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1. Introduction

Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have 
recently obtained increasing popularity in the detection of cognitive stress- and neurological-based 
disorders. Such conditions are significantly and adversely affecting human performance and quality 
of life for a large fraction of the world’s population. Example modalities used in detection of these 
conditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. 
Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive 
stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy 
three criteria. First, we seek biomarkers that reflect core components of cognitive status such as 
working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we 
seek biomarkers that reflect timing and coordination relations both within components of each 
modality and across different modalities. This is based on the hypothesis that neural coordination 
across different parts of the brain is essential in cognition (Figure 1). An example of timing and 
coordination within a modality is the set of finely timed and synchronized physiological 
components of speech production, while an example of coordination across modalities is the timing 
and synchrony that occurs across speech and facial expression while speaking. Third, we seek 
multimodal biomarkers that contribute in a complementary fashion under various channel and 
background conditions. In this chapter, as an illustration of this biomarker approach we focus on 
cognitive stress and the particular case of detecting different cognitive load levels. We also briefly 
show how similar feature-extraction principles can be applied to a neurological condition through 
the example of major depression disorder (MDD).  MDD is one of several neurological disorders 
where multi-modal biomarkers based on principles of timing and coordination are important for 
detection [11]-[22]. In our cognitive load experiments, we use two easily obtained noninvasive 
modalities, voice and face, and show how these two modalities can be fused to produce results on 
par with more invasive, “gold-standard” EEG measurements. Vocal and facial biomarkers will also 
be used in our MDD case study. In both application areas we focus on timing and coordination 
relations within the components of each modality.  
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#FA8721-05-C-0002. Opinions,interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States 
Government.
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Figure 1: Biomarkers reflect elements of cognitive status as well as timing and coordination within 
and across modalities. 

The ease of obtaining vocal and facial features (e.g., via mobile tablets or smartphones) greatly 
increases global accessibility to an automated method for cognitive assessment. Certain vocal and 
facial features have been shown to change with a subject’s mental and emotional state, under 
numerous conditions including cognitive load and neurological conditions.  For voice, these 
features include characterizations of prosody (e.g., fundamental frequency and speaking rate), 
spectral representations (e.g., mel-cepstra), and glottal excitation flow patterns, such as flow shape, 
timing jitter, amplitude shimmer, and aspiration [23]-[35]. For facial features, these include spectral 
representations and facial action units [36][37]. There are many examples of each of the three 
modalities being used to detect cognitive stress [1]-[10] and of voice or face modalities being used 
to detect a variety of neurological conditions such as depression and Parkinson’s disease [23]-[35].  
Voice has been used in cognitive load by Yin et al [2] who achieved 77% accuracy using standard 
vocal features (e.g., mel-cepstra, delta-delta mel-cepstra, and shifted mel-cepstra) to discriminate 
three cognitive load levels in a read story (and through several questions about the story), and in the 
Stroop test. Facial action units [53][54] have been used to predict neuropsychiatric disorders, while  
EEG entropy and power have been used to discriminate multiple cognitive load levels by Zarjam et 
al  [9][10].   
 
In this chapter, for all modalities, we use a common approach that deviates from the standard one. 
While we begin with standard “low-level” features that are used in the approaches listed above, we 
build upon these using “high-level” timing and coordination features.  For voice, the low-level 
features are phoeneme boundaries, formant (vocal tract resonance) tracks, delta mel-cepstra 
coefficients, and creakiness (vocal-fold irregularity). For face, the low-level features are 
automatically extracted facial action units (FAUs) [59]. For EEG, the low-level features rely on 
spectral power from EEG channels following standard artifact removal. The high-level timing 
features include (from voice) phoneme-based measures of rate, duration, pitch dynamics, and pause 
information, and (from face) FAU-based measures of rate information. The high-level coordination 
features for all modalities are based on eigenspectra analysis of covariance, correlation, and 
coherence matrices that are constructed from sets of low-level features. Various subsets of these 
features have been used effectively at MIT Lincoln Laborarory in cogntive stress [17] and neuro-
cognitive contexts such as in detection of depression, Parkinson’s disease, traumatic brain injury, 
and dementia [11]-[16],[18]-[22], thus perhaps forming a common feature basis for neurocognitive 
change.  
 

Gait 
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In this chapter, detection of cognitive load is used as a case study. However, the algorithms 
described provide a more general framework for detection of changes in neurocognitive health 
status from multiple sensing modalities. In Section 2, we open with a novel cognitive load data 
collection protocol that taxes auditory working memory by eliciting sentence recall under varying 
levels of cognitive load. In Section 3, we then describe how our signal processing methodology for 
vocal, facial, and EEG features are applied for detection of cognitive load under this protocol. 
Section 4 summarizes cognitive load detection results using a Gaussian classifier.  Section 5 then 
shows how we can use our principles of timing and coordination to detect major depression 
disorder from vocal and facial signals. Lastly, Section 6 closes with conclusions and projections 
toward future work. 

2. Design of a Multimodal Platform for Cognitive Load 

Cognitive load is defined loosely as the mental demand experienced for a particular task. Demand 
can increase or decrease depending on the task and the degree of working memory required [1][2]. 
Efficient and effective methods are needed to monitor cognitive load under cognitively and 
physically stressful situations. In many scenarios, environmental and occupational stressors can 
produce cognitive overload, thereby degrading task performance and endangering safety. Examples 
of mental stressors are repetitive and/or intense cognitive tasks, psychological stress, and lack of 
sleep. Physical stressors include intense long-duration operations and/or heavy loads. Both stressors 
can cause cognitive load, and often contribute simultaneously to load. Applications for cognitive 
load assessment include individualized detection of cognitive load in an ambulatory, field, or 
clinical setting. In clinical applications, the objective is often to find and measure the specific 
causes of load.  In operational settings, the objective is often to quickly assess cognitive ability and 
readiness under loaded conditions, regardless of their etiology. In designing a multimodal 
voice/face/EEG database protocol that reflects these typical cognitive load conditions, we employed 
the hypothesis that speech, and the corresponding facial movements that occur while speaking, are 
complex motor activities requiring precise neural timing and coordination, and that manipulating 
cognitive load level systematically alters this complex motor activity in a measurable way. 

Subjects gave informed consent to our working memory-based protocol approved by the MIT 
Committee on the Use of Humans as Experimental Subjects (COUHES). Audio data are collected 
with a DPA acoustic lapel microphone (with a Roland Octa-Capture audio interface), facial video 
with a Canon high-definition video camera, and EEG signals with a 64-element Neuroscan device. 
An illustration of the collection platform is shown in Figure 2.  
 

    
 
Figure 2: Multimodal platform for recording of speech, facial expression, EEG, and physiological 
signals. 
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Following setup and training, each subject engages in the primary task of verbally recalling 
sentences with varying levels of cognitive load, as determined by the number of digits being held in 
working memory [56]-[58].  Specifically, a single trial of the auditory working memory task 
comprises: the subject hearing a string of digits, then hearing a sentence, then waiting for a tone 
eliciting spoken recall of the sentence, followed by another tone eliciting recall of the digits.  This 
task is administered with three difficulty levels, involving 108 trials per level. The same set of 108 
sentences is used in each difficulty level. The order of trials (sentences and difficulty level) is 
randomized. The entire protocol, approximately two hours in duration, is illustrated in Figure 3.  
The multi-talker PRESTO sentence database is used for sentence stimuli [55]. We recorded 17 
subjects but used 11 subjects from whom robust recordings were obtained in all three modalities. 
 

 

         
                
Figure 3.  Auditory working memory protocol. Audio and video are analyzed during sentence 
recall while the EEG is analyzed during the pause interval to avoid motion and muscle artifacts.  
 
The working memory task is split into a training and a testing phase. During training, the maximum 
number of digits that a subject can accurately recall is estimated using an adaptive tracking 
algorithm [56]. This number nc, is used to determine the three difficulty levels in the test phase, 
which were typically set as: dn = {ceil(nc), ceil(nc)-1, ceil(nc)-2}. Despite some minor protocol 
changes among early subjects, this common load assessment test was used for most subjects, and 
used in 10 of the 11 subjects analyzed in this chapter. We later will define a binary detection 
problem of discriminating high load (max number) from low load (max number minus two).  The 
range of digit spans across all subjects was 2‒5 for low load and 4‒7 for high load.    
Finally, as seen in Figure 3, with our  protocol we also measure skin conductance, temperature, and 
pulse oxygenation level. These are not a focus of the present study but pave the way to investigating 
a broader suite of mult-modal biomarkers. 
 

3. Feature Extraction 

Biomarkers for monitoring and detecting cognitive stresses, as well as neurological disorders, 
comprise behavioral, physiologic, and cognitive modalities.  Three particular modalities that are 
gaining popularity include speech, facial expression, and EEG signals. The effectiveness of 
predicting cognitive load from these modalities is based on the hypothesis that manipulating 
cognitive load level systematically alters the underlying neural motor activation required in speech 
production and facial expression due to a competition for mental resources between motor activity 
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and working memory. This neural activation is reflected in the EEG measurements which is 
sometimes considered a “gold standard” in viewing the effect of working memory demand [8]-[10].  

Our features from these three modalities (voice, face, EEG) are based on common principles of 
timing and coordination within components of each modality. In each case, we extract first low-
level (standard) features followed by high-level (novel) features as functions of the low-level 
features. For voice, feature vectors are extracted only from the single spoken sentence component 
of each trial in the test phase of the auditory memory task of Section 2. Low-level vocal features 
comprise measures of phoneme and pseudosyllable durations, pitch dynamics, spectral (formant) 
dynamics, and vocal-fold irregularity (creak). We construct high-level features that capture timing 
and inter-relationships across the low-level features. The feature sets are derived under the 
hypothesis that differences in cognitive load produce detectable changes in speech production 
timing and coordination within and across articulatory and vocal fold components. For facial 
expression, analyzed during the same time interval as audio, the extracted low-level features are 
Facial Action Units [36][37][59], which are followed by correlation-based measures as high-level 
features. For the EEG, during the pause interval to avoid motion and muscle artifacts, we perform 
preprocessing to extract low-level EEG signals free of many typical artifacts, followed by 
correlation and frequency-dependent coherence and power measures. In this section, we describe 
key details of the various extraction methods and illustrate extraction through the cognitive load 
database decribed in Section 2. 
 
3.1 Vocal Features 
We exploit dynamic variation and inter-relationships across speech production systems by 
computing features that reflect complementary aspects of the speech vocal-fold source, vocal tract 
system, and prosody [75]. We describe a broad suite of features which are used in detection of 
cognitive load in Section 4, and in detection of depression in Section 5, as well as in other cognitive 
stress and neurological disorders [11]-[22]. 
 
3.1.1 Low-level vocal feature extraction 
In this section we introduce a set of low-level features some of which are used in the cognitive load 
scenario of this chapter, while others are used in the depression example of Section 5, as well as in 
our other cognitive load and neurological detection efforts [11]-[22]. 
 
Voice Source 
Harmonics-to-noise ratio (HNR): A spectral measure of harmonics-to-noise ratio was performed 
using a periodic/noise decomposition method that employs a comb filter to extract the harmonic 
component of a signal [60][61]. The harmonics-to-noise ratio is the ratio, in dB, of the power of the 
decomposed harmonic signal and the power of the decomposed speech noise signal and was 
computed every 10 ms. 
Cepstral peak prominence (CPP): Several studies have reported strong correlations between 
cepstral peak prominence (CPP) and overall dysphonia perception [62]-[64], breathiness [65]-[66], 
and vocal fold kinematics. CPP is defined as the difference, in dB, between the magnitude of the 
highest peak and the noise floor in the power cepstrum for quefrencies greater than 2 ms 
(corresponding to a range minimally affected by vocal tract–related information) and was computed 
every 10 ms. 
Creak voice quality: A creaky voice quality (vocal fry, irregular pitch periods, glottalization, etc.), 
is characterized using acoustic measures of low-frequency/damped glottal pulses [71]. The creak 
measure builds on metrics of short-term power, intra-frame periodicity, inter-pulse similarity [72], 
and two measures of the degree of sub-harmonic energy (reflecting the presence of secondary 
glottal pulses) and the temporal peakiness of glottal pulses [73]. These values are input into an 
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artificial neural network to yield creak posterior probabilities on a frame-by-frame basis every 10 
ms [74]. 
 
Speech System 
Formant frequencies: A Kalman filter technique is used to characterize vocal tract resonance 
dynamics by smoothly tracking the first three formant (resonant) requencies, while also smoothly 
coasting through non-speech regions [70].    
Mel-frequency cepstral coefficients (MFCCs): 16 delta MFCCs [75] are used to characterize 
velocities of vocal tract spectral magnitudes, typical in speech-related recognition applications [77]. 
Delta MFCCs [75] are computed using regression with the two frames before and after a given 
frame.  
 
Speech Prosody 
Phonemes: Using an automatic phoneme recognition algorithm [38], phonetic boundaries are 
detected, with each segment labeled with one of 40 phonetic speech classes (see Figure 17 in 
Section 3.1.2). 
Pitch: The fundamental frequency (pitch) was estimated using a time-domain autocorrelation 
method over 40 ms Hanning windows every 1 ms [75].   
 
3.1.2 High-level vocal feature extraction 
 
Our high-level features are designed to characterize properties of timing and coordination from the 
low-level features.  
Correlation Structure: Measures of the structure of correlations among low-level speech features 
have been applied in the estimation of depression [13][22] and Parkinson’s disease [19], the 
estimation of cognitive performance associated with dementia [18][11], the detection of changes in 
cognitive performance associated with mild traumatic brain injury [14], and in our earlier cognitive 
load effort [17]. The details for this approach are in [20], where the method was first introduced for 
analysis of EEG signals for epileptic seizure prediction.  
Channel-delay correlation and covariance matrices are computed from multiple time series channels 
of vocal parameters. Each matrix contains correlation or covariance coefficients between the 
channels at multiple time delays. Changes over time in the coupling strengths among the channel 
signals cause changes in the eigenvalue spectra of the channel-delay matrices. The matrices are 
computed at multiple “time scales” corresponding to separate sub-frame spacings. Features at each 
time scale consist of the eigenvalue spectra of channel-delay correlation matrices, as well as 
covariance power (logarithm of the trace) and entropy (logarithm of the determinant) from channel-
delay covariance matrices. This methodology is illustrated in Figure 4 with the generation of 
formant track correlation matrices. 
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Figure 4. Diagram of cross-correlation analysis of articulatory coordination, as performed through 
formant-based features using channel-delay correlation matrices at multiple delay scales. A 
channel-delay matrix from one scale is shown.   
In the cognitive load application, parameters were used to extract correlation structure features from 
three different low-level speech sources: formant frequency tracks, creak probabilities, and delta 
MFCCs. Sub-frame spacings of 1, 3, and 7 are used and, due to the 10-ms frame interval of the low-
level features, these correspond to time spacings of 10, 30, and 70 ms, respectively.  Each matrix 
(for each scale) is constructed using 15 time delays. The number of correlation-based features is the 
number of signal channels times the number of scales (i.e., number of sub-frame spacings) times the 
number of time delays (15) per time scale.  The number of covariance-based features is the number 
of time scales (entropy features) plus one log power feature, as power is invariant across scale. 
Parameters are similar to those of previous studies [11]-[22], with a constant number (four) of 
principal components used for all sensor modalities to avoid overfitting. Specifics are given in 
Section 5 on cognitive load detection. An example comparison of formant-based correlation 
matrices for low and high load conditions for one subject is shown in Figure 5, indicating more 
complexity in the high-load correlation matrix. Differences of matrix eigenvalues from these 
matrices are shown at he right. Similar differences are observed in correlation matrices 
corresponding to the other speech features described above. 
 

 
 
Figure 5: Example comparison of formant-based correlation matrices for low and high cognitive 
load for one subject. Matrix eigenvalues from these matrices are shown at right. 
  
The differences in eigenspectra patterns due to high versus low cognitive loads provide indications 
about the effect of load on speech.  In Figure 6, averages across all subjects of normalized (z-
scored) eigenvalues from formant, creak, and delta-MFCC signals are shown for low load (blue) 
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and high load (red).  The eigenvalues are ordered, left to right, from largest to smallest.  So, in all 
three cases there is greater power in the medium level eigenvalues during higher cognitive load.  
This indicates greater dynamical complexity in formant frequencies, creak, and spectral content 
during higher cognitive load.  The normalized eigenvalues are plotted in units of standard deviation.   
 

    
           
Figure 6.  Correlation structure features: Average normalized eigenvalues from all subjects for low 
and high cognitive loads, based on formant frequencies (left), creak (center), and delta mel-cepstra 
(right). 
 
Coherence Structure and Power: We have also introduced a feature set that characterizes the 
structure of signal coherence and power at multiple frequency bands. The coherence between 
channels, indicating the amount of cross-channel power in a frequency band relative to the amount 
of within-channel power, provides a measure of how closely related the signals are within a 
frequency band. The power and cross-power are computed among three formant frequency channels 
in three different frequency bands, and a 3 × 3 coherence matrix is constructed for each band.  The 
eigenspectra of the coherence matrices indicate the structure of coherence across the channels.  
PCA is used to project these features into lower dimensional representations.    
The differences in coherence and power features due to high versus low cognitive load provide 
indications about the effect of load on speech.  In Figure 7 (left), averages across all subjects of 
normalized coherence eigenvalues from the middle frequency band (1.0‒2.0 Hz) are shown for low 
load (blue) and high load (red). As before, the eigenvalues are ordered, left to right, from largest to 
smallest.  Similar to the correlation structure results shown in Figure 7, these results indicate greater 
power in the mid-level eigenvalue for the higher load condition.  In Figure 7 (right), it is shown that 
the higher load condition is also associated with more power (i.e., variability) in all three formant 
tracks.  The normalized eigenvalues and power features are plotted in units of standard deviation.  
 

             
       
Figure 7. Left: Average normalized log eigenvalues from coherence matrix at frequency band 1.0‒
2.0 Hz for low and high cognitive loads from formant frequencies.  Right: Normalized log power 
for the three formant frequency tracks at frequency band 1.0‒2.0 Hz. 
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3.2 Video Features 
 
3.2.1 Low-level features 
Although Facial Action Units provide a formalized method for identifying changes in facial 
expression frame-by-frame [36], their extraction in large quantities of data has been impeded by the 
need for trained annotators to mark individual frames of a recorded video session. For this reason, 
the University of California San Diego has developed a computer expression recognition toolbox 
(CERT) for the automatic identification of FAUs from individual video frames [59]. Table 1 lists 
the FAUs output by CERT used for the video-based facial expression analysis.  
 
Following CERT, all frames marked as invalid by the program and values considered outliers are 
removed. In addition, each frame of data is retained only if it is marked valid across all 20 FAUs. If 
the duration of the remaining FAU time series was less than 30s or 40% of their original length, the 
entire set of FAUs for that recording was not used.  
 
   Table 1. The 20 facial action units from CERT. 
 
   # Description  # Description 
   1 Inner Brow Raise 11 Lip Stretch 
   2 Outer Brow Raise 12 Cheek Raise 
   3 Brow Lower  13 Lids Tight 
   4 Eye Widen  14 Lip Pucker 
   5 Nose Wrinkle  15 Lip Tightener 
   6 Lip Raise  16 Lip Presser 
   7 Lip Corner Pull 17 Lips Part 
   8 Dimpler  18 Jaw Drop 
   9 Lip Corner Depressor 19 Lips Suck 
   10 Chin Raise  20 Blink/Eye Closure 
 
 
Each FAU feature was converted from a support vector machine (SVM) hyperplane distance to a 
posterior probability using a logistic model trained on a separate database of video recordings [68]. 
Henceforth, the term FAU refers to these frame-by-frame estimates of FAU posterior probabilities. 
 
3.2.2 High-level features 
Our high-level features are designed to characterize properties of timing and coordination from the 
low-level features. Facial coordination features are obtained by applying the correlation structure 
technique to the FAU time series using the same parameters that were used to analyze the vocal-
based features. Because of the 30 Hz FAU frame rate, the spacings of 1, 3, and 7 data points for the 
three time scales corresponds to time sampling in increments of approximately 33 ms, 100 ms, and 
234 ms. Examples of correlation matrices for low and high loads (for one of the 11 subjects) are 
shown in Figure 8 (left and center) while average (across all 11 subjects) normalized eigenvalues 
from all subjects’ trials are shown in Figure 8 (right). Once again, more power is found in the 
middle-level eigenvalues during high cognitive load.  
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Figure 8: Example correlation matrix for low load (left) and high load (center) condition; Average 
normalized eigenvalues for correlation matrix for FAU features (right). 
 
An alternative FAU-based feature set, the facial activation rate, can be obtained by computing 
mean FAU values (an estimate of percent time present via posteriori probabilities) over each 
passage and combining several of these into a fused FAU rate measure. 
 
3.3 EEG Features 
 
3.3.1 Low-level features 
EEG signals were measured at 500 Hz with a 64-element Neuroscan system, followed by high-pass 
filtering and standard artifact removal. Measurements were made during the sentence listening and 
pause region of the protocol (Figure 3) to avoid motion and muscle artifacts during speaking.  
 
3.3.2 High-level features 
As with formant correlation structure, we have introduced feature sets that characterize the 
broadband correlation structure and coherence structure and power at multiple frequency bands. 
The correlation structure is computed similarly to above, except that a larger number of delay scales 
are used, with five delays per scale and with delay spacings of 5, 11, 23, 47, and 95. The coherence 
and power features are computed in five standard frequency bands (delta, theta, alpha, beta, 
gamma), and a coherence matrix is constructed for each band.  Example correlation matrices for the 
low and high conditions from one subject are shown in Figure 9 (left and center), and average 
normalized eigenvalues across all subjects’ trials in Figure 9 (right). Average normalized EEG 
coherence eigenvalues and channel log-power at the beta frequency band (16‒31 Hz) are shown in 
Figure 10 . As with the voice and face biomarkers above, greater power is found in the middle to 
small EEG eigenvalues in the high load condition.  Unlike the formant power features in Figure 7, 
we find that high load is associated with lower levels of EEG power.  
 

 
 
Figure 9: Example comparison of EEG-based correlation matrices for low and high cognitive load 
for one subject. Average normalized eigenvalues for correlation matrix for FAU features (right).  
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Figure 10: Average normalized log eigenvalues (left) for EEG coherence matrices and channel log 
power (right) at the beta frequency band (16‒31 Hz) for low and high cognitive loads. 
 

4. Results for cognitive load 

Our goal is to detect differences in cognitive load from voice and face measurements and compare 
with EEG signal analysis. To evaluate detection performance, for each subject the 108 feature 
vectors (one vector per spoken sentence and load condition) from the max-digit condition is 
assigned to the high load class, and the 108 vectors from the max-digit-minus-two condition is 
assigned to the low load class. Leave-one-subject-out cross validation is used, with a classifier 
trained on the data from 10 held out subjects used to discriminate between high and low load on a 
test subject.  
A key processing step is individualized feature normalization.  This involves, for each subject 
(whether in the training or test set), subtracting the mean from each feature across both load 
conditions.  This processing step is done to remove inter-subject feature variability, and implies that 
the ability to discriminate load conditions requires some knowledge of a subject’s baseline features.   
Load discrimination is done with a Gaussian classifier (GC), where the Gaussians are centered on 
the two class means, and a common covariance matrix is used based on the data across both load 
conditions. In each trial, the GC produces a load score (log-likelihood ratio of high versus low 
load). A receiver operating characteristic (ROC) curve is obtained by varying a detection threshold 
to characterize the sensitivity/specificity tradeoff.  For each subject, 216 scores are obtained (108 
for each load).  A single ROC curve derived from scores of all 11 subjects characterizes total 
performance, with the area under the curve (AUC) serving as a summary statistic.  
 
 
4.1 AUC as a summary statistic: Single trial case  
In certain applications, vectors comprising our correlation- and coherence-based eigenspectra and 
covariance-based entropy and power have been concatenated into a single feature vector and then 
projected, using principal component analysis (PCA), into a lower-dimensional representation. In 
the current cognitive load application, better discriminative value was found by applying PCA 
separately to the multi-scale correlation-, covariance-, and coherence-based features.  
 
Tables 2-4 list the number of features used by the Gaussian classifier for each feature set, and the 
AUC results.  We see that the EEG modality achieves an AUC of 0.67, outperforming audio with 
an AUC of 0.56 and video with an AUC of 0.55. Table 5 summarizes various combinations of the 
features. The best overall performance of AUC = 0.68 is obtained by combining (via class fusion) 
all of the feature sets.  
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Table 2. Summary of area under ROC curve (AUC) results for detecting high cognitive load from a 
single trial (sentence) for the EEG modality. Coherence and channel features cover five frequency 
bands: delta, theta, alpha, beta, gamma. 
 
Feature sets description # PCA features AUC 
1 Covariance and 

correlation structure 
Cov-struct: 4 
Corr-struct: 4 

0.67 

2 Coherence structure 3 for each band 0.53 
3 Channel power 3 for each band 0.60 
Combined   0.67 
 
 
Table 3. Summary of area under ROC curve (AUC) results for detecting high cognitive load from a 
single trial (sentence) for the audio modality. Coherence and channel features are applied to formant 
tracks at three freq. bands: 0.25-1.0, 1.0-2.0, 2.0-4.0 Hz 
 
Feature sets description # PCA features AUC 
1 Covariance and 

correlation structure 
of formants 

Cov-struct: 4 
Corr-struct: 4 

0.52 

2 Covariance and 
correlation structure 
of delta-MFCC 

Cov-struct: 4 
Corr-struct: 4 

0.54 

3 Covariance and 
correlation structure 
of creak 

Cov-struct: 4 
Corr-struct: 4 

0.52 

4 Coherence structure 3 for each band 0.53 
5 Channel power 3 for each band 0.52 
Combined   0.56 
 
 
Table 4. Summary of area under ROC curve (AUC) results for detecting high cognitive load from a 
single trial (sentence) for the video modality.  
 
Feature sets description # PCA features AUC 
1 Covariance and 

correlation structure 
Cov-struct: 4 
Corr-struct: 4 

0.55 

 
 
Table 5. Summary of area under ROC curve (AUC) results for detecting high cognitive load from a 
single trial (sentence) for the various feature combinations from audio, video, and EEG modalities. 
 
Feature combinations AUC 
Audio + Video 0.57 
EEG + Audio 0.68 
EEG + Video 0.67 
EEG + Audio + Video  0.68 
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4.2 Detection versus false alarm results 
 
Although our protocol involves feature processing of single spoken sentences, the ability to detect 
load after fusing evidence across multiple sentences can be assessed by combining the Gaussian 
classifier scores from different trials, provided that the trials involve the same load condition.  This 
was done by randomly selecting, from the same subject, a number of trials of either high load or 
low load, and summing their Gaussian classifier scores.  For each subject, load condition and 
combination number, 200 randomly chosen sets of trials were used to determine the fused scores 
across multiple sentences. 
 
Figures 11-12 summarize the ROC results (detection versus false alarm) for each modality alone 
and in combination. In Figure 11, we see a comparison of ROCs across each modality alone. We 
observe that the EEG-based detector rapidly converges up to a limit that is due to prediction failure 
on 1 out of the 11 subjects. With multiple trials, the EEG is getting 100% correct on 9 subjects, 
about 60% on one, and 0 % on another. Thus the ROC across all 11 subjects is limited by those last 
two subjects. The audio modality is converging more slowly to successful prediction on 10 of the 
11 subjects, while the video modality is converging even more slowly to successful prediction on 
all 11 subjects. As seen in Figure 12, combining audio and video after 6 minutes only slightly 
underperforms EEG alone, while combining all three modalities provides a reasonable gain over 
any one modality. 
        

 
 
Figure 11.  Independent probability of detection versus false alarm for EEG, audio, and video 
modalities. Each panel gives ROCs as a function of increasing number of trials from 1 to 360, 
corresponding to 6 s to 360 s (6 minutes) for low and high cognitive loads. 
 

 
 
Figure 12.  Fused probability of detection versus false alarm for combinations of EEG, audio, and 
video modalities. Each panel gives ROCs as a function of increasing number of trials from 1 to 60, 
corresponding to 6 s to 360 s (6 minutes) for low and high cognitive loads. 
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4.3 Analysis of convergence 
 
Figure 13 contains boxplots (mean and variance) summarizing the AUC values for the 11 subjects 
within each modality, given combinations of 1, 5, 10, ..., 60 trials.  The median AUC value for each 
modality increases as a function of the number of trials, with EEG detection accuracy quickly 
converging to 100% for 9 of 11 subjects, and audio and video converging much more slowly. 
Figure 14 contains boxplots comparing the EEG AUC values with two combined-modality results, 
which correspond to the ROC plots of Figure 12. Observe in Figures 13 and 14, however, outliers 
marked with red crosses that not included in calculation of the box plots. As noted earlier in our 
ROC discussion, with multiple trials, the EEG is getting 100% correct on 9 subjects, about 60% on 
one, and 0 % on another.  Because more outliers tend to occur with the EEG than with the audio or 
video modality, one must consider this in drawing conclusions in comparing convergence and 
relative performance. 
 

 
Figure 13.  Independent AUC variance results across 11 subjects as a function of number of 
combined trials with same load for each modality.  Outliers are marked with red + symbols and are 
not included in the variance calculation. 
 

 
Figure 14.  Fused AUC variance results across 11 subjects as a function of number of combined 
trials with same load for EEG, audio + video, and audio + video + EEG modalities.   
 

5. Timing- and Coordination-based multimodal features in other conditions:             
Major Depression Disorder Case Study 

In individuals with major depressive disorder, neurophysiological changes often alter motor control 
and thus affect the mechanisms controlling speech production and facial expression. These changes 
are typically associated with psychomotor retardation, a condition marked by slowed neuromotor 
output that is behaviorally manifested as altered coordination and timing across multiple motor-
based properties. As with cognitive load, changes in motor outputs can be inferred from vocal 
acoustics and facial movements as individuals speak. Correspondingly our novel multi-scale 
correlation structure and timing feature sets from audio-based vocal features and video-based facial 

EEG# Audio# Video#

EEG# Audio#+#Video# Audio#+#Video#+#EEG#
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action units have been shown to be effective. The feature sets enable detection of changes in 
coordination, movement, and timing of vocal and facial gestures that are potentially symptomatic of 
depression. Combining complementary features in Gaussian mixture model and extreme learning 
machine classifiers, our multivariate regression scheme predicts self-reported Beck Depression 
Inventory (BDI) ratings with a root-mean-square error of 8.12 and mean absolute error of 6.31 
using a dataset from the 2014 Audio-Video Emotion Challenge (AVEC). In this section, we briefly 
summarize use of our principles of timing and coordination in vocal and facial expression. 
 
5.1 Audio-video AVEC depression database 
 
The 2014 Audio/Video Emotion Challenge (AVEC) uses a depression corpus that includes audio 
and video recordings of depressed subjects performing a human-computer interaction task [75]. 
Data were collected from 84 German subjects, with a subset of subjects recorded during multiple 
sessions: 31 subjects were recorded twice and 18 subjects were recorded three times. The subjects’ 
age varied between 18 and 63 years, with a mean of 31.5 years and a standard deviation of 12.3 
years.  
 
Subjects performed two speech tasks in the German language: (1) reading a phonetically-balanced 
passage and (2) replying to a free-response question. The read passage (NW) was an excerpt of the 
fable Die Sonne und der Wind (The North Wind and the Sun).  The free speech section (FS) asked 
the subjects to respond to one of a number of questions (prompted in written German), such as 
“What is your favorite dish?” “What was your best gift, and why?” and “Discuss a sad childhood 
memory.” The NW and FS passages ranged in duration from 00:31 to 01:29 (mm:ss) and 00:06 to 
03:50 (mm:ss), respectively.  
 
Video of the subjects’ face was captured using a webcam at 30 frames per second and a spatial 
resolution of 640 x 480 pixels. Audio was captured with a headset microphone connected to a 
laptop soundcard at sampling rates of 32 kHz or 48 kHz using the AAC codec. For each session, the 
self-reported BDI score was available. The recorded sessions were split into three partitions 
(training, development, and test) with 50 recordings in each set. We combined the training and 
development sets into a single 100-session data set, which is henceforth termed the Training set.   
 
5.2 Feature extraction 
As with the cognitive load problem, our high-level voice and face features are designed to 
characterize properties of coordination and timing from the low-level features of Section 3. The 
measures of coordination use assessments of the multi-scale structure of correlations among the 
low-level features. As before, this approach is motivated by the observation that auto- and cross-
correlations of measured signals can reveal hidden parameters in the stochastic-dynamical systems 
that generate the time series. For vocal-based timing features we use cumulative phoneme-
dependent durations and pitch slopes, obtained using estimated phoneme boundaries. For facial-
based timing features, we use FAU rates obtained from their estimated posterior probabilities. 
 
5.2.1 Speech features 
 
Speech correlation structure 
Referring back to Section 3, low-level speech features selected are based on articulatory (formant) 
correlations, source (vocal fold irregularity) correlations, and articulatory-to-source correlations. As 
an example, Figure 15 shows the correlation structure matrix for the source correlation of cepstral-
peak-prominence and harmonic-to-noise ratio (CPP–HNR). The matrix is based on vectors that 
consist of 88 elements (2 channels, 4 scales, 15 delays per scale, and 2 covariance features per 
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scale) comparing one control and depressed subject. Figure 15 also shows the top 20 eigenvalues 
per scale corresponding to these subjects and the average normalized eigenvalues across all subjects 
for four different depression severity ranges. Similar correlation structures and eigenvalue spreads 
are found for formant correlation features, delta MFCC correlation features, and formant-CPP 
(articulatory-to-source) features. 
     

     
 
Figure 15. CPP–HNR correlation features. Top: Channel-delay correlation matrices from NW 
passage for a normal and a depressed subject. Bottom: Eigenvalues for these subjects (left) and 
average normalized eigenvalues for four Beck assessment ranges in the training set (right). 
 
Phoneme-based featured 
 
Phoneme-dependent features:  
Phoneme durations: Based on phoneme boundaries introduced as low-level features in Section 2, 
we find that computing phoneme-specific characteristics, rather than the more typical average 
measures of speaking rate, can reveal stronger relationships between speech rate and depression 
severity [12][15]. Figure 16 shows the example of average phoneme durations which can be used 
themselves as features or as a basis for other features such as when the most highly correlating with 
a disorder assessment are combined.  
Pitch slopes: From the pitch estimate above, within each phone segment, a linear fit is made to the 
pitch values, yielding a pitch slope feature (ΔHz/s) associated with each instance of phonetic speech 
units. As with phoneme durations, these average values can be used themselves as features or as a 
basis for other features such as when the phoneme-dependent pitch slopes that are most highly 
correlating with a disorder are combined.  
 

 
     
Figure 16: Phoneme recognizer provides boundaries. In one feature set, average phoneme durations 
are correlated against severity of a disorder and combined according to the highest correlations. 
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Based on estimated average durations for each phoneme, the summed average durations of certain 
phonemes are linearly combined to yield fused phoneme duration measures.  A subset of phonemes 
whose summed durations are highly correlated with BDI scores on the training set are selected to 
create these fused measures, with weights based on the strength of their individual correlations. 
Table 6 lists the selected phonemes for the North Wind passage (left) and the first six of the ten 
selected phonemes for the Free Speech passage (right), along with their individual BDI correlations.  
The correlations of the fused measures for each passage are shown at the bottom. The linear 
combination used to obtain the fused measures is more fully described in [13]. 
 
Table 6. Correlation coefficients (R, p < 0.01) between fused phoneme durations and BDI scores in 
the training set. Fusion is done using linear combinations of phoneme durations.  Only 6 of the 10 
Free Speech phonemes are shown. 
 

North Wind Free Speech 

Phoneme R Phone
me R 

‘l’ 0.50 ‘ng’ 0.38 
‘ah’ 0.45 ‘t’ 0.34 
‘n’ 0.41 ‘hh’ 0.33 
‘ih’ 0.34 ‘ey’ 0.32 
‘b’ 0.34 ‘ow’ 0.28 
‘ow’ 0.34 ‘er’ 0.27 
Fused 0.54 Fused 0.57 

 
 
A fused phoneme-dependent pitch slope measure is also obtained using essentially the same 
procedure as described above. For each phoneme, we compute the sum of valid pitch slopes across 
all instances of that phoneme.  Invalid slopes are those with absolute value greater than eight, 
resulting in the exclusion of most slopes that are computed from discontinuous pitch contours. For 
each passage, the set of phonemes with the highest correlating summed pitch slopes are then 
selected.  The summed pitch slopes are combined to obtain fused measures for the NW and FS 
passages.  Using 20 phonemes for NW and 15 phonemes for FS, these fused measures have BDI 
correlations of R=0.63 (NW) and R=0.51(FS).  
 
5.2.3 Video features 
 
Facial Correlation Structure 
Facial coordination features are obtained by applying the correlation technique to the FAU time 
series using the same parameters that were used to analyze the vocal-based features. Because of the 
30-Hz FAU frame rate, spacing for the four time scales correspond to time sampling in increments 
of approximately 33 ms, 100 ms, 234 ms, and 500 ms. Figure 17 (top) shows example FAU 
channel-delay matrices at a single time scale from the same normal and depressed subjects that 
were used for illustration in Figure 15. These matrices are derived from the FS passage. As with the 
correlation-based speech features, Figure 17 (bottom-left) shows that the eigenspectra of the 
depressed subject contain less power in the small eigenvalues. This effect is observed across a 
spectrum of BDI scores in all 83 free-response training set recordings with valid FAU features. The 
facial-based eigenvalue differences are similar to those found in the correlation-based speech 
features. 
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Figure 17. FAU correlation features. Top: Channel-delay correlation matrices from FS passage for 
a normal and a depressed subject. Bottom: Eigenvalues for these subjects (left) and average 
normalized eigenvalues for four BDI ranges in Training set (right). 
 
FAU Rate 
We also used FAU rate as described in Section 3. Weights are based on FAU correlations with BDI 
scores using the combination rule based on highest correlation [13]. Correlation coefficient (R) 
between mean FAU posterior probabilities and BDI in the training set (p < 0.05 for all |R| ≥ 0.21). 
Fusion is done using linear combinations of the mean FAU posterior probabilities.  
 
5.2.4 Dimensionality reduction  
The correlation feature vectors typically contain highly correlated elements. To obtain lower-
dimensional uncorrelated feature vectors for machine learning techniques, we apply principal 
component analysis (PCA ). Table 6 lists the number of principal components we chose for each 
correlation feature type, along with phonetic and FAU rate features. The number of principal 
components in each case was determined empirically by cross-validation performance. 
 
Table 6. Total number of dimensions (# Dim.) and number of dimensions selected after principal 
component analysis (PCA #) for each of the eight features sets. 
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5.3 Multivariate fusion and prediction 
Our next step involves mapping the features described in Section 5.2 into univariate scores that can 
be easily mapped into BDI predictions. To do this, we use both generative Gaussian mixture models 
(GMMs), which have been widely used for automatic speaker recognition [77] and have recently 
been extended to vocal-based depression classification [13][22], and discriminative extreme 
learning machines (ELMs), a single layer feedforward neural network architecture with randomly 
assigned hidden nodes [78][79].  
 
Gaussian staircase: To train the generative GMMs, we utilize the Gaussian staircase approach in 
which each GMM is comprised of an ensemble of Gaussian classifiers [13][22]. The ensemble is 
derived from six partitions of the training data into different ranges of depression severity for low 
(Class 1) and high (Class 2) depression. Given a BDI range of 0 to 45, the Class 1 ranges for the six 
Gaussian classifiers are: 0−4, 0−10, 0−17, 0−23, 0−30, and 0−36, with the Class 2 ranges being the 
complement of these. The Gaussian classifiers comprise a single, highly regularized GMM 
classifier, with feature densities that smoothly increase in the direction of decreasing (Class 1) or of 
increasing (Class 2) levels of depression. Additional regularization of the densities is obtained by 
adding 0.1 to the diagonal elements of the normalized covariance matrices. 
 
Subject-based adaptation: Individual variability in the relationships between features and BDI are 
partially accounted for within the GMMs using Gaussian-mean subject-based adaptation. Motivated 
by GMM adaptation methods in automatic speaker recognition [77], if one or more sessions in the 
Training set have the same subject ID as the Test subject and are in the same BDI-based partition, 
the mean of the Gaussian for that partition is assigned to the mean of the data from that subject 
only, rather than the mean of the data from all subjects within the partition [13][22]. 
 
Fusion: A separate GMM classifier is used for each Feature Set, outputting a log-likelihood ratio 
score for Class 1 (Normal) and Class 2 (Depressed) [13]. Separate ELM classifiers are used for 
Feature Sets 1 and 2.  Initial BDI predictions are obtained from three Predictors 1, 2,3, which use 
different combinations of the eight Feature Sets and two types of classifiers. Within each Predictor, 
the classifier outputs from Feature Sets are summed together.  Following this, a univariate 
regression model is created from the Training set and applied to the classifier output from the Test 
data. The resulting univariate regression output is the intitial BDI score prediction from each 
Predictor. For Predictors 1 and 2, subject-based adaptation is then applied to adjust this initial 
prediction by correcting for consistent biases seen in the BDI Training set predictions of the same 
subject. If there are any Training sessions from a given Test subject, then the average Training set 
error from that subject is used to adjust the prediction. Details of our fusion methodology are 
described in [13]. 
 
5.4 Results 
The prediction system described above was used in our winning system in the AVEC 2014 
Challenge, with test RMSE = 8.12 and MAE = 6.31. These results are an improvement on our 
winning submission in the AVEC 2013 competition, which was test RMSE = 8.50 and 
MAE = 6.52. The 2013 result was obtained using voice only and a read passage (Homo Faber) that 
was much longer than the NW passage made available in 2014. Introduction of vocal and facial 
features helped improved performance in 2014 despite the relative lack of data in this challenge. A 
different perspective on these results is shown in Figure 18 giving the ROC curve (probability of 
detection versus false alarm) for both the AVEC 2013 and 2014 databases. In this binary detection 
problem, two classes are mild/moderate and moderate/severe severity levels. With significantly less 
data (2014) using voice and face, performance is comparable to a voice-only system (2013). 
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Figure 18.  Probability of detection versus false alarm of depression using AVEC 2013 and 2014 
databases. With significantly less data (2014) using voice and face, performance is comparable to a 
voice-only system (2013). 
 

6. Conclusions and Discussion 

In this chapter, we demonstrated the power of a multimodal approach using speech and facial 
features to discriminate between high and low cognitive load conditions, and illustrated its 
generality to cognitive disorders using a case study in major depressive disorder (MDD). Our vocal 
features capture timing and inter-relationships among phoneme durations, pitch dynamics, 
articulation, spectral dynamics, and creak, while facial features capture relations and rate of facial 
action units underlying facial muscle activity. In our cognitive load study, as a reference, we 
extracted EEG features that reflect relations across EEG channels. Using a database consisting of 
audio, video, and EEG from 11 subjects and recalled sentences and pauses prior to recalling a digit 
span, we effectively applied classification models of cognitive load and explored tradeoffs with 
audio and video in comparison with the EEG “gold standard”. We found that by merging audio and 
video brought us close to EEG-based performance, thus providing a simple noninvasive alternative 
to a complex 64-channel EEG. In illustrating the generalizability of our timing and coordination 
features to neurological disease, we briefly described a predictor of depression state based on vocal 
and facial modalities using the 2014 Audio/Video Emotion Challenge (AVEC). On-going work 
involves expansion of our approach to a larger suite of modalities (facial video, physiology, eye 
tracking, gait, EGG) as well as biomarkers that reflect timing and correlation both within and across 
these modalities  
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