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ABSTRACT
In this paper, an agent-based model of a socio-technical sys-
tem is built by modifying the components and domain of an
existing model. This includes adapting an agent decision-
making and communication model, a task workflow model,
and a performance model. The goal is to enable the model-
ing of scenarios related to critical infrastructure system fail-
ures, both those that are intentional (e.g. computer security
violations) and those that are not.

This scenario models the non-intentional complex system
failure which resulted in the 2003 Northeast Blackout, fo-
cusing on the people, tools, and organizations involved. The
adapted model formalizes and explains the Blackout’s causes.
An agent-based framework allows us to implement the model
and perform multiple iterations of the simulation. We study
features of the output, and conduct experiments adjusting
the assignment of tasks to increase the system’s robustness
to failure.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

General Terms
Security

Keywords
Agent-Based Simulation, Teamwork, Social Simulation

1. INTRODUCTION
Computer security, and system robustness in general, is

not just a problem of machines but of teams of people using
machines.[3][7][21] Part of the problem involves external at-
tackers (who are themselves often in teams, using machines),
and part of the problem involves insider threats and user
errors.[17] Because of this, security researchers build and
study computational models of humans working with com-
puters[9][2][20], including for cyber range events, when these
models are used to generate traffic.[14][5]

∗This work was initiated while affiliated with Williams Col-
lege.

We study system and security failures using agent-based
models of socio-technical systems. Agent-based modeling[13]
involves autonomous and proactive programs which commu-
nicate peer-to-peer. Socio-technical system approaches in-
volve models of humans, their organizations, the tools they
use, and the interaction between all of these.[19] Agent-
based models of socio-technical systems have previously been
applied in the context of air traffic systems of air traffic con-
trollers and pilots[19], economic production/consumption net-
works[16], and more.

To perform our modeling, we identified a scenario involv-
ing physical infrastructure which would make a good exam-
ple of how to model general traffic generator scenarios. The
specifics of the scenario are incidental to us in the following
respect: what is most important is that the scenario is a
realistic system since it was based on an actual event and a
large-scale environment. The scenario enables us to develop
a methodology grounded in reality which allows us to sim-
ulate different missions. It also enables us to change user
behaviors (and therefore network traffic) based on changes
in complex user profiles.

In this paper, we adapt an agent-based model of socio-
technical systems developed by Crowder et al.[4]. Crow-
der et al.’s model was developed to study engineering team
work over a scale of several weeks; our interest is in security-
related scenarios that develop over much shorter time-frames,
so adapting the model is a primary concern. We recognize
the importance of the team-related aspects of system and se-
curity failures: the agents involved in decision-making, the
tools they use, and the ways they communicate. We there-
fore selected Crowder et al.’s model as a starting point to
represent a scenario as an agent-based model, and used sim-
ulation experiments to study the agents, their tools, and the
ways they interact.

2. BLACKOUT SCENARIO

2.1 Motivation
System failures are disruptions of normal functions, and

security failures can been seen as intentional system disrup-
tions.[22] For this reason, we study general system failures
with a special interest in those failures that were or could
be caused intentionally.

Finding a good example of a socio-technical system for
such a scenario is challenging because of the need for a sce-
nario that is well-documented, realistic, and relevant to crit-
ical infrastructure. Security and privacy concerns make find-
ing such information difficult. Our approach is to consider
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the general security case, identify a past case whose causes
could plausibly have been intentional and computer-related,
and to study the effects of those causes.

The scenario we identified is the 2003 Northeast Blackout,
which was the largest blackout in North American history.
It affected 50 million people (including over 20 million in the
New York City and 8 million in the Toronto metropolitan
areas) and cost an estimated 6 billion dollars[11], revealing
vulnerabilities in the infrastructure and management of the
electrical power grid.

Electrical power grids are generally considered one of a na-
tions’s Critical Infrastructure and Key Assets, whose effec-
tiveness and security are vital to maintain.[12] Power grids
are a possible target for attack,[15] and therefore of interest
from a security perspective.

To follow is a description of those key participants and
events which are important to model for our purposes. Un-
less otherwise stated, the description details in Section 2 are
taken from the North American Electric Reliability Corpo-
ration’s “Final Report on the August 14, 2003 Blackout in
the United States and Canada.”[18]

2.2 Key Participants
Figure 1 shows the organizational structure of the socio-

technical elements contributing to the 2003 Northeast Black-
out.

Reliability Coordinators (RCs) cover multi-state re-
gions; they are responsible for monitoring and coordinating
their multiple Control Areas (CAs) as well as the CAs
of their neighbors. RCs must provide yearly, monthly, and
daily energy consumption predictions, as well as contingency
analyses for managing electrical flow during unanticipated
situations. One of the tools that RCs use is a state esti-
mator, which enables these contingency analyses.

CAs have real-time responsibilities such as ensuring the
n-1 criterion: that given the current conditions, instabil-
ity or cascading outages would not occur as a result from
one single contingency. To do so, CAs are responsible for
manual and automatic load shedding, and for coordinating
with their RCs. In an emergency situation, CAs must also
inform their neighboring systems of the potential impact of
their condition on the stability of the grid. CAs are not
centralized by city or state and may share jurisdiction over
power lines, which in the 2003 Northeast Blackout led to
communication challenges. One of the tools that CAs use is
an alarm system to help detect dangerous load conditions.

Power grid operations involve a great deal more complex-
ity than described here. For our purposes, we focus on
those elements of the socio-technical system of people, ma-
chines, and their interactions that contributed to the 2003
Northeast Blackout. As shown in Figure 1 and described be-
low, the main problems occurred in RC1’s state estimator,
CA1’s alarm system, and in communication between CA1
and CA2.1

2.3 Key Events
1RC1 is the Mid-continent Independent System Operator,
based in midwestern USA and Manitoba, Canada; RC2
is the Pennsylvania-New Jersey-Maryland Interconnection;
CA1 is First Energy; and CA2 is AEP. Both CAs primarily
(though not exclusively) cover regions in the state of Ohio.
For clarity, we use these role abbreviations rather than ac-
tual organization names elsewhere in this paper.

Figure 1: Organizational structure of relevant enti-
ties in the 2003 Northeast Blackout.

Start of the day, August 14th, 2003: electricity de-
mand had been higher than predicted for the previous two
days. Four to five vital capacitors had been misclassified
as non-vital and taken off-line for upkeep, and a few lines
were unexpectedly down, causing CA1 to operate close to
capacity.

12:15pm: a line in CA1’s contingent went down; this in
itself was not a major problem, but a human operator then
forgot to restart CA1’s state estimator, which then remained
unavailable.

2:14pm: a hidden race condition in the CA1’s alarm sys-
tem surfaced, causing the alarm system to fail. CA1 opera-
tors were unaware that the alarm system was down.

2:32pm: CA2 called CA1 about a tripped line that they
shared. CA1 did not follow up on the call because their
alarm system showed no problems, and they were still un-
aware of the alarm system’s failure.

3:05pm: a power line in CA1 failed due to contact with
trees. CA1 was unaware of this power line failure (due to
their alarm system failure), and even if they had been aware
would not have had a contingency plan (due to RC1’s state
estimator failure).

3:09pm: an RC1 operator made an error that prevented
the state estimator from going back online.

3:19pm: CA2 called CA1 again about the problem they
saw. Again, CA1 did not follow up on the call because they
saw no problems.

3:23pm: two more power lines failed after contact with
trees. CA1 operators became aware of problems, but had
limited options due to the short time frame and lack of con-
tingency plans. The electrical load from the failed lines was
shifted onto a single line, which overloaded and started a
cascade that shortly afterwards resulted in the blackout.

2.4 System Failure and Security
The 2003 Northeast Blackout was caused by a combina-

tion of human, system, and communication failures. This
in itself is worth studying, but we are particularly inter-
ested in its potential for studying the vulnerabilities of socio-
technical systems to computer network attacks. To this end,
for each system failure we identify a computer attack that
could have caused that system failure.

• CA1’s state estimator unavailability was due to a mode
confusion caused by human error. However, in a com-
puter attack scenario this could have been due to mal-
ware or insider sabotage.

• RC1’s alarm system malfunction was due to a race
condition in its code. There is no reported indication



that this race condition was intentionally introduced,
but the same effects could have been introduced by
malware.

• The tripped wires were due to tree contact caused by
unusually hot weather and high demand, which caused
lines to heat and sag more than usual, but the Aurora
Test suggests that such an effect is achievable by com-
puter attack.[15]

• The lack of communication between CA1 and CA2 was
due to a low trust in each other’s alarms, but the same
effect could have been produced by a denial-of-service
attack on the communication system.

The 2003 Northeast Blackout was not the result of a com-
puter attack, but each of the socio-technical system’s fail-
ures could have been caused by a computer attack without
changing the way that the system reacted. What we call our
Blackout scenario therefore is an extraction of the socio-
technical security vulnerabilities displayed during the 2003
Northeast Blackout.

3. AGENT-BASED MODEL

3.1 Original Model
Given our need for realistic user agents when implement-

ing the scenario, we next sought out an appropriate user
model. We chose an agent-based model developed by Crow-
der et al.[4] which applied socio-technical systems theory to
modeling work teams. Crowder et al. developed their model
with concepts from psychology, management, and computer
modeling, as well as with quantitative and qualitative data
collected from multidisciplinary engineering teams. Their
model describes how a task’s requirements cause team mem-
bers to communicate among themselves, and the cognitive
mechanisms that integrate the results of that communica-
tion.

The Crowder et al. model includes a Task Workflow
Model which describes the steps required to complete a task,
dependencies between the steps, the difficulty of each step,
and the team member responsible for completing the task.
Additionally, an Agent Model with components such as Trust
and Shared Mental Models uses a set of equations to describe
the interaction of those components while performing a task.
The model produces a set of completion and working times
for performing the task, as well as a measure of task qual-
ity. Finally, a Communication Model describes the way that
agents request information as needed, to increase their abil-
ity to complete a task step. More details about these models
is contained in Section 3.2 where we describe adapting them
to our scenario.

Crowder et al.’s model provides “a general framework for
modeling teamwork...useful for modeling team work in many
different domains.”[4] Crowder et al. state that an opti-
mal application of their model involves conducting question-
naire studies and performing regression analyses with sub-
ject matter experts in the domain of interest, to determine
how to modify the model’s equations. However Crowder
et al. also state that “the current model still provides a
promising start for the simulation of complex team working,
in engineering organizations and more generally.”[4] Our ap-
proach is to therefore to exploit the generality of the frame-
work by using it as a starting point as suggested, adapting it

Figure 2: Determining Task Difficulty

to our domain of interest, and exploring the analytical power
this provides in general to the scenario. A secondary goal
is determining the extent to which this level of adaptation
fulfills our long-term research needs, compared to the need
to perform a full domain study.

3.2 Adapting the Model

3.2.1 Task Workflow Model
The focus of this study is in the socio-technical system

involved in reacting to the problems that led up to the 2003
Northeast Blackout; in other words, the humans and tech-
nologies shown in Figure 1, their structure, and the way
they worked together. In particular, the moments in which
agents in the system, confronted with an indication of grid
failure, either failed to resolve the difficulty (as happened
historically) or succeed in resolving it. Because of this, we
model the Task Workflow Model of our Blackout scenario as
a series of interactions that led to the blackout as described
in Section 2.3.

Figure 3 shows the Task Workflow Model. It includes 4
tasks, each which has an agent assigned to it (either CA1 or
RC1) and a Task Difficulty value between 0 and 5, following
Crowder et al.’s use of semantic labels on that scale.

The Task Difficulty was not provided by the Blackout Re-
port, so we had to determine it as part of developing the
model. To guide this process, we produced qualitative de-
scriptions of the information available to the agents, as well
as of the stakes involved. As the scenario progresses, more
information is available to the agents about the nature of
the problem; in that way the tasks are easier. As the sce-
nario progresses the stakes are higher, though, so in that way
the tasks are harder. This analysis produced a quantitative
estimate based on the dynamic between these qualitative
factors, as shown in Figure 2.

In the 2003 Northeast Blackout, each task was unsuccess-
fully completed, leading to the cascade and blackout. In our
Blackout scenario, the team has the opportunity to success-
fully complete any of the tasks, resulting in a better outcome
and ending the scenario. Although CA2 is not assigned a
workflow task, CA2 influences CA1’s Competency during
task communication as described below.

Task 1 represents the interaction at 2:32pm in which CA1
received a telephone call from CA2 about a tripped line that
they shared. In the 2003 Northeast Blackout CA1 did not
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Figure 3: Blackout Scenario Task Workflow Model. S=Success, F=Failure

follow up on this issue because their alarm system, which
was malfunctioning, did not register the problem. The task
involves following up on the problem anyway and manag-
ing the problem without the benefit of the state estimator,
which was also malfunctioning. This is a difficult task, as
it involves determining that there is in fact a voltage prob-
lem due to the line being down and that the alarm system
and state estimator are malfunctioning, and either resolving
the problems with the alarm system and state estimator or
solving the voltage problem without the state estimator to
provide a contingency plan. Because of this, Task 1 is given
a high difficulty value. Resolving the task correctly would
result in normal operation (beyond the relatively minor line
being down) and the end of the scenario; not resolving the
task correctly leads to the next task.

Task 2 represents the event at 3:09pm in which a RC1
operator made an error which prevented the state estimator
from coming back online. This task involves correctly bring-
ing the state estimator back online, checking for possible
problems as a consequence, identifying the power line fail-
ures so far, and remedying the situation. Bringing the state
estimator back online would not have been very difficult,
but subsequently identifying the power line failures with-
out CA1’s alarm system would be more challenging. Fur-
thermore, the best solution to this situation involved higher
stakes: dropping voltage from several other lines which would
have left other customers without power. Because of this the
problem is given a moderate difficulty level.

Task 3 represents the interaction at 3:19pm in which CA1
received a second telephone call from CA2 about the line
problems CA2 was seeing. Once again, CA1 did not fol-
low up because their alarm system was still malfunctioning.
Solving this task would involve the same subtasks as Task 1,
but would be somewhat less difficult because the fact that
CA2 had called twice provided a greater amount of evidence
of a problem. However, successfully resolving the problem
involved higher stakes: at this point, the best outcome pos-
sible was to drop voltage resulting in power outages in the
city of Cleveland, Ohio.

Task 4 represents the status at 3:23pm, when CA1 finally
becomes aware of the problems and has one last chance to
resolve the situation. Resolving the problem includes decid-
ing how much voltage to drop, without the benefit of RC1’s
state estimator, under a very tight time constraint. The
stakes are high, as successfully completing the task nonethe-
less results in outages in the cities of Cleveland and Akron
and their surrounding region, and unsuccessfully complet-
ing the task results in the cascade and blackout affecting 50
million people.

3.2.2 Agent and Communication Models
The Crowder et al. model was developed from an en-

gineering domain that took weeks and months to perform,
rather than the shorter time-frame involved in the Blackout
scenario. This led us to make several changes to our Agent
Model.

The Crowder et al. Agent Model produced several out-
puts: the Completion Time tracks how long it takes an agent
to finish a particular task; these are combined from all tasks
and agents to produce a Total Completion Time. The Work-
ing Time tracks how much time the individual agent spends
working on a task; these are combined from all tasks and
agents to produce a Total Completion Time. The Quality
describes the degree of excellence of the task once finished;
these are combined from all tasks and agents to produce a
Total Quality.

In our Blackout scenario, the agents were working under
strict time constraints. They had a short amount of time
to decide how to resolve problems they encountered, and at
the end of time they had to address the problem, such as
dropping power or shifting loads, but even if the operators
dropped power, they might not drop enough. Doing noth-
ing before time ran out was one way of handling the task,
though in our scenario this was always the wrong decision.
Because task completion time was a constraint, as shown
in Figure 4 we removed the Completion Time and Work-
ing Time components, as well as the Availability, Learn-
ing Time, Response Rate, and Communication Frequency
components which likewise were dependent on longer time-
scales.

Next, we considered the Shared Mental Models, Motiva-
tion, and Communication Frequency components. The main
distinctions between those components was that Shared Men-
tal Models did not directly affect Quality, and Competency
affected Communication but Motivation did not. However,
the distinction between these components is more impor-
tant in Crowder et al.’s use case than in ours: for example,
they may be interested in changing these values to determine
whether it is more cost-effective to invest in increasing team
Motivation, or team Shared Mental Models. Furthermore in
the Crowder et al. model, the equations that drove the algo-
rithms behind these components contained numerous coeffi-
cients derived from regression analyses of Likert-scale ques-
tionnaire data taken from their engineering domain. To limit
dependence on these domain-specific coefficients, we there-
fore merged the Shared Mental Models and Quality com-
ponents into the Competency component, and included a
normally (Gaussian) distributed value with a standard de-
viation of 1 in the equation for Competency as a way of
partially substituting for their effect.
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Figure 4: Adapting the Agent Model. Top: com-
ponents from Crowder et al. model. Middle: after
removing time-related components not relevant to
our domain. Bottom: after merging competency-
related components.

The components of our final Agent Model are shown at
the bottom of Figure 4.

Crowder et al.’s version of Trust is an input value, modi-
fied by the success or failure of the agent’s previous interac-
tions with a team member on longer-lasting tasks. Because
our tasks and time scales are different, our version of Trust
is an input value on the 0-5 scale to produce the base trust
τb, modified by a normally (Gaussian) distributed value vτ
with a standard deviation of 1 to produce a working trust
τw.

τw = τb + vτ (1)

Crowder et al.’s version of Competency is an input value,
which is increased by interactions with other team members.
Our Blackout scenario agents also have a base input value
Cb modified by a normally distributed value vC . This may
also be modified by an increase in competency due to inter-
actions with other team members δC to produce a working
competency Cw.

Cw = Cb + vC + δC (2)

We use Crowder et al.’s equation for δC as shown in Equa-
tion 3.2.2, and similarly cap the possible Competency gain
to 0.3.

δC =
15 + 3(Cp + Cr)

100
(3)

Crowder et al.’s model assumes that an agent will continue
to seek communications with other team members (thereby
increasing Competency) until the agent has a Competency
sufficient for the task difficulty. In the Blackout scenario, the
CA1 agent has a chance to gain competency from the CA2
agent, but does not seek out further competency gain due to
the Task time scale and absence of other agents to refer to.
Therefore although our Competency can in principle drive
Communication, in this scenario’s tasks it does not.

In our scenario, for a task n the Task Quality Qn is a
(0,1) value describing whether the voltage problems were
completely resolved, because partial solutions did not stop
the process leading towards blackout. This is determined
by comparing the agent’s working Competency to the Task
Difficulty Dn. If Cw ≥ Dn, then the Task Quality is 1
(success); otherwise it is 0 (failure).

The overall Performance Quality QP then expresses the
performance on the i tasks of the Blackout scenario as an
integer between 0 (for blackout) to 5 (for best outcome).

QP =
5

4
(4 −

i∑
n=1

(1 −Qn)) (4)

Finally, our Communication Model is shown in Fig-
ure 1. Communications are tied to the workflow model: each
Task defines a communication that occurs between agents as
part of their involvement in the system.

3.3 Implementing the Model
Following Crowder et al., we implemented the model using

JADE, the Java Agent DEvelopment framework.[1] JADE is
a Java based open source Agent-Oriented Middleware whose
strengths for our purposes are its template behaviors and



its communication structure. JADE has been used by other
researchers in a variety of settings: to develop frameworks
assisting in collaborative design[6], to built platforms for col-
lecting feedback from patients for researchers in healthcare
settings[8], and to to study coalition structure generation in
distributed algorithms,[10] for example.

JADE complies with the FIPA message sending proto-
col. Messages are asynchronous and all agents keep a queue
of messages. Sending a message involves specifying the re-
ceiving agent’s agent identifier. For the purpose of this
project, the various agents sent and received messages based
on sender agent identifier and a message type, though this
could have been improved by the use of JADE ontologies.
Because of the required behaviors for the power grid agents
(executing their required jobs at regular intervals as well as
always being ready to respond to an event or communica-
tion from another agent), we used a parallel behavior that
included a ticker behavior and a cyclic behavior.

4. SIMULATIONS

4.1 Baseline Simulation
We ran 12,500 iterations of the Blackout scenario to build

a baseline. We ensured an iteration through the parameter
space of all possible inputs by cycling through the base com-
petency settings as shown in Table 1. In this way we are sure
to explore all possible combinations of team competencies,
rather than be tied to a representation in which the teams
are all of mid-level competency or high-level competency.

Table 2 shows the results, along with the number of times
each outcome occurred. The outcomes described here are
those shown in Figure 3 and described in Section 3.2.1: Out-
come 1 is Normal Operations, Outcome 2 is Drop Voltage
from H-J and H-S lines, Outcome 3 is Outages in Cleve-
land, Outcome 4 is Outages in Cleveland/Akron region, and
Outcome 5 is Cascade Begins, Blackout.

As a metric for determining the efficiency of the agent
system, we used the percentage of iterations in which Qp >
0. This is the percentage of Non-Blackouts, the number of
times the scenario ended in Outcomes 1-4 (i.e. was resolved
by dropping voltage from lines or regions, even if resulting in
smaller local outages) instead of reaching Outcome 5, (i.e.
ended in a cascade leading to a major blackout as in the
2003 Northeast Blackout.) The total and percentage of Non-
Blackouts is shown in the last row of Table 2.

Surprisingly, the baseline data set included no outcomes
in Outcome 4. After examining the detailed logs, we iden-
tified the dynamic that caused this situation: Task 3 acted
as a filter to remove any Agents who would be able to suc-
ceed at Task 4. Figure 5 shows the last two tasks and final
three outcomes of the Task Workflow Model, along with the
characteristics of agents who reach each outcome. Note that
Task 3 has a difficulty of 3, so any agent whose competency
is greater than or equal to 3 will succeed at that task2 and
exit the scenario at that point, and those agents that fail
will proceed to Task 4. Therefore, the only agents who are
left to reach Task 4 are those with a competency less than
3. However, Task 4 has a difficulty of 3.5, so all agents who

2As described in Section 3.2.2, task success is determined by
comparing an agent’s Competency to the task’s Task Diffi-
culty to determine a Task Quality indicating success or fail-
ure.

Figure 5: Dynamic behind absence of Outcome 4 in
Baseline Simulation

reach that task will fail at it. Failing at Task 4 leads to
Outcome 5 so all agents who reach Task 4 will end up in
Outcome 5. Succeeding at Task 4 leads to Outcome 4, but
all agents fail at Task 4, so no agent will reach Outcome 4.

Insight into the structure of the scenario is one of the ben-
efits of this type of simulation. In this case we have identified
that outcomes are impossible if the following requirements
are true: tasks are strictly sequential; tasks consistently in-
crease in difficulty; an earlier task includes an outcome that
ends the simulation; task completion depends on directly
comparing task difficulty with an unchanging agent charac-
teristic.

Having understood these requirements, we can seek ways
to modify the functioning of the socio-technical system to
improve the overall quality of outcomes. Keeping the task
definition constant, we identified the requirement of com-
paring task difficulty to unchanging agent characteristic as
being the most promising for change. We used this model’s
notions of teams and task assignments to perform experi-
ments in varying the policy which determines what tasks
are delegated to what agent.

4.2 Delegation Experiments
To explore a policy which might improve upon the situ-

ation where Outcome 4 never occurs, we implemented an
agent team policy in which, upon reaching Task 4, that task
is delegated to another agent. This was effected by replacing
the CA1 agent with a CA1 agent with a different Compe-
tency. The rationale for this is that CA organizations are
actually made up of numerous agents. We were previously
assuming that a single CA agent would handle every task,
but it is equally reasonable to assume that a CA organiza-
tion would have a set of agents, and that the organization’s
policy would be to randomly assign tasks that have been
received.

We hypothesized that this policy would improve the Total
Non-Blackout metric to a statistically significant amount,
which it did with a p-value<0.0003 on a simulation of 3125
iterations; the data is shown in the Delegation 1 column of
Table 2.

However, this is slightly unrealistic because it assumes
that the CA team has a reliable way of knowing that they
were in a task that should be delegated to another agent. We
therefore hypothesized that delegating each of the tasks in
the scenario to different agents would significantly increase
performance. We implemented this as instantiating a new
agent (with a new competency rating) for each task in Fig-
ure 3.



Table 1: Experiment Settings
CA1 Trust CA1 base CA2 base RC1 base

in CA2 Competency Competency Competency

1 VH (4.5) VH (4.5) VH (4.5) VH (4.5)
2 VH (4.5) VH (4.5) VH (4.5) H (3.5)
3 VH (4.5) VH (4.5) VH (4.5) M (2.5)
... ... ... ... ...
625 VL (0.5) VL (0.5) VL (0.5) VL (0.5)

Table 2: Experiment Simulations
Baseline Delegation 1 Delegation 2

Total Iterations 12500 3125 3125

Outcome 1 1273 (10.2%) 314 (10.0%) 630 (20.2%)
Outcome 2 4495 (36.0%) 1125 (36.0%) 1000 (32.0%)
Outcome 3 3082 (24.7%) 757 (24.2%) 829 (28.5%)
Outcome 4 0 (0%) 377 (12.1%) 243 (7.8%)
Outcome 5 3650 (29.2%) 552 (17.7%) 360 (11.5%)

Total Blackout 3650 (29.2%) 552 (17.7%) 360 (11.5%)
Total Non-Blackout 8850 (70.8%) 2573 (82.3%) 2765 (88.5%)

This new approach did indeed improve the Total Non-
Blackout metric to a statistically significant amount, with a
p-value<0.0003 on a simulation of 3125 iterations; the data
is shown in the Delegation 2 column of Table 2. Note also
the increase in the best possible outcome of Outcome 1, and
the decrease in the two worst Non-Blackout outcomes of
Outcomes 4 and 5.

5. DISCUSSION

5.1 Future Work
Adapting this model to our domain of interest involved

making a number of assumptions. For example, after ac-
cepting the validity of Crowder et al.’s “general framework,”
we modified the Agent Model as described in Section 3.2.2,
removing or merging several components and changing their
equations to remove domain-specific constants. Although
we did so methodically, our connection to the empirically-
derived foundations of Crowder et al.’s original work never-
theless has become weaker. We are therefore interested in
further examining these assumptions and validating them
where necessary, especially in the impact of these assump-
tions when adapting the general framework to another do-
main and time scale.

Crowder et al.’s framework is general enough to formally
specify the causes of a system failure, as is shown in Section
2.2 and Figure 1. The baseline simulation and delegation
experiments in Section 4 show that the simulation explains
a range of possible outcomes and their dependence on input
variables such as agent competence. The simulation also
provides insight into task dynamics such as the absence of
Outcome 4 described in Section 4.1, and possible ways of
improving probable outcomes as described by the delega-
tion experiments in Section 4.2. Although this model does
not provide absolute proof that such policies would improve
robustness of the system, it provides possibilities for further
exploration. We look forward to seeking out new domains
to apply this approach, and formalizing the applicability of
the results.

In terms of the secondary goal described in Section 3.1, we
can conclude that this level of adaptation looks promising for
our research needs, which are in the area of building teams
of networked user agents for use in security simulations, sim-
ilar to work by Blythe et al.[2] and Wright et al.[20] In such
a domain, the central aspect of validity varies based on the
needs of the simulation: in some cases it may involve mea-
sures of task accomplishment, in others it may be enough
to simply produce network traffic with a fidelity sufficient to
a guideline. Even without performing domain-specific orga-
nizational research, we therefore find that Crowder et al’s
model is indeed a good basis for a future models whose pa-
rameter tuning and validation will depend on the specifics
of their intended use.

5.2 Conclusion
We have adapted an agent-based model of a socio-technical

system to enable the modeling of scenarios related to criti-
cal infrastructure system failures, both intentional and not.
This enables us to study the complex interactions between
human participants, their organizational structure, the tools
being used, and the nature of the domain.

These interactions inform a methodology that allows us to
provide high-fidelity models of network traffic for use during
cyber range events. We have shown that changing complex
user profiles can result in changing user behavior, which in
the context of a cyber range tool such as LARIAT would
change network traffic in a principled, empirically-grounded
way.[14][5]

We implemented the model in a scenario mimicking the
2003 Northeast Blackout. Although the Blackout had purely
technical aspects (such as cascade’s spread through low ap-
parent voltage), the events leading up to the cascade are best
understood by modeling the people involved, the tools they
used, and their organizational structure. We experimented
with manipulating task delegation to increase overall perfor-
mance. We identified a way of decreasing the percentage of
simulations leading to a full blackout; this may be seen as
increasing the probability that a given socio-technical sys-



tem will successfully manage a situation that risks leading
to a blackout. We plan further work on this approach to
continue testing its applicability.
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