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Abstract—Work on automating vulnerability discovery has
long been hampered by a shortage of ground-truth corpora with
which to evaluate tools and techniques. To begin to address
this, we present LAVA, a system for automatically and quickly
injecting large numbers of realistic bugs into program source
code. LAVA employs a pair of taint-based measures to identify
program quantities that both depend upon specific input bytes
in a simple way yet do not overly influence control flow. These
DUAs (dead-uncomplicated and available data) are employed, via
source-to-source transformation, to perturb program quantities
at later program points that are likely to cause vulnerabilities.
Every LAVA vulnerability is accompanied by a input that triggers
it, whereas normal inputs are extremely unlikely to do so.
Further, every injected bug is validated, and thus every working
bug comes with both a proof-of-concept input and a known
manifestation point. These vulnerabilities are synthetic but, we
argue, still realistic, in the sense that they are embedded deep
within programs and are triggered by real inputs. In order for
an automated tool to discover them, it would have to be able
to reason correctly and precisely about all the code executed up
to the DUA. Using LAVA, we have injected thousands of bugs
into popular programs such as file, readelf, bash, and tshark. We
believe LAVA can form the basis of an approach for generating
extremely high quality ground truth vulnerability corpora on
demand.

I. MOTIVATION

Bug-finding tools have been an active area of research for
almost as long as computer programs have existed. Tech-
niques such as abstract interpretation, fuzzing, and symbolic
execution with constraint solving have been proposed, de-
veloped, and applied. But evaluation has been a problem,
as ground truth is in extremely short supply. Vulnerability
corpora exist [6] but they are of limited utility and quantity.
These corpora fall into two categories: historic and synthetic.
Corpora built from historic vulnerabilities contain too few
examples to be of much use [17]. However, these are closest
to what we want to have since the bugs are embedded in
real code, use real inputs, and are often well annotated with
precise information about where the bug manifests itself. The
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author’s own experience creating such a corpus was that it
is a difficult and lengthy process; a corpus of only fourteen
very well annotated historic bugs with triggering inputs took
about six months to construct. In addition, public corpora have
the disadvantage of already being released, and thus rapidly
become stale. We can expect tools to have been trained to
detect bugs that have been released. Given the commercial
price tag of new exploitable bugs, which is widely understood
to begin in the mid five figures [13], it is hard to find real bugs
for our corpus that have not already been used to train tools.
And, while synthetic code stocked with bugs, auto-generated
by scripts, can provide large numbers of diagnostic examples,
each is only a tiny program and the constructions are often
considered unrepresentative of real code [7], [1].

In practice, a vulnerability discovery tool is typically evalu-
ated by running it and seeing what it finds. Thus, one technique
is judged superior if it finds more bugs than another. While this
state of affairs is perfectly understandable, given the scarcity
of ground truth, it is an obstacle to science and progress in
vulnerability discovery. There is currently no way to measure
fundamental figures of merit such as miss and false alarm rate
for a bug finding tool.

We propose the following requirements for bugs in a vulner-
ability corpus, if it is to be useful for research, development,
and evaluation. Bugs must

1) Be cheap and plentiful
2) Span the execution lifetime of a program
3) Be embedded in representative control and data flow
4) Come with an input that serves as an existence proof
5) Manifest for a very small fraction of possible inputs

The first requirement, if we can meet it, is highly desirable
since it enables frequent evaluation and hill climbing. Corpora
are more valuable if they are essentially disposable. The
second and third of these requirements stipulate that bugs must
be realistic. The fourth means the bug is demonstrable and
serious, and is a precondition for determining exploitability.
The fifth requirement is crucial. Consider the converse: if a
bug manifests for all or a large fraction of inputs it is trivially
discoverable by simply running the program.



The approach we propose is to create a synthetic vulnera-
bility via a few judicious and automated edits to the source
code of a real program. We will detail and give results for
an implementation of this approach that satisfies all of the
above requirements. We call this implementation LAVA for
Large-scale Automated Vulnerability Addition. A serious bug
such as a buffer overflow can be injected by LAVA into a
program like file, which is 13K LOC, in about a 15 seconds.
LAVA bugs manifest all along the execution trace, in all parts
of the program, shallow and deep, and make use of mostly
completely normal data flow. By construction, a LAVA bug
comes with an input that triggers it, and no other input can
have this effect upon the program.

II. SCOPE

We restrict our attention, with LAVA, to the injection of
bugs into source code. This makes sense given our interest
in using it to assemble large corpora for the purpose of
evaluating and developing vulnerability discovery techniques
and systems. Most automated vulnerability discovery systems
work with source code, and we can easily test binary analysis
tools by simply compiling the modified source. Injecting bugs
into binaries or byte code directly may also be possible using
an approach similar to ours, but we do not consider that
problem here. We further narrow our focus to Linux open-
source software written in C, due to the availability of source
code and source rewriting tools. As we detail later, a similar
approach will work for other languages.

We want the injected bugs to be serious ones, i.e., potentially
exploitable. As a convenient proxy, our current focus is on
injecting code that can result in out-of-bounds reads and
writes. We produce a proof-of-concept input to trigger any bug
we successfully inject, although we do not attempt to produce
an actual exploit.

III. LAVA OVERVIEW

At a high level, LAVA adds bugs to programs in the
following manner.

1) Identify execution trace locations where input bytes are
available that do not determine control flow and have not
been modified much. We call these quantities DUAs, for
Dead, Uncomplicated and Available data.

2) Find potential attack points that are temporally after a
DUA in the program trace. Attack points are source code
locations where a DUA might be used, if only it were
available there as well, to make a program vulnerable.

3) Add code to the program to make the DUA value
available at the attack point and use it to trigger the
vulnerability.

These three steps will be discussed in the following three
sections, which refer to the running example in Figure 1.

A. The DUA

In a little more detail, the first step, in which DUAs are
identified, is accomplished as follows.

1 void foo(int a, int b, char *s, char *d, int n) {
int c = a+b;

3 if (a != 0xdeadbeef)
return;

5 for (int i=0; i<n; i++)
c+=s[i];

7 memcpy(d,s,n+c); // Original source
// BUG: memcpy(d+(b==0x76697461)*b,s,n+c);

9 }

Fig. 1: LAVA running example. Entering the function foo, a
is bytes 0..3 of input, b is 4..7, and n is 8..11. The pointers
s and d, and the buffers pointed to by them are untainted.
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Fig. 2: Taint Compute Number examples from the running
example. TCN is simply the depth of the tree of computation
that produces the value from tainted inputs. TCN(c) after line
2 is 1, and after line 6 (upon exiting the loop), it is n+1.

The program is executed under a dynamic taint analysis
for a specific input. That taint analysis has a few important
features.

• Each byte in the input is given its own label. Thus, if
an internal program quantity is tainted and a direct copy
of input bytes, then we can map that quantity back to a
specific part of the input.

• The taint analysis is as complete and correct as possible.
All program code including library and kernel is subject
to taint analysis. Multiple threads and processes are also
handled correctly, so that taint is flows are not lost..

• The taint analysis keeps track of a set of labels per byte of
program data, meaning that it can represent computation
that mixes input bytes.

Every tainted program variable is some function of the input
bytes. We estimate how complicated this function is via a
new measure, the Taint Compute Number (TCN). TCN simply
tracks the depth of the tree of computation required to obtain
a quantity from input bytes. The smaller TCN is for a program
quantity, the closer it is, computationally, to the input. If
TCN is 0, the quantity is a direct copy of input bytes. The
intuition behind this measure is that we need DUAs that are
computationally close to the input in order to be able to use
them with predictable results. Note that TCN is not an ideal
measure. There are obviously situations in which the tree of
computation is deep but the resulting value is both completely
predictable and has as much entropy as the original value.



However, TCN has the advantage that it is easy to compute on
an instruction-by-instruction basis. Whenever the taint system
needs to union sets of taint labels to represent computation,
the TCN associated with the resulting set is one more than
the max of those of the input sets. In the running example,
and illustrated in Figure 2, TCN(c) = 1 after line 1, since
it is computed from quantities a and b which are directly
derived from input. Later, just before line 7 and after the loop,
TCN(c) = n+1 because each iteration of the loop increases
the depth of the tree of computation by one.

The other taint-based measure LAVA introduces is Liveness,
which is associated with taint labels, i.e., the input bytes
themselves. This is a straightforward accounting of how many
branches a byte in the input has been used to decide. Thus,
if a particular input byte label was never found in a taint
label set associated with any byte used to decide a branch,
it will have liveness of 0. A DUA entirely consisting of bytes
with 0 or very low liveness can be considered dead in the
sense that it can have little influence upon control flow for
this program trace. If one were to fuzz dead input bytes, the
program should be indifferent and execute the same trace. In
the running example, LIV (0..3) = 1 after line 3, since a is
a direct copy of input bytes 0..3. After each iteration of the
loop, the liveness of bytes 8..11, the loop bound, increase by
one and so, after the loop, LIV (8..11) = n.

The combination of uncomplicated (low TCN) and dead
(low liveness) program data is a powerful one for vulnera-
bility injection. The DUAs it identifies are internal program
quantities that are often a direct copy of input bytes, and
can be set to any chosen value without sending the program
along a different path. These make very good triggers for
vulnerabilities. In the running example, bytes 0..3 and 8..11 are
all somewhat live, because they have been seen to be used to
decide branches. Arguments a and n are therefore too live to
be useful in injecting a vulnerability. Argument b, on the other
hand, has a TCN of 0 and the bytes from which it derives,
4..7 are completely dead, making it an ideal trigger to control
a vulnerability.

B. The attack point

Attack point selection is a function of the type of vulner-
ability to be injected. All that is required is that it must be
possible to inject a bug at the attack point by making use
of dead data. This data can be made available later in the
trace via new dataflow. Obviously, this means that the attack
point must be temporally after an appearance of a DUA in the
trace. If the goal is to inject a read overflow, then reads via
pointer dereference, array index, and bulk memory copy, e.g.,
are reasonable attack points. If the goal is to inject divide-
by-zero, then arithmetic operations involving division will be
attacked. Alternately, the goal might be to control one or more
arguments to a library function. For instance, in the running
example, on line 7, the call to memcpy can be attacked since
it is observed in the trace after a useable DUA, the argument
b, and any of its arguments can be controlled by adding b,
thus potentially triggering a buffer overflow.

C. Data-flow bug injection

The third and final step to LAVA bug injection is introducing
a dataflow relationship between DUA and attack point. If the
DUA is in scope at the attack point then it can simply be
used at the attack point to cause the vulnerability. If it is
not in scope, new code is added to siphon the DUA off into
a safe place (perhaps in a static or global data structure),
and later retrieve and make use of it at the attack point.
However, in order to ensure that the bug only manifest itself
very occasionally (one of our requirements from Section I),
we add a guard requiring that the DUA match a specific value
if it is to be used to manifest the vulnerability. In the running
example, the DUA b is still in scope at the memcpy attack
point and the only source code modification necessary is to
make use of it to introduce the vulnerability if it matches a
particular value. If we replace the first argument to the call to
memcpy, d, with d+(b==0x6c617661)*b then there will
be an out of bounds write only when bytes 4..7 of the input
exactly match 0x6c617661.

IV. ROADS NOT TAKEN

Given the goal of adding bugs to real-world programs in an
automated way, there are a large number of system designs
and approaches. In order to clarify our design for LAVA, in
this section we will briefly examine alternatives.

First, one might consider compiling a list of straightforward,
local program transformations that reduce the security of the
program. For example, we could take all instances of the
strlcpy and strncpy functions and replace them with the
less secure strcpy, or look for calls to malloc and reduce
the number of bytes allocated. This approach is appealing
because it is very simple to implement (for example, as an
LLVM pass), but it is not a reliable source of bugs. There is
no reliable way to tell what input (if any) causes the newly
buggy code to be reached; and on the other hand, many
such transformations will harm the correctness of the program
so substantially that it crashes on every input. In our initial
testing, transforming instances of strncpy with strcpy in
bash just caused it to crash immediately. The classes of bugs
generated by this approach are also fundamentally limited and
not representative of bugs in modern programs.

A more sophisticated approach is suggested by
Keromytis [4]: targeted symbolic execution could be
used to find program paths that are potentially dangerous but
currently safe; the symbolic path constraints could then be
analyzed and used to remove whatever input checks currently
prevent a bug. This approach is intuitively promising: it
involves minimal changes to a program, and the bugs created
would be realistic in the sense that one could imagine them
resulting from a programmer forgetting to correctly guard
some code. However, each bug created this way would come
at a high computational cost (for symbolic execution and
constraint solving), and would therefore be limited in how
deep into the program it could reach. This would limit the
number of bugs that could be added to a program.
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Fig. 3: LAVA Implementation Architecture. PANDA and
Clang are used to perform a dynamic taint analysis which
identifies potential bug injections as DUA attack point pairs.
Each of these is validated with a corresponding source code
change performed by Clang as well. Finally, every potentially
buggy binary is tested against a targeted input change to
determine if a buffer overflow actually results.

By contrast, the approach taken by LAVA is computationally
cheap—its most expensive step is a dynamic taint analysis,
which only needs to be done once per input file. Each
bug is guaranteed to come with a triggering input. In our
experiments, we demonstrate that even a single input file can
yield thousands of bugs spread throughout a complex program
such as tshark.

V. IMPLEMENTATION

The LAVA implementation operates in four stages to inject
and validate buffer overflow vulnerabilities in Linux C source
code.

1) Compile a version of the target program which has been
instrumented with taint queries.

2) Run the instrumented version against various inputs,
tracking taint, and collecting taint query results and
attack point information.

3) Mine the taint results for DUAs and attack points, and
collect a list of potential injectable bugs.

4) Recompile the target with the relevant source code mod-
ifications for a bug, and test to see if it was successfully
injected.

These stages are also depicted in Figure 3

A. Taint queries

LAVA’s taint queries rely on the PANDA dynamic analysis
platform [3], which is based on the QEMU whole-system
emulator. PANDA augments Qemu in three important ways.
First, it introduces deterministic record and replay, which can
be used for iterated and expensive analyses that cannot be
performed online. Second, it has a simple but powerful plugin

architecture that allows for powerful analyses to be built and
even built upon one another. Third, it integrates, from S2E [2],
the ability to lift QEMU’s intermediate language to LLVM
for analysis. The main feature of PANDA used by LAVA is
a fast and robust dynamic taint analysis plugin that works
upon the LLVM version of each basic block of emulated code.
This LLVM version includes emulated versions of every x86
instruction that QEMU supports. QEMU often implements
tricky processor instructions (e.g. MMX and XMM on x86)
in C code. These are compiled to LLVM bitcode using Clang,
and, thereby made available for taint analysis by PANDA.
LAVA employes a simple PANDA plugin file_taint that
is able to apply taint labels to bytes read from files in Linux.
This plugin, in turn, leverages operating system introspection
and system call plugins in PANDA to determine the start file
offset of the read as well as the number of bytes actually read.
This is how LAVA can make use of taint information that maps
internal program quantities back to file offsets. Before running
a target program under PANDA, LAVA first invokes a Clang
plugin to insert taint queries into the source before and after
function calls. Each function argument is deconstructed into
constituent lvals, and, for each, Clang adds a taint query as
a hypervisor call which notifies PANDA to query the taint
system about a specific source-level variable. The function
return value also gets a taint query hypercall. LAVA also
uses Clang to insert source hypervisor calls at potential attack
points.

B. Running the program

Once the target has been instrumented with taint queries,
we run it against a variety of inputs. Since our approach to
gathering data about the program is fundamentally dynamic,
we must take care to choose inputs to maximize code coverage.
To run the program, we load it as a virtual CD into a PANDA
virtual machine and send commands to QEMU over a virtual
serial port to execute the program against the input. As the
hypervisor calls in the program execute, PANDA logs results
from taint queries and attack point encounters to a binary log
file, the pandalog. Note that, because the pandalog is generated
by hypercalls inserted into program source code, it can connect
source-level information like variable names and source file
locations to the taint queries and attack points. This allows
bug injection, later, to make use of source-level information.

C. Mining the Pandalog

We then analyze the pandalog in temporal order, matching
up DUAs with attack points to find potentially injectable
bugs. The program that does this is called FIB for “find
injectable bugs”, and is detailed in Figure 4. FIB considers
the pandalog entries in temporal order. Taint query entries are
handled by the function collect_duas which maintains a
set of currently viable DUAs. Viable DUAs must have enough
tainted bytes, and those bytes must be below some threshold
for taint set cardinality and TCN. Additionally, the liveness
associated with all the input bytes which taint the DUA must
be below a threshold. Note that a DUA is associated with a



1 def check_liveness(file_bytes):
for file_byte in file_bytes:

3 if (liveness[file_byte]
> max_liveness):

5 return False
return True

7

def collect_duas(taint_query):
9 retained_bytes = []

for tainted_byte in taint_query:
11 if tainted_byte.tcn <= max_tcn

&&
13 len(tainted_byte.file_offsets) <= max_card

&&
15 check_liveness(tainted_byte.file_offsets)):

retained_bytes += tainted_byte.file_offsets
17 duakey = (taint_query.source_loc,

taint_query.ast_name)
19 duas[duakey] = retained_bytes

21 def update_liveness(tainted_branch):
for tainted_file_offset in tainted_branch:

23 liveness[tainted_file_offset]++

25 def collect_bugs(attack_point):
for dua in duas:

27 viable_count = 0
for file_offset in dua:

29 if (check_liveness(file_offset)):
viable_count ++

31 if (viable_count >= bytes_needed):
bugs.add((dua, attack_point))

33

for event in Pandalog:
35 if event.typ is taint_query:

collect_duas(event);
37 if event.typ is tainted_branch:

update_liveness(event);
39 if event.typ is attack_point:

collect_bugs(event);

Fig. 4: Python-style pseudocode for FIB. Panda log is pro-
cessed in temporal order and the results of taint queries on
values and branches are used to update the current set of DUAs
and input byte liveness. When an attack point is encountered,
all currently viable DUAs are considered as potential data
sources to inject a bug.

specific program point and variable name, and only the last
encountered DUA is retained in the viable set. This means
that, if a DUA is a variable in a loop or in a function that is
called many times, the set will only have one entry (the last)
for that variable and source location, thus ensuring that value
is up to date and potentially usable at an attack point. Tainted
branch information in the pandalog updates liveness for all
input bytes involved, in the function update_liveness.
When FIB encounters an attack point in the pandalog, the
function collect_bugs considers each DUA in the set,
and, those that are still viable with respect to liveness, are
paired with the attack point as a potentially injectable bugs.
In the current implementation of LAVA, an attack point is an
argument to a function call that can be made vulnerable by
adding a DUA to it. This means the argument can be a pointer
or some kind of integer type. The hope is that changing this

protected int
2 file_encoding(struct magic_set *ms,

..., const char **type) {
4 ...

else if
6 (({int rv = looks_extended(buf, nbytes, *ubuf, ulen);

if (buf) {
8 int lava = 0;

lava |= ((unsigned char *) (buf))[0] << (0*8);
10 lava |= ((unsigned char *) (buf))[1] << (1*8);

lava |= ((unsigned char *) (buf))[2] << (2*8);
12 lava |= ((unsigned char *) (buf))[3] << (3*8);

lava_set(lava);
14 }; rv;})) {

...

Fig. 5: PANDA taint analysis and the FIB algorithm deter-
mines that the first four bytes of buf are suitable for use
in creating a bug. This is the code injected by Clang into
file’s src/encodings.c to copy DUA value off for later
use. The function lava_set saves the DUA value in a static
variable.

...
2 protected int
file_trycdf(struct magic_set *ms,

4 ..., size_t nbytes) {
...

6 if (cdf_read_header
(( (&info)) + (lava_get())

8 * (0x6c617661 == (lava_get())
|| 0x6176616c == (lava_get())), &h) == -1)

10 return 0;

Fig. 6: Code injected into file’s src/readcdf.c to use
DUA value to create a vulnerability. The function lava_get
retrieves the value last stored by a call to lava_set.

value by a large amount may trigger a buffer overflow.

D. Inject and Test Bugs

For each DUA/attack point pair, we generate the C code
which uses the DUA to trigger the bug using another Clang
plugin. At the source line and for the variable in the DUA, we
inject code to copy its value into a static variable held by a
helper function. At the attack point, an argument to a function
call, we insert code that retrieves the DUA value, determines
if it matches a magic value, and if so adds it to one of the
argument. The final step in LAVA is simply compiling and
testing the modified program on a proof-of-concept input file,
in which the input file bytes indicated as tainting the DUA
have been set to the correct value. An example of the pair
of source code insertions plus the file modifiction in order to
inject a bug into the program file can be seen in Figures 5,
and 6. The original input to file was the binary /bin/ls,
and the required modification to that file is to simply set its
first four bytes to the string ’lava’ to trigger the bug. Note that
the taint analysis and FIB identifies a DUA in one compilation
unit and an attack point in another compilation unit.



Num Lines Potential Validated Inj Time
Name Version Src Files C code N(DUA) N(ATP) Bugs Bugs Yield (sec)

file 5.22 19 10809 631 114 17518 774 39.0% 16
readelf 2.25 12 21052 3849 266 276367 1064 53.4 % 354
bash 4.3 143 98871 3832 604 447645 192 9.5% 153

tshark 1.8.2 1272 2186252 9853 1037 1240777 354 15.3% 542

TABLE I: LAVA Injection results for open source programs of various sizes. For each, a single input file was used to perform
a taint analysis with PANDA. Various program and dynamic trace statistics are reported as well as DUA, attack point (ATP),
and yield (fraction of injected bugs that result in a segmentation violation).

VI. RESULTS

We evaluated LAVA in two ways. First, we injected large
numbers of bugs into four open source programs: file, readelf
(from binutils), bash, and tshark (command-line verison of
Wireshark). For each of these, we report various statistics with
respect to both the target program and also LAVA’s success
at injecting bugs. Second, we evaluated the distribution and
realism of LAVA’s bugs by proposing and computing various
measures.

A. Injection Experiments

The results of injecting bugs into open source programs are
summarized in Table I. In this table, programs are ordered
by size, in lines of C code, as measured by David Wheeler’s
sloccount. A single input was used with each program to
measure taint and find injectable bugs. The input to file
and readelf was the program ls. The input to tshark
was a 16K packet capture file from a site hosting a number
of such examples. The input to bash was a 124-line shell
script written by the authors. N(DUA) and N(ATP ) are
the number of DUAs and attack points collected by the FIB
analysis. Note that, in order for a DUA or attack point to be
counted, it must have been deemed viable for some bug, as
described in Section V-C. The columns Potential Bugs and
Validated Bugs in Table I give the numbers of both potential
bugs found by FIB, but also those verified to actually return
exitcodes indicating a buffer overflow (-11 for segfault or -6
for heap corruption) when run against the modified input. The
penultimate column in the table is Yield which is the fraction
of potential bugs what were tested and determined to be actual
buffer overflows. The last column gives the time required to
test a single potential bug injection for the target.

Exhaustive testing was not possible; for each of the target
programs, we attempted to validate 2000 potential bugs. Note
that larger targets had larger numbers of potential bugs:
tshark has over a million. Larger targets also take longer to
test: almost 10 minutes for tshark. This is because testing
requires not only injecting a small amount of code to add the
bug, but also recompiling and running the resulting program.
For many targets, we found the build to be subtly broken
so that a make clean was necessary to pick up the bug
injection reliably, which further increased testing time.

As the injected bug is designed to be triggered only if a
particular set of four bytes in the input is set to a magic
value, we tested with both the original input and with the

modified one that contained the trigger. We did not encounter
any situation in which the original input caused an overflow.

Yield varies considerably from less than 10% to over 50%.
To understand this better, we investigated the relationship
between our two taint-based measures and yield. For each
DUA used to inject a bug, we determined mTCN , the
maximum TCN for any of its bytes and mLIV , the maximum
liveness for any label in any taint label set associated with
one of its bytes. More informally, mTCN represents how
complicated a function of the input bytes a DUA is, and
mLIV is a measure of how much the control flow of a
program is influenced by the input bytes that determine a
DUA. Table II is a two-dimensional histogram with the bins
for mTCN intervals along the vertical axis and bins for
mLIV along the horizontal axis. The top-left cell of this
table represents all bug injections for which mTCN < 10
and mLIV < 10, and the bottom-right cell is all those for
which mTCN >= 1000 and mLIV >= 1000. Recall that,
when mTCN = mLIV = 0, the DUA is not only a direct
copy of input bytes, but also, those input bytes have not been
observed to be used in deciding any program branches. As
either mTCN or mLIV increase, yield deteriorates. However,
we were surprised to observe that mLIV values of over 1000
still gave yield in the 10% range.

B. Bug Distribution

It would appear as though LAVA can inject a very large
number of bugs. If we extrapolate from yield numbers in
Table I, we estimate there would be almost 400,000 real bugs
if all were tested.

0.390× 17518 + 0.095× 447645 + 0.534× 276367
+ 0.153× 1240777 ≈ 386777

But how well distributed is this set of bugs? For programs like

mLIV
mTCN [0, 10) [10, 100) [100, 1000) [1000,+ inf]
[0, 10) 51.9% 22.9% 17.4% 11.9%
[10, 100) – 0 0 0
[100,+ inf] – – – 0

TABLE II: Yield as a function of both mLIV and mTCN .
Yield is highest for DUAs with low values for both of these
measures, i.e., that are both a relatively uncomplicated function
of input bytes and also that derive from input bytes involved
in deciding fewer branches. Cells for which there were no
samples are indicated with the contents ’–’.



Fig. 7: A cartoon representing an entire program trace, anno-
tated with instruction count at which DUA is siphoned off to
be used, I(DUA), attack point where it is used, I(ATP ), and
total number of instructions in trace, I(TOT ).

file and bash, between 11 and 44 source files are involved
in a potential bug. In this case, the bugs appear to be fairly well
distributed, as those numbers represent 58% and 31% of the
total for each, respectively. On the other hand, readelf and
tshark fare worse, with only 2 and 122 source files found
to involve a potential bug for each (16.7% and 9.6% of source
files). For tshark, much of the code for which is devoted to
parsing esoteric network protocols, coverage is probably the
issue since we use only a single input. Similiary, we only use
a single hand-written script with bash, with little attempt to
cover a majority of language features. We are unsure why so
few of the source files in readelf involve a potential bug.

C. Bug Realism

The intended use of the bugs created by this system is as
ground truth for development and evaluation of vulnerability
discovery tools and techniques. Thus, it is crucial that they be
realistic in some sense. Realism is, however, difficult to assess.
We examined three aspects of our injected bugs as measures
of realism. The first two are DUA and attack point position
within the program trace, which are depicted in Figure 7. That
is, we determined the fraction of trace instructions executed at
the point the DUA is siphoned off and at the point it is used
to attack the program by corrupting an internal program value.
Histograms for these two quantities, I(DUA) and I(ATP ),
are provided in Figures 8 and 9, where counts are for all
potential bugs in the LAVA database for all five open source
programs. DUAs and attack points are clearly available at all
points during the trace, although there appear to be more at
the beginning and end. This is important, since bugs created
using these DUAs have entirely realistic control and data-flow
all the way up to I(DUA). Therefore, vulnerability discovery
tools will have to reason correctly about all of the program up
to I(DUA) in order to correctly diagnose the bug. The portion
of the trace between the I(DUA) and I(ATP ) is of particular
interest since, currently, LAVA makes data flow between DUA
and attack point via a pair of function calls. Thus, it might be
argued that this is an unrealistic portion of the trace in terms
of data flow. The quantity I(DUA)/I(ATP ) will be close
to 1 for injected bugs that minimize this source of unrealism.
This would correspond to the worked example in Figure 1;
the DUA is still in scope, when, a few lines later in the same
function, it can be used to corrupt a pointer. No abnormal
data flow is required. The histogram in Figure 10 quantifies
this effect for all potential LAVA bugs, and it is clear that a
large fraction have I(DUA)/I(ATP ) ≈ 1, and are therefore
highly realistic.
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VII. RELATED WORK

The design of LAVA is driven by the need for bug corpora
that are a) dynamic (can produce new bugs on demand), b)
realistic (the bugs occur in real programs and are triggered by
the program’s normal input), and c) large (consist of hundreds
of thousands of bugs). In this section we survey existing bug
corpora and compare them to the bugs produced by LAVA.

The need for realistic corpora is well-recognized. Re-
searchers have proposed creating bug corpora from student
code [11], drawing from existing bug report databases [8], [9],
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and creating a public bug registry [5]. Despite these proposals,
public bug corpora have remained static and relatively small.

The earliest work on tool evaluation via bug corpora appears
to be by Wilander and Kamkar, who created a synthetic testbed
of 44 C function calls [14] and 20 different buffer overflow
attacks [15] to test the efficacy of static and dynamic bug
detection tools, respectively. These are synthetic test cases,
however, and may not reflect real-world bugs. In 2004, Zitser
et al. [17] evaluated static buffer overflow detectors; their
ground truth corpus was painstakingly assembled by hand
over the course of six months and consisted of 14 annotated
buffer overflows with triggering and non-triggering inputs as
well as buggy and patched versions of programs; these same
14 overflows were later used to evaluate dynamic overflow
detectors [16]. Although these are real bugs from actual
software, the corpus is small both in terms of the number
of bugs (14) but also in terms of program size. Even modest
sized programs like sendmail were too big for some of the
static analyzers and so much smaller models capturing the
essense of each bug were constructed in a few hundred lines
of excerpted code.

The most extensive effort to assemble a public bug corpus
comes from the NIST Software Assurance Metrics And Tool
Evaluation (SAMATE) project [6]. Their evaluation corpus
inclues Juliet [1], a collection of 86,864 synthetic C and Java
programs that exhibit 118 different CWEs; each program, how-
ever, is relatively short and has uncomplicated control & data
flow. The corpus also includes the IARPA STONESOUP data
set [12], which was developed in support of the STONESOUP
vulnerability mitigation project. The test cases in this corpus
consist of 164 small snippets of C and Java code, which are
then spliced into program to inject a bug. The bugs injected in
this way, however, do not use the original input to the program
(they come instead from extra files and environment variables
added to the program), and the data flow between the input
and the bug is quite short.

Finally, the general approach of automatic program transfor-
mation to introduce errors was also used by Rinard et al. [10];
the authors systematically modified the termination conditions
of loops to introduce off-by-one errors in the Pine email client
to test whether software is still usable in the presence of errors
once sanity checks and assertions are removed.

VIII. LIMITATIONS AND FUTURE WORK

Future work for LAVA largely involves making the gener-
ated corpora look more like the bugs that are found in real pro-
grams. First, LAVA currently injects only buffer overflows. But
our taint-based analysis overcomes the crucial first hurdle to
injecting any kind of bug: making sure that attacker-controlled
data can be used in the bug’s potential exploitation. As a result,
the addition of other classes of bugs, such as temporal safety
bugs (use-after-free) and meta-character bugs (e.g. format
string) should also be injectable using our approach. There also
remains work to be done in making LAVA’s data flow more
realistic, although even in its current state, the vast majority
of the execution of the modified program is realistic. This

execution includes the dataflow that leads up to the capture of
the DUA, which is often nontrivial.

LAVA is limited to only work on C source code, but there
is no fundamental reason for this. In principle, our approach
would work for any source language with a usable source-to-
source rewriting framework. In Python, for example, one could
easily implement our taint queries in a CPython plugin that
executed the hypervisor call against the address of a variable
in memory. Since our approach records the correspondence
between source lines and program basic block execution, it
would be just as easy to figure out where to edit the Python
code as it is in C. We have no immediate plans to extend
LAVA in these directions.

We are planning some additional evaluatory work. In par-
ticular, we want to determine if the bugs that LAVA injects
can be found by current vulnerability discovery tools, both
open source and commercial. It should be possible to measure
both miss and false alarm rates for these tools. Miss rate
is straightforward as we can merely compute the fraction of
injected, validated bugs that a tool finds. False alarm rate will
be trickier to estimate, as it requires determining with certainty
if a bug claimed by a tool is real or not. If we do this, the
cost for evaluation will be high. Alternately, we may choose
to run the tools on the targets and investigate all vulnerability
claims. All such claims are very likely false alarms and should
persist even when LAVA injects bugs. These can be used to
estimate false alarm rates.

IX. CONCLUSION

In this paper, we have introduced LAVA, a fully automated
system that can inject large numbers of realistic bugs into C
programs. LAVA has already been used to introduce over 2000
realistic buffer overflows into open-source Linux C programs
of between 10,000 and 2 million lines of code. The taint-based
measures employed by LAVA to identify attacker-controlled
data for use in creating new vulnerabilities should be usable to
inject other classes of vulnerabilities than the buffer overflow
we demonstrate here, and we will pursue that actively. We
believe LAVA will be of immense value as an on-demand
source ground truth corpora of very large size. The availability
of these corpora should energize research and development
into automated vulnerability discovery tools and techniques,
as well as the evaluation thereof.
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