corresponding to M symbol ex-
tensions are H̄(i,j)(t) = diag

({
h(i,j)((t− 1)M + l)

}M
l=1

)
.

The signals at the N receivers can be collected for receiver
processing in a vector y ∈ CNM given by:

y(t)
∆
=

y
(1)(t)

...
y(N)(t)

 = H̄(t)x̄(t) + z(t) (7)

where x̄(t) =
[
x̄(1)(t)T , . . . , x̄(K)(t)T

]T
, z(t) =[

z(1)(t)T , . . . , z(K)(t)T
]T

and the channel matrices are

H̄(t) =

H̄
(1,1)(t) . . . H̄(1,K)(t)

...
. . .

...
H̄(N,1)(t) . . . H̄(N,K)(t)


To simplify the notation, we often suppress the time index t
in the sequel.

A. Phase 1: Partial Matrix Diagonalization

Using a linear transformation Rpmd ∈ CNM×NM , y in (7)
can be expressed in a different basis as

y̌ = Rpmdy

≡


T1 . . . 0M G(1,1) . . . G(1,L)

0M . . . 0M G(2,1) . . . G(2,L)

...
. . .

...
...

. . .
...

0M . . . TN G(N,1) . . . G(N,L)





x̄(1)

...
x̄(N)

x̄(N+1)

...
x̄(K)


(8)

corresponding to a matrix-type diagonalized form. In fact,
Rpmd can be chosen such that Tm = T for all m = 1, . . . , N .
One choice of Rpmd that leads to partial matrix diagonal-
ization in (8) is given by partial channel matrix inversion.
Consider the partitioning of the channel matrix H given by
H = [H1|H2], where H1 has size NM × NM , and choose
Rpmd = (H1)−1. Then, we obtain

y̌ = Rpmdy = [INM |(H1)−1H2]x̄ + ž

where ž = (H1)−1z. Thus, with this choice Tm = IM for all
m = 1, . . . , N . Recursive algorithms for generating Rpmd can
be obtained by implementing the matrix inverse (H̃1)−1 by
exploiting its structure. For instance, in our case, each M×M
submatrix of H is a diagonal matrix with nonzero elements
almost surely, implying that the matrix Rpmd = (H1)−1 will
also have the same structure.

B. Phase 2: Interference Alignment for Recovery of L Source
Streams

Each subvector of y̌ in (8) takes the following form:

y̌(k) ≡ TkV
(k)x(k) +

L∑
l=1

G(k,l)Ṽ(l)x(N+l), k = 1, . . . , N

where we suppress the additive noise term using ‘≡’, and
we re-defined V(N+l) =: Ṽ(l). Thus, each subvector con-
tains only interference from L source streams {x(k)}Kk=N+1.
The task of this phase is to use interference alignment
to recover these L source streams. The precoding matrix
Ṽ(1) ∈ CM×(n+1)D will serve as a pivot, the precoding
matrices {Ṽ(l)}Ll=2 are of size M × nD, {V(k)}L−1

k=1 are of
size M × (n+ 1)D, V(L) is M × nD, and {V(k)}Dk=L+1 are
of size M ×M . Define ∆ = (n+ 1)D − nD.

We will sequentially decode the L streams
x(K), . . . ,x(N+1), and after we decode each stream, we
subtract its interference from all y̌(k) to increase capacity.
This interference subtraction step simplifies the interference
alignment design by reducing the number of constraints
that need to be simultaneously satisfied. Let Si denote the
index of the variable being recovered, i.e., if x(N+l) is being
recovered at stage i, then Si = {l}.

We start this process from k = 1 and aim to decode x(K) =
x(N+L) ∈ C(n+1)N by aligning all interference in a subspace
of dimension (n+1)D which is linearly independent from the
subspace of dimension nD that x(N+L) lives in. This allows a
simple linear receiver, e.g. zero-forcing, to be used to decode
x(N+L) with DoF dK = dN+L = nD

M . In the first stage, we
decode x(N+L), so S1 = {L}.

y̌(1)(1) := y̌(1) = G(1,L)Ṽ(L)x(N+L)

+

T1V
(1)x(1) +

L∑
l′=1
l′ /∈S1

G(1,l′)Ṽ(l′)x(N+l′)


To align the signals in the brackets into the same subspace
of dimension (n + 1)D, we require the following set of
constraints:

T1V
(1) = G(1,1)Ṽ(1) = · · · = G(1,L−1)Ṽ(L−1) (9)
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Fig. 2: Interference Alignment Phase of C-IA algorithm. The symbol streams x(K), . . . ,x(N+1) are sequentially decoded from
y̌(1), . . . , y̌(L) respectively by aligning the interference (magenta) into one subspace that is linearly independent from the
desired signal (blue) subspace. After decoding each stream, its decoded interference is subtracted from all equations as shown
in the crossed-out regions. In each equation, all the variables corresponding to the magenta effective channel matrices are
aligned in interference subspace when decoding the variable associated with the blue effective channel matrix.

We note that since V(1) only appears in the subvector y̌(1)

and not on any other subvectors {y̌(l)}l 6=1, so the design of
the precoding matrix V(1) is decoupled from the design of
{Ṽ(l)}Ll=1. It can be computed as V(1) = T−1

1 G(1,1)Ṽ(1).
Once (9) is satisfied, we can rewrite:

y̌(1) ≡ G(1,L)Ṽ(L)x(N+1) + T1V
(1)

x(1) +

L∑
l=1
l/∈S1

x(N+l)


Assuming the subspaces span(G(1,L)Ṽ(L)) and
span(T1V

(1)) are linearly independent a.s., then x(K)

can be decoded with DoF dK = nD

M using a linear receiver
that nulls out the interference.

Next, subtract the decoded interference associated with x(K)

from all y̌(k)(1) to form y̌(k)(2), and consider k = 2. To
decode x(K−1) = x(N+L−1) ∈ CnD

via a linear receiver, let
S2 = {L− 1} and write:

y̌(2)(2) = y̌(2)(1)−G(2,L)Ṽ(L)x(N+L)

≡ T2V
(2)x(2) +

L∑
l=1
l/∈S1

G(2,l)Ṽ(l)x(N+l)

= G(2,L−1)Ṽ(L−1)x(N+L−1)

+

T2V
(2)x(2) +

L∑
l=1

l/∈S1∪S2

G(2,l)Ṽ(l)x(N+l)


To align the signals in the brackets above into the same
interference subspace of dimension (n+ 1)D, we require:

span(G(2,l)Ṽ(l)) ⊆ span(G(2,1)Ṽ(1)),

∀l ∈ {1, . . . , L}\{S1 ∪ S2}
T2V

(2) = G(2,1)Ṽ(1)

Proceeding sequentially, for the kth stage we aim to decode
x(K−k+1) and we obtain:

y̌(k)(k) = y̌(k)(k − 1)−
L∑
l=1

l∈
⋃n−1

i=1 Si

G(k,l)Ṽ(l)x(N+l)

≡ TkVkx
(k) +

L∑
l=1

l/∈
⋃n−1

i=1 Si

G(k,l)Ṽ(l)x(N+l)

= G(k,Sk)Ṽ(Sk)x(N+Sk)

+

TkVkx
(k) +

L∑
l=1

l/∈
⋃n

i=1 Si

G(k,l)Ṽ(l)x(N+l)


where Sk = {L− k+ 1}. To align the signals in the brackets
above in the same interference subspace we require:

span(G(k,l)Ṽ(l)) ⊆ span(G(k,1)Ṽ(1)),

∀l ∈ {1, . . . , L}\

{
k⋃
i=1

Si

}
span(TkV

(k)) ⊆ span(G(k,1)Ṽ(1))

In general, the interference alignment (IA) constraints can
be summarized as:

For each k = 1, . . . , L− 2:

span(G(k,l)Ṽ(l)) ⊆ span(G(k,1)Ṽ(1)),∀l ∈ {2, . . . , L− k}.
(10)

We can reformulate the constraints by first simplifying the
constraints involved for k = 1. We set

G(1,2)Ṽ(2) = G(1,3)Ṽ(3) = · · · = G(1,L−1)Ṽ(L−1) (11)

where all these matrices have size M × nD. Once Ṽ(2) is
obtained, we obtain the remaining precoders via (11):

Ṽ(l) = (G(1,l))−1G(1,2)Ṽ(2) (12)



5

Plugging (12) into (10), we reformulate the IA constraints as:

For each k = 1, . . . , L− 2:

span(Tk,lṼ
(2)) ⊆ span(Ṽ(1)),∀l ∈ {2, . . . , L− k}. (13)

where Tk,l := (G(k,1))−1G(k,l)(G(1,l))−1G(1,2). According
to (13), there are D+1 = (L−2)(L−1)

2 IA constraints that need
to be satisfied. Thus, the complexity scaling is only Θ(L

2

2 ).
This is a consequence of the partial matrix diagonalization
phase of the C-IA method; otherwise the IA complexity
scaling would be Θ(KN), which can be quite significant for
a large number of users K.

Similarly as in Cadambe and Jafar [1], we may
choose the columns of Ṽ(2) and Ṽ(1) using a
product-based construction, i.e., from the sets An−1 ={(∏

(k,l)∈ΓL
(Tk,l)

αk,l

)
w : αk,l ∈ {0, 1, . . . , n− 1}

}
and

An =
{(∏

(k,l)∈ΓL
(Tk,l)

αk,l

)
w : αk,l ∈ {0, 1, . . . , n}

}
,

respectively, where ΓL :=
{(k, l) : k = 1, . . . , L− 2, l = 2, . . . , L− k} and
w = 1 ∈ CM is the all-one vector. Note that the cardinality
of the index set ΓL is |ΓL| = D + 1. We remark that L > 2
is implicitly assumed here in order to have the index set ΓL
non-empty. For L = 1 or 2, the IA conditions become trivial.

Once the precoding matrices {V(k)}Kk=N+1 = {Ṽ(l)}Ll=1

are chosen to satisfy the constraints (13) (and equivalently
(10)), the remaining precoding matrices {V(k)}Nk=1 can be
obtained through a simple inversion:

V(k) = T−1
k G(k,1)Ṽ(1), k = 1, . . . , L− 1

V(L) = T−1
L G(L,2)Ṽ(2)

V(k) = i.i.d. random M ×M matrix, k = L+ 1, . . . , N

Linear independence of the signal and interference subspaces
can be guaranteed using the arguments presented in [1].
Thus, the signal streams {x(k)}Kk=N+1 can be completely
decoded by zero-forcing the interference with the following
DoF guarantees:

dK(n) = · · · = dN+2(n) =
nD

M
, dN+1(n) =

(n+ 1)D

M
(14)

C. Phase 3: Successive Interference Cancellation for Recov-
ery of K − L Source Streams

After subtracting the decoded interference corresponding to
the symbol streams {x(k)}Kk=N+1 from {y̌(k)}Nk=1 (see (8)),
we obtain for k = 1, . . . , N :

y̌(k) −
L∑
l=1

G(k,l)V(N+l)x(N+l) ≡ TkV
(k)x(k)

Since the elements of the diagonal matrix Tk are nonzero
almost surely, we can decode {x(k)}Nk=1 with DoF equal to
rank(V(k))

M . Recalling the dimensions of the precoders, this
implies that

d1(n) = · · · = dL−1(n) =
(n+ 1)D

M
, dL(n) =

nD

M
(15)

Combining (14) with (15), it follows that dl(n)+dK−l+1(n) =
1 for l = 1, . . . , L. Furthermore, we have dL+1(n) = · · · =
dN (n) = 1. This implies maxd∈D

∑K
k=1 dk ≥ K−L and 1 ≥

limn→∞ dk(n) ≥ limn→∞
nD

(n+1)D+nD = 1
2 for all k. Thus,

the DoF bounds in (4) and (5) hold. This phase concludes the
C-IA decoding algorithm.

V. CONCLUSION

We propose a novel communication technique for the MAC
channel, cooperative interference alignment (C-IA), which
combines the ideas of interference alignment and successive
interference cancellation. We prove that C-IA is sum-DoF
optimal and derive bounds on the per-user DoF gain, show-
ing that under mild conditions, nonzero DoF are achievable
for all users simultaneously. An interesting open problem is
extending the DoF analysis for delayed CSI.
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