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Abstract—A common problem in modern graph analysis is the
detection of communities, an example of which is the detection
of a single anomalously dense subgraph. Recent results have
demonstrated a fundamental limit for this problem when using
spectral analysis of modularity. In this paper, we demonstrate
the implication of these results on community detection when
a cue vertex is provided, indicating one of the vertices in
the community of interest. Several recent algorithms for local
community detection are applied in this context, and we compare
their empirical performance to that of the simple method used
to derive the theoretical spectral limits.

I. INTRODUCTION

In many applications, the data of interest take the form of
entities and the relationships between them. These may rep-
resent a broad, diverse set of data types, from communication
between people to interactions between proteins. In all of these
diverse contexts, the relational data are typically represented
as a graph.

One of the common problems among analysts working with
graph-based data is subgraph detection. Given a large set of
entities and their relationships, connections, and interactions,
it can be difficult to determine if there is a particular subset
of entities that requires special attention [1], [2]. Typically,
the objective is to find a relatively small set of vertices whose
topology is inconsistent with some notion of expected behavior
in the graph. The classical planted clique problem embodies
this in a simple form.

In the planted clique problem, the objective is to locate a
subset where all possible connections exist, when connections
across the rest of the graph occur with a fixed probability.
This simplified scenario has enabled the derivation of hard
detectability limits [3], [4]. While simplified for mathematical
tractability, this problem yields valuable insight into detectabil-
ity in more complicated networks derived from real data.

The planted clique problem is traditionally focused on
uncued detection, i.e., determining the nodes that comprise
the clique without any additional information about which
entities are interesting. In practice, however, typically some
additional knowledge priors are available. For example, in an

This work is sponsored by the Assistant Secretary of Defense for Research
& Engineering under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the authors
and are not necessarily endorsed by the United States Government.

advertising application in a social network, a company may
have knowledge that a person uses their product, and wants to
advertise to other network users who have close relationships
with their current customer. Upfront knowledge priors enable
more efficient use of resources by targeting a search that could
consider the entire graph by having it prioritize entities in the
graph that are close to the cue. Understanding the implications
that recent subgraph detection bounds have on the setting
where a cue is present will improve our understanding of
detectability in this common alternative context.

In this paper, we investigate the implication of recent
spectral limits of planted clique detection to cases where one
entity in the clique is revealed. Using a simple method to
reduce the number of entities considered, we can directly apply
current bounds for uncued detection to the reduced dataset.
The resulting bounds show that, under the right circumstances,
it is possible to detect a clique that reduces its size as
the overall graph gets larger. We demonstrate empirically
that current cued subgraph detection methods go through a
detectability phase transition at the same point as the simple
filteringmethod, suggesting that the analysis applied here has
implications for performance using several different methods.

The remainder of this paper is organized as follows. Sec-
tion II formalizes the problem and defines our notation. In
Section III, we review the recent spectral bounds on uncued
planted clique detection, and their extension to planted dense
subgraph detection. Section IV derives an extension of these
results to cases where a cue provides a simple up-front entity
filtering method. In Section V, we define a set of experiments
in which we compare several cued subgraph detection algo-
rithms from the open literature to the simple filtering method,
and Section VI outlines the results of these experiments. We
conclude the paper in Section VII with a brief summary and
directions for future work.

II. PROBLEM MODEL
A. Definitions and Notation

In the problem we consider, we are given a graph G =
(V, E), which is comprised of a set of vertices V' (representing
entities), and a set of edges E (the relationships between the
entities). We denote the number of vertices in the graph by
N = |V|. There is inherently a subgraph of interest, whose



vertices are denoted by Vs C V, and its size is denoted
k = |Vs|. The graphs considered in this paper are unweighted
(meaning connections either exist or do not, with no notion
of magnitude) and undirected (meaning all connections are
bidirectional).

Since the bounds we derive are based on spectral methods,
we will make use of matrix representations of the graph. The
adjacency matrix A = {a;;} of the graph G is an N x N matrix
where a;; is nonzero only if there is an edge in E' between
vertices v; and v;. (This requires an arbitrary labeling of the
vertices with integers from 1 to IV.) Since G is unweighted, A
will be binary, and since G is undirected, A will be symmetric.
The degree of v; (the number of edges connected to it) is
denoted by d;.

Other matrix representations of graphs have been used in
the community detection literature. The graph Laplacian has
been used to approximate the solution to the min-cut problem,
where the objective is to make the graph disconnected by
removing the smallest number of edges. The Laplacian is
defined as

L:=D— A, (1
where D is a diagonal matrix where the entry in row ¢ and
column 7 is d;. When there is some notion of the probability
of connections, the modularity matrix has also been used for
community detection [5]. This matrix is used to optimize the
partition of a graph according to a different criterion: creating
a partition where there are a greater-than-expected number of
edges on either side of the partition, and fewer edges than
expected crossing it. The modularity matrix is defined as

B:=A-E[4]. )

Thus, B represents the residuals obtained when subtracting the
expected adjacency matrix from the observed. In the traditional
planted clique problem, the background graph is an Erdds-
Rényi random graph, i.e., a graph where each pair of vertices
shares an edge with equal probability p.

B. Cued Subgraph Detection

In the cued subgraph detection problem, we observe the
graph GG and are given a cue vertex v. € Vg. Our objective
is to determine the remainder of Vg. This is typically done
by computing a test statistic z(v) for each v € V' \ {v.}, and
estimating the subgraph of interest to be

Vs ={v.} U{v e V\{v}:z(v) >t}

where ¢ is a threshold that can be varied. Each of the algo-
rithms we consider in Section V follows this format. In this
paper, we evaluate performance based on receiver operating
characteristic (ROC) metrics. Here, empirical probability of
detection is

CVenVs| -1

P TV -1

(where 1 is subtracted in the numerator and denominator since
we do not account for the cue vertex in the evaluation), the
empirical false alarm rate is

Do = Vs \ Vsl
VA Vs’
and overall performance of a detection algorithm is evaluated
based on the area under the ROC curve (AUC).

ITII. UNCUED SUBGRAPH DETECTION BOUNDS

We will specifically consider recent spectral bounds for
planted clique detection [4]. This work proposed a simple
algorithm for planted clique detection by thresholding the
principal eigenvector of the modularity matrix B, and showed
that there is a sharp detectability threshold that can be derived
via a random matrix theoretic analysis of the problem. The
algorithm is as follows. Compute the principal eigenvector
u of the modularity matrix B, computed with respect to an
Erd6s-Rényi random graph. The estimated subgraph is then
computed as

Vg = {vi VNwl > Fgl (1 - %) } , 3)
where F/\_f&1 is the inverse cumulative density function of a
standard normal distribution and « is the desired false alarm
rate. This algorithm is based on the fact that the modularity
matrix of a planted clique in an Erdds-Rényi graph is well
approximated by a rank-1 perturbation of a Wigner matrix
(a symmetric random matrix where all entries have zero mean
and equal variance), which has a known eigenvalue distribution
that enables an analytical detection bound. The entries in
the eigenvectors of a Wigner matrix also appear normally
distributed as N — oo. These observations yielded the
following theorem.

Theorem 3.1 (Nadakuditi [4]): Consider a k-vertex clique
planted in an N-vertex graph with edge probability p, where
the clique vertices are identified using (3) for a significance
level o Then, for fixed p, as k,n — oo such that k/\/n —
B € (0,00) we have

as. |1 if 8> Beie := /7%
P(clique discovered) — { B> P =r (4

o otherwise.

The detection threshold is based on the relationship between
the nonzero eigenvalue of the rank-1 perturbation, § = k(1 —
p), and the maximum eigenvalue of the random background,
R = \/4Np(1 —p). This can easily be extended to cases
where a dense subgraph is embedded rather than a clique. If
the subgraph has a probability of internal connection p;,, > p,

it will be detectable if
k(pin —p) > VNp(1 = p) )

as N — oo. Note that, if p — 0 as N — oo, then the right
hand side of (5) will approach the square root of the average
degree. The left hand side will approach the average internal
degree of the subgraph if p = o(p;n), and will approach a
constant multiple of this quantity if p = ©(p;y,).



IV. CUED SUBGRAPH DETECTION BOUNDS
A. Cued Planted Clique Detection Setting

We will start by considering the planted clique problem
when one of the clique vertices is revealed. Since all possible
edges exist between clique vertices, we know that all clique
vertices are in the one-hop neighborhood of the cue vertex. We
denote by N;(v) the i-hop neighborhood of v, i.e., the vertices
that can be reached from v via a path of length ¢ or less. This
allows a simple filtering procedure to incorporate the cue: We
can consider only Nj(v.) rather than all of V. Since the edges
in the background are all independent, when considering the
induced subgraph of Ny (v.)\{v.} (i.e., the graph consisting of
all edges in E' that occur between the vertices in the subset),
the objective it to solve another planted clique problem. In
this case, the clique has k — 1 vertices, and the size of the
background follows

|N1(ve) \ {ve} =k — 1 +d., (6)

where d_. is drawn from the binomial distribution 3 (N —k,p).
We can use this fact to derive bounds for the cued case when
applying the simple spectral algorithm to the cue’s one-hop
neighborhood.

B. Bound Derivation

There are a few interesting cases for planted clique detec-
tion, which consider different growth rates for the background
probability. First, consider the case where the background
probability remains constant as the graph grows. In this
scenario, the average degree of the graph grows linearly with
N. In this case, the distribution B(N — k, p) will approach a
normal distribution N'((N — k)p, (N — k)p(1 — p)). We want
to determine when the k£ — 1 clique in the cue’s neighborhood
will be discovered with high probability, meaning that

h=1)(1=p) > = 1+dp—p). @

Assuming k = o(N), the d, term will dominate. As N grows,
(N —k)p+C+/N — k for a constant C will be a fixed number
of standard deviations from the mean of cfc, meaning that dc
will take on values greater than this with fixed probability.
Thus, by considering a threshold (N — k)p + C(N — k)°->+°,
0.5 < § < 1, we capture a polynomially increasing number
of standard deviations, which will result in an exponential
reduction in the probability of d, crossing the threshold as
N increases. The asymptotic bound, therefore is

N2
k> p.
\/1—p

The threshold value for the clique size still scales as the square
root of the number of total vertices, but it can be a constant
factor (,/p) smaller than in the uncued case.

In practice, graphs typically do not increase their average
degree linearly as the number of vertices increases. Studies
have shown that the average degree often follows a sublinear
polynomial [6]. Thus, it is also important to consider cases

where the average degree duye is O(N°), 0 < § < 1. In
this scenario, p = O(N°~1), so the (1 — p) terms in (7) will
approach 1. By a similar argument to the constant p case,
assuming the neighborhood size is a sublinearly increasing
number of standard deviations above the mean, we asymptot-
ically approach a detection threshold of

k> VCON?2-1 (8)

for a constant C. In this case, it is possible that the detectable
clique size can actually get smaller as the graph grows, since
the one-hop neighborhood, although it grows slowly, is sparser.
Using a variable § helps demonstrate behavior for various
growth patterns: If the density is maintained (§ — 1), the
minimum detectable clique size grows as the square root of
the size of the graph, whereas if the average degree grows
very slowly (& — 0), the size of the clique can decrease at
a rate close to 1/v/N and be detected by the cued method.

C. Extension to Dense Subgraphs

Considering dense subgraphs rather than cliques, it may
not be the case that the entire subgraph is in the one-hop
neighborhood. One interesting question in this case is when
multiple hops improve detectability. For the sake of simplicity,
consider the expected value of the neighborhood size, E[d,] =
kpin + (N — k)p, which, for large N, will be approximately
Np. The number of additional background nodes added in the
second hop is approximated by (N —k — Np)(1— (1 —p)~P).
For small p and large NN, this is asymptotically quadratic in
p and N, behaving like ©(N?p?), i.e., the average degree
squared. For large p;,, most of the dense subgraph will be
captured in the first hop, and the additional vertices will
hurt performance. If, on the other hand, the subgraph edge
probability is relatively small, then multiple hops will similarly
expand the number of subgraph vertices available for the
spectral algorithm to detect. The number of subgraph vertices
gained from neighbors within the subgraph is O(k?p?,), and
the number gained from external neighbors is O(Nkp?). The
planted clique will be detectable in the two-hop neighborhood
if either k%p3, or Nkp®p;, grows faster than Np3/2.

V. EXPERIMENTS

In the previous section we theoretically analyzed the per-
formance gain achieved by providing a cue vertex to the
spectral method. In recognition of the importance of localized
community detection approaches, there has been a prolif-
eration of techniques that follow different perspectives of
incorporating partial knowledge in the solution. We consider
a few representative techniques from this literature, two local
spectral algorithms (MOVCUT and Quadratic Programming),
and two local random walk algorithms (Approximate Person-
alized PageRank and Threat propagation). We compare their
empirical performance to the cue-based spectral method in
both the clique and subgraph detection setting, for various
degrees of problem difficulty. We first give a brief description
of each algorithm and show in Section VI that the different
notions of locality they utilize lead to different empirical
performance for hard to detect cases.



A. MovCcUT

The MOVCUT algorithm [7] extends the traditional spec-
tral clustering formulation by adding a constraint that only
considers solution vectors x that correlate well with the seed
vector s. Given a correlation parameter k, the local spectral
optimization problem is written as follows:

min xTLx
X
subject to  xTxT =1,
xI'DY?1 =,

(xTDY%s)? > k.
The solution vector is expressed by:
x* = ¢(L —yD)" Ds,

where ¢ € [0,00] is a normalization constant to make the
solution x* a unit normed vector, and v € (—o00, A\2(G))
ensures that x* is found exactly on the boundary of the feasible
region. [7] showed that sweeping through the locally biased
solution x* has analogous theoretical guarantees to the tra-
ditional spectral clustering solution. The MOVCUT algorithm
combines both global and local aspects of graph structure. The
x* vector is still a solution to a global optimization problem,
yet the restriction that it correlates to the seed by at least k
ensures that volume of the cut is no bigger than k therefore
localizing the output.

B. Quadratic Programming

The quadratic programming algorithm is another local spec-
tral algorithm that we consider. In contrast to MOVCUT, it
uses the modularity matrix which emphasizes the fact that
we would like to identify subgraphs with unexpected density
(relative to some null distribution). In addition, the objective of
this algorithm directly incorporates the knowledge of the seed
in the solution vector. Formally, the quadratic programming
algorithm optimizes the following:

m)in xT(pI — B)x

subject to x; < 0,7 # s,
Ts S _17

where p is its 2-norm of the modularity matrix B.

C. Approximate Personalized PageRank (APP)

Within the class of random walk partitioning algorithms, the
personalized PageRank algorithm [8] has been used to rank the
importance of vertices relative to an input seed vertex s. The
solution to the personalized PageRank problem is expressed
as follows:

r=as+(1—a)D 'Ar,

where « is the teleportation probability to s. This solution can
be re-written in the form:

11—«

r=(L+ D) 'Ds

to emphasize the connection between the spectral and random
11—«

walk solutions with v = —-=%.

Andersen et al. [9] developed an algorithm that approxi-
mates the personalized PageRank solution by iteratively dis-
tributing probabilities (vertex ranking scores) in a way that
favors the region near the seed vertex. The PageRank solution
r is expressed as an approximate vector I plus a residual vector
e: r = r+e. The initial residual vector is the indicator vector
for seed s. Given s, the algorithm moves an « fraction of
the probability from eg to 7. It then distributes the remaining
1 — o probability, half to itself and half to its neighbors in
magnitude proportional to their degree. The algorithm repeats
until a large portion of the probability has been pushed back to
the approximate solution vector r. [9] showed that sweeping
through their local approximation PageRank vector offers
similar guarantees to known Cheeger inequality. Note that the
APP algorithm is a true local algorithm in that it only uses
local knowledge of the neighborhood around a vertex to update
PageRank scores.

D. Threat Propagation

Threat propagation algorithm [10] is similar to the class
of personalized PageRank algorithms, but has the following
distinguishing features. It views the graph partitioning problem
as a 2V multiple hypothesis test problem, where membership
(to the cut set) or non-membership needs to be determined
for all the vertices. It maximizes the Bayesian probability of
detection by computing the harmonic solution to Laplace’s
equation, but treats this as a boundary value problem with
seeds representing the boundary values and unknown values
representing the interior. Also, instead of considering a con-
stant diffusion probability 1 — «, it considers non-uniform
diffusion probabilities inversely proportional to the average
path lengths between the seed vertex and other vertices. This
modification biases diffusion towards regions of the graph that
are tightly connected to the seed vertex, therefore implicitly
leading to localized, sparse solutions around the seed. The
algorithm is proved to be optimum in the Neyman-Pearson
sense of maximizing the probability of detection at a fixed
false alarm probability [10].

VI. EMPIRICAL RESULTS

Results, in the form of an ROC curve for a single parameter
setting, are given in Figure 1. This figure shows the average
ROC curves of each methodology over 100 graphs with
|V| = 1000 and pgr = 0.2. The mean and standard deviations
of the area under the ROC curves across all parameter settings
are given in Table I. Best performing methodologies in a
specific parameter setting are highlighted in bold. This table
outlines the algorithmic performance for the 20 vertex planted
clique and planted dense supgraph experiments. In these
results, we observe good detection performance on the sparser
background networks (p = 0.1 to p = 0.2). Generally, on these
relatively simple problems, variation on detection performance
as measured by mean AUC is low.



For the planted dense subgraph experiment, we observe that
as networks grow more dense, the most effective methodology
shifts from the quadratic programming based algorithm to
Approximate PageRank. In the planted clique experiments, we
observe the same two algorithms generally outperforming the
rest.

4 Detection Performance with Cue Vertex in Dense Subgraph (background p = 0.2)
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Fig. 1. An ROC curve showing detection performance of vertices in the
neighborhood of a cue vertex embedded in a p;, = 0.8 subgraph. The back-
ground network generated is an Erd6s-Rényi network with an edge probability
of 0.2. Line colors represent the performance of different methodologies.

VII. SUMMARY

In this paper, we extend recent bounds based for planted
clique detection to cases where one of the clique vertices is
revealed. We show that this reduces to the problem of finding
a smaller clique within a smaller random background, and
that the same random matrix theory analysis holds after an
initial filtering of the vertices. The resulting bounds show that
a clique can be detected that grows more slowly than required
in the uncued case by a factor of the edge probability, which
implies that, when the average degree grows very slowly,
smaller cliques can be detected as the total number of vertices
increases. Considering 4 cued subgraph detection methods
from the open literature, we show that a phase transition
occurs for these methods as it also occurs for the simple
method of applying a spectral detection method to the one-
hop neighborhood of the graph.

From this point, a number of future directions are possible
for this research. Understanding the limits of cued detection
in graphs with community structure and arbitrary degree
distributions is one important area. This will be complicated
by the dependence on where the subgraph is placed (on high-
or low-degree vertices, within a single background community
or across several, etc.). Another interesting result would be to
consider methods for proving cued detectability not relying
on the same random matrix theoretic analysis as used here.
It is possible that, for flow-based algorithms, other analytic
techniques may be more appropriate. Even considering random

matrix theory techniques, it would be ideal to compute a bound
directly for the cued case, rather than using the uncued bound
on a filtered subset.
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TABLE I

TABLE OF AUC MEANS (STANDARD DEVIATIONS) FOR 20 VERTEX PLANTED SUBGRAPH

Planted Dense Subgraph p;, = 0.8

p

Method 0.1 0.2 0.3 0.4 0.5 0.6
ApproxPR 0.972 (0.021) 0.863 (0.056) 0.785 (0.074) 0.733 (0.096)  0.718 (0.114)  0.692 (0.120)

MovCut 0.997 (0.009) 0.837 (0.086) 0.689 (0.085) 0.635 (0.097)  0.563 (0.084)  0.556 (0.071)
OneHop 0.900 (0.058) 0.887 (0.071) 0.663 (0.151) 0.549 (0.083)  0.513 (0.067)  0.511 (0.053)
QuadProg 1.000 (0.0001) 0.947(0.046) 0.811 (0.073) 0.701 (0.077)  0.615 (0.088)  0.575 (0.095)
ThreatProp 0.835 (0.182) 0.722 (0.147) 0.646 (0.121) 0.618 (0.086)  0.566 (0.091)  0.538 (0.089)

Planted Clique

Method 0.1 0.2 0.3 0.4 0.5 0.6
ApproxPR 0.999 (0.001) 0.946 (0.024) 0.861 (0.053) 0.793 (0.084)  0.728 (0.117)  0.698 (0.107)

MovCut 1(0) 0.992 (0.011) 0.874 (0.077) 0.750 (0.083)  0.678 (0.078)  0.617 (0.086)

OneHop 1(0) 1(0) 1.000 (0.0003)  0.901 (0.135)  0.558 (0.128)  0.519 (0.088)
QuadProg 1(0) 1.000 (0.0005) 0.980 (0.016) 0.892 (0.053)  0.797 (0.075)  0.699 (0.077)

ThreatProp

0.921 (0.123)

0.883 (0.112)

0.760 (0.136)

0.705 (0.094)

0.656 (0.084)

0.607 (0.074)




