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Reconciled rat and human metabolic networks
for comparative toxicogenomics and biomarker
predictions
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The laboratory rat has been used as a surrogate to study human biology for more than a

century. Here we present the first genome-scale network reconstruction of Rattus norvegicus

metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa.

These curated models comprehensively capture metabolic features known to distinguish rats

from humans including vitamin C and bile acid synthesis pathways. After reconciling network

differences between iRno and iHsa, we integrate toxicogenomics data from rat and human

hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate

comparative predictions for xanthine derivatives with new experimental data and literature-

based evidence delineating metabolite biomarkers unique to humans. Our results provide

mechanistic insights into species-specific metabolism and facilitate the selection of

biomarkers consistent with rat and human biology. These models can serve as powerful

computational platforms for contextualizing experimental data and making functional

predictions for clinical and basic science applications.
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R
ats serve an important role as model organisms in
preclinical drug development and biomarker discovery.
Candidate drugs are routinely tested in rats to assess safety

and efficacy before human clinical trials. Rodent animal models
also provide a preclinical platform for characterizing cellular
responses to investigational compounds through toxicogenomics
analyses of high-throughput molecular data sets1,2. Metabolomics
profiling of rat serum and urine has been used to quantify
potential metabolic biomarkers of drug activity or side effects
seen in drug-induced liver injury models3,4. Despite a high degree
of genomic and physiologic similarities between rats and
humans5,6, functional differences within non-pharmacokinetic
metabolism have been described, which could influence whether
a compound induces toxicity or elevates a biomarker7–9.
Understanding species-specific differences between rats and
humans will be important for the interpretation of preclinical
animal studies in drug development, biomarker discovery and
comparative toxicogenomics analyses2,10,11.

A genome-scale network reconstruction (GENRE) of metabo-
lism acts as a repository for all known biochemical and transport
reactions for an organism. Several GENREs with thousands of
human genes have been published12–15, while only core metabolic
networks with dozens of genes are available for rat16,17. A high-
quality GENRE of rat metabolism is needed to bridge the
knowledge gap that exists between humans and rats in clinical
and basic science applications. The limited availability of highly
curated GENREs for rats and other animals has been attributed to
the substantial efforts required to manually construct a GENRE
based on information from biochemical databases, genome
annotations and literature evidence18.

A comprehensive collection of metabolic differences between
rats and humans would be a valuable resource for understanding
the applicability, as well as the limitations of rats in preclinical
drug development and biomarker discovery10,11. Human
GENREs have been used to predict metabolic biomarkers for
inborn errors of metabolism (IEMs)13,19 and to analyse the
metabolic effects of therapeutic strategies in the context of
cancers, toxicology and diabetes14,15,20,21. Computational
methods for integrating gene and protein expression measure-
ments into GENREs have been developed to generate context-
specific metabolic networks and enable comparative predictions
across individual patients, treatment conditions and tissue
types15,22–24. Resolving metabolic differences between rat and
human GENREs would enable cross-species comparisons as
previously described for bacterial GENREs25,26. However, the lack
of unified standards for metabolic networks27 has limited the
development of computational frameworks for analysing species-
specific differences between GENREs.

In this study, we construct the first comprehensive GENRE
of rat metabolism and a newly updated GENRE of human
metabolism. We manually curate both rat and human metabolic
networks in parallel to reconcile species-specific differences and
facilitate cross-species comparisons. As a result, these models
successfully capture known metabolic features that distinguish
humans and rats. To demonstrate the use of these models in
systems toxicology, we integrate high-throughput transcriptomics
data to predict biomarker changes in response to 76 environ-
mental and pharmaceutical compounds for rat and human
hepatocytes. Comparisons of rat and human biomarker predic-
tions provide mechanistic insights into a human-specific side
effect caused by theophylline distinct from that of the structurally
related compound, caffeine. We validate select biomarker
predictions for these two xanthine derivatives with literature-
based evidence and new experimental data. Overall, the
comparative network analyses between rat and human

metabolism presented here provide a novel framework for
improving the translation of future preclinical studies in rats to
humans.

Results
Overview of rat and human metabolic networks. GENREs of
Rattus norvegicus (iRno) and Homo sapiens (iHsa) metabolism
were constructed in parallel as an expansion of the Human
Metabolic Reaction 2.0 database15 (HMR2). To enable
comparative systems analyses, we created a unified reaction
database termed Ratcon1 that includes the superset of metabolic
and transport reactions that occur in rats and humans. Each
GENRE also includes gene protein reaction (GPR) rules to
describe genotype to phenotype relationships that are organism
specific. To establish an initial draft GENRE of rat metabolism,
we used orthology information to replace human GPR rules with
rat GPR rules (Fig. 1a). Next, we updated iRno and iHsa in
parallel with 169 new reactions, 1,103 manually reconciled GPR
relationship rules and over 5,000 additional references to
experimental literature and annotation databases28–30 (Fig. 1b
and Supplementary Data 1). Compared with previous human and
mouse GENREs12,13,15,31,32, iRno and iHsa captured the highest
numbers of total reactions, enzymatic reactions, reactions
associated with complex GPR rules and annotations to external
databases (Table 1). As previous rat metabolic networks were
created for the purpose of metabolic flux analysis within the scope
of central metabolism, to our knowledge iRno represents the first
genome-scale network model of rat metabolism. Furthermore, all
reactions were reconciled for potential differences between rat
and human networks, which has not previously been described
for existing mammalian networks (Table 1). As a result, iRno and
iHsa represent two of the most comprehensive metabolic
reconstructions and the first pair of mammalian metabolic
networks reconciled for comparative analyses to date.

Network reconstruction and reconciliation. Before manual
curation, we assembled a draft of iRno based on a draft of iHsa
using orthology annotations from five online resources: the Rat
Genome Database33, Homologene34, Ensembl35, the Kyoto
Encyclopedia of Genes and Genomes28,29 and the Universal
Protein Resource (UniProt)36 (Fig. 1a). Inferring function
through orthology can be difficult37 when individual human
genes are annotated to multiple rat orthologues (Supplementary
Figs 1 and 2). To identify a minimal subset of orthologues that
preserved basic functionalities in the draft of iRno, we assigned
confidence to 4,768 orthologue pairs between 2,588 human genes
and 2,897 rat orthologues using a consensus approach (see
Methods). As a result, we selected a subset of 2,629 orthologue
pairs between 2,499 human genes and 2,575 rat orthologues that
were annotated in at least two databases (Supplementary Data 2),
to generate a draft of iRno that was iteratively improved in
parallel with iHsa (Fig. 1b). Without filtering orthology data, the
draft rat network was difficult to compare with the original
human network due to differences in the numbers of redundant
enzymes associated with each reaction (see Supplementary Fig. 3).

After network reconciliation, there was a high degree of
confidence in the conserved metabolic functionality of iRno and
iHsa. Unexpectedly, we found that rat and human metabolic
networks were distinguished by as few as eight unique enzymes.
At the genome scale, 99.6% of all gene-associated reactions
were annotated with both rat and human genes (Supplementary
Data 3). We simulated the effects of species-specific differences
on network connectivity and found that 41 biochemical or
transport reactions were uniquely capable of carrying flux in
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Table 1 | Comparison of reconciled rat and human GENREs with previous mammalian GENREs.

Database Ratcon1 HMA BiGG VMH

Organism Rat Human Mouse Human Mouse Human Human
Model iRno iHsa MMR HMR2 iMM1415 Recon 1 Recon 2

Genes* 2,324 2,315 3,579 3,728 1,375 1,496 1,733
Reactions 8,268 8,263 8,140 8,181 3,726 3,742 7,440
Enzymatic* 5,745 5,738 5,597 5,604 2,204 2,297 4,446
Isozymic* 2,863 2,691 3,013 3,135 776 832 1,647
Enzyme complex* 620 620 0 0 237 250 461
Annotated in KEGG 2,412 2,406 — 1,527 — — —
Species-specific 14 7 18 60 0 100 —
Unreconciledw 0 0 62 85 83 17 —
Average GPR size 2.98 2.97 3.66 3.89 1.83 1.91 1.97
Metabolites 5,620 5,620 5,516 5,546 2,775 2,766 5,063
Unique metabolites 3,200 3,200 3,170 3,155 1,503 1,509 2,626
Compartments 8 8 8 8 8 8 8
Biomass metabolites 184 169 117 117 41 41 41
Annotated in KEGG 3,353 3,353 — 689 — — 2,601
Metabolic tasks 327 327 56 256 254 260 354
Species-specificz 12 2 — — — — —

GENRE, genome-scale network reconstruction; GPR, gene protein reaction; HMA, Human Metabolic Atlas; BiGG, Biochemical Genetic and Genomic knowledgebase of large scale metabolic
reconstructions; VMH, Virtual Metabolic Human; KEGG, Kyoto Encyclopedia of Genes and Genomes.
iRno and iHsa expand on HMR2 with curated GPR rules that account for enzyme complexes, updated annotations to external databases, and no unreconciledw differences between species-specific
models. Bold entries indicate counts of major GENRE components followed by subcategory counts.
*Reactions associated with highly redundant GPR rules (10þ isozymes) such as generic signalling processes were excluded in these model comparisons.
wUnlike species-specific reactions, which are enzymatic in one species and absent in the other, unreconciled reactions can either be enzymatic in one species and non-enzymatic in the other, or
non-enzymatic in one species and absent in another.
zSpecies-specific tasks are explicitly designed to succeed in one species and not the other.
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Figure 1 | GENREs of human (iHsa) and rat (iRno) metabolism were reconciled for comparative analyses. (a) Reactions from iHsa were transferred to

iRno when GPR rules consisting of human genes could be replaced with equivalent GPR rules consisting of rat orthologs. A network-driven approach was

developed to filter orthology annotations based on consensus from five databases: Homologene, KEGG, Uniprot, Rat Genome Database (RGD) and

Ensembl. (b) iRno and iHsa were manually curated in parallel to capture species-specific reactions and to avoid introducing unverifiable differences based on

genotype and phenotype information across various resources. This process, called network reconciliation, contributed to the identification and removal of

several rat-specific reactions that are present in HMR2 and Recon 2. (c) Subsystem-level comparison of the knowledge gap that exists between rats and

humans. Stacked bars represent the percentages of PubMed articles mapped to rat and/or human genes for all metabolic genes represented in a

subsystem. PubMed articles referenced human genes more frequently than rat genes within all subsystems, but the knowledge gap was larger for pathways

that included one or more human-specific reactions. ETC, electron transport chain; PPP, pentose phosphate pathway.
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either iRno or iHsa. This result was unanticipated, because 739
flux carrying reactions from HMR2 had been disabled in the draft
GENRE of rat metabolism. Despite extensive efforts to identify
metabolic activities unique to rat or human genomes (see
Supplementary Methods), most metabolic subsystems included
zero species-specific reactions after manual curation (Fig. 1c).

To approximate whether sufficient literature information was
available to identify known species-specific differences, we
compared how frequently PubMed articles referenced rat and
human genes within individual subsystems. We found that rat
genes were referenced less frequently compared with human
genes, although the literature gap between rat and human genes
varied substantially by subsystem (Fig. 1c). Subsystems with
human-specific reactions included fewer references to rat genes
relative to human genes compared with other subsystems.
Interestingly, the number of reactions classified as human specific
based on orthology annotations decreased from 19 to 7 after
performing network reconciliation (Supplementary Data 1),
suggesting a higher degree of consistency between rat and human
metabolic capabilities than currently annotated. Alternatively, rat-
specific reactions were not identified for any of the poorly studied
subsystems in rats (Fig. 1c), suggesting that additional studies
may reveal undiscovered differences between rat and human
metabolism.

Metabolic enzymes unique to either rats or humans more
frequently contributed to increased redundancies rather than new
functionalities when comparing the relative sizes of rat and
human GPR rules across shared reactions (Fig. 2). GPR sizes were
consistent (along the diagonal of Fig. 2a) for nearly 80% of
reactions associated with both rat and human genes (an example
is illustrated in Fig. 2b); however, known differences in the
numbers of redundant rat and human genes have been
described38 for reactions such as the example shown in Fig. 2c.
Capturing variability between rat and human GPR rules is

important, because the numbers of redundant isozymes or
subunits in a protein complex affect the relative robustness of
reactions to genetic perturbations. Despite individual varia-
tions in GPR sizes and a handful of species-specific reactions,
rat and human GPR rules remained relatively balanced at the
genome scale (Fig. 2a) and were not suggestive of any global
differences in robustness within metabolism. However, these rat
and human GPR formulations do not reflect potential tissue-
specific differences in gene expression or enzyme regulation.
Integration of such data into iHsa and iRno to generate tissue-
specific models could be of significant interest in numerous
biological contexts13–15,22,23.

Metabolic tasks captured known species-specific functions. We
assembled a comprehensive collection of 327 metabolic tasks that
captured known functions within rat and/or human metabolism.
Each task represented a known biological process such as pro-
ducing glucose from lactate during gluconeogenesis or breaking
down glutamine into CO2 and urea. As a result, we recapitulated
14 new species-specific tasks, 42 new shared tasks and 271 shared
tasks previously described in the validation of human metabolic
network reconstructions13,15,20 (Supplementary Data 4). Species-
specific tasks were well represented across multiple subsystems
including ascorbate, purine, glycan and bile acid metabolism
(Fig. 1c), and each task was characterized by one or two unique
enzymatic reactions (Fig. 3). Below, we showcase the importance
of capturing these differences with iRno and iHsa in the contexts
of human biology and disease.

Unlike humans, rats are capable of producing vitamin C
(ascorbate; Fig. 3a) and are thus resistant to scurvy39. iRno and
iHsa captured this species-specific phenomenon with a new task
that simulated de novo vitamin C synthesis in a glucose minimal
media environment (Supplementary Data 4). The rat-specific
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(c) Example of a shared reaction, adenosine aminohydrolase (EC 3.5.4.4), which is involved in purine degradation and can be catalysed by two redundant

human isozymes or one rat enzyme.
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enzyme, Gulo, is known to be responsible for this functional
difference, which limited the use of rat as a model organism for
scurvy in the early twentieth century40. This species-specific
difference provides a simplistic example of how iRno and
iHsa can be leveraged to investigate genetic engineering
strategies that bridge the gap between rat and human biology
(see Supplementary Fig. 4).

In humans, the purine degradation pathway yields urate as the
end byproduct, which can accumulate and cause gout41. Rats can
further degrade urate into allantoin (Fig. 3b) and are resistant
to gout formation42. iRno and iHsa captured this functional
difference with new metabolic tasks that simulated the production
of urate from purines, which is common to both species, and
allantoin from purines, which is absent in humans (Supple-
mentary Data 4). The first two steps involved in converting
urate into allantoin, urate oxidase (EC 1.7.3.3) and 5-hydroxy-
isourate hydrolase (EC 3.5.2.17), are catalysed by the rat-specific
enzymes Uox and Urah, respectively. The human orthologues for

these two rat-specific genes, UOXP and URAHP, are non-
functional pseudogenes; however, the third and last enzymatic
step, 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxy-
lase (EC 4.1.1.97) is a shared reaction encoded by Urad in rats and
URAD in humans.

Known differences in glycosylation. Most mammals, including
rats, can synthesize N-glycolylneuraminic acid, a sialic acid found
in glycolipids and glycoproteins43,44, via the enzyme Cmah,
cytidine monophosphate-N-acetylneuraminic acid hydroxylase
(EC 1.14.18.2) (Fig. 3c). Humans cannot produce N-glycolyl-
neuraminic acid from N-acetylneuraminic acid, a prevalent sialic
acid in humans, because the orthologue CMAHP is a non-
functional pseudogene in humans44. Despite this difference,
human sialyltransferases can incorporate non-human sialic acids
into glycans obtained through the consumption of red meat43,
which we also captured as a shared task in rats and humans
(Supplementary Data 4).
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The human-specific enzyme, FUT3, encodes a fucosyltransfer-
ase involved in the Lewis blood group system. An individual with
a functional copy of FUT3 can produce the Lewis a antigen45

(Lea) and sialyl-Lea, a clinical biomarker for pancreatic cancer
commonly referred to as carbohydrate antigen 19-9 (Fig. 3d).
Despite the inability of rats to synthesize Lea, we expect that
carbohydrate antigen 19-9 could be produced from exogenous
Lea by the orthologous sialyltransferases St3gal3 and ST3GAL3
(ref. 46). Surprisingly, FUT3 was the only functional difference
attributed to human-specific enzymes after performing network
reconciliation between iRno and iHsa.

Bile acid pathway curation and reconciliation. The bile acid
metabolic pathway was expanded in iRno and iHsa to include bile
acids that may serve as biomarkers in rats and humans47 (Fig. 3e).
Human hepatocytes can synthesize chenodeoxycholic acid and
cholic acid from cholesterol, to facilitate dietary lipid absorption
(Fig. 3f). In addition to these two primary bile acids, rat
hepatocytes also produce large quantities of a-muricholic and b-
muricholic acid that are absent in humans47,48 (Fig. 3f). After
extensive manual curation of this pathway (described below),
metabolic tasks simulating the synthesis of four primary and seven
secondary bile acids were consistent with previous experiments
directly comparing bile acids detected in the livers and sera of rats
and humans47,48 (Fig. 3e and Supplementary Data 4).

The mammalian intestinal microbiome plays an important role
in converting primary bile acids synthesized by hepatocytes into
secondary bile acids, which can be re-absorbed and further
metabolized in the liver49. This ‘bile acid recycling’ expands the
global pool of metabolites encountered by humans and rats
beyond what their individual genomes allow. To account for bile
acid recycling in iRno and iHsa, we introduced a new extracellular
subsystem of ‘gut’ metabolic reactions that converted primary bile
acids into secondary bile acids (Fig. 3g). This simplified system
representing the intestinal microbiome was necessary to capture
the synthesis of murideoxycholic acid, a rat-specific bile acid
derived from the secondary bile acid, lithocholic acid (Fig. 3g and
Supplementary Data 4).

Although curating the bile acid synthesis pathway, we
discovered that the critical enzymatic step involved in the
production of rodent-specific bile acids was not annotated to any
rat or mouse genes (Fig. 3e). A previous study hypothesized that
an unknown cytochrome P450 family 3 member could produce
b-muricholic acid and murideoxycholic acid via 6-b hydroxy-
lation of chenodeoxycholic acid and lithocholic acid, respec-
tively50. Using Basic Local Alignment Search Tool (http://
www.uniprot.org/blast/), we compared the Golden Hamster
(Mesocricetus auratus) gene Cyp3a10 (UniProt ID: Q64148),
which has been reported to perform 6-b hydroxylation of
lithocholic acid51 (EC 1.14.13.94), with rat genes. We identified
Cyp3a18 as the best candidate with the highest sequence identity
to Cyp3a10 (Supplementary Data 5) and with protein-level
evidence of expression in rat hepatocytes52. Furthermore,
Cyp3a18 was the only potential match with no known human
orthologues, consistent with the absence of this function in
humans48. In contrast, a traditional Basic Local Alignment Search
Tool comparison of Cyp3a18 against other mammalian genomes
resulted in three mouse genes with higher sequence identity
but different functional annotations compared with Cyp3a10,
highlighting how reconciling metabolic network reconstructions
can guide the improvement of genome annotations53.

Metabolic network improvements. Network reconciliation
efforts provided significant improvements to both iRno and iHsa.
Although most of the species-specific functions described above

are unique to rats, we discovered that previous human GENREs
included rat-specific reactions associated with purine degrada-
tion, non-human sialic acid synthesis and glycine metabolism. As
a result, rat-specific reactions were not only added to iRno but
also removed from iHsa. By resolving species-specific differences
in the purine degradation pathway, we removed reactions from
iRno and iHsa that allowed Recon 2 (ref. 13) and HMR2 (ref. 15)
to degrade urate into urea (Supplementary Data 1), a function
known to be absent in mammals but present in other vertebrates
including fish42. Although curating bile acid metabolism, we
removed intracellular reactions involved in secondary bile acid
synthesis (Fig. 3f) that should only take place in the mammalian
gut and added new bile acid transport reactions (Supplementary
Data 1). These examples highlight how reconciling differences
between rat and human metabolism guided the improvement of
iHsa compared with HMR2 and Recon 2.

The manual curation process introduced major differences
between iHsa and previous human GENREs beyond species-
specific pathways. The average GPR size across enzymatic
reactions decreased from 3.89 in HMR2 to 2.97 in iHsa
(Table 1) after removing 1,424 human genes, most of which
were associated with signalling pathways (Supplementary Data 1).
With an average GPR size of 1.97 (Table 1), Recon 2 shared 1,531
of its 1,733 genes with iHsa. Although Recon 2 shared 1,677 genes
with HMR2, iHsa and Recon 2 included complex GPR relation-
ships that were absent in HMR2 (Table 1). In addition to
modifying GPR rules, we also removed several reactions that were
present in HMR2 (Supplementary Data 1). Unlike Recon 1,
Recon 2 and HMR2, iHsa does not include thermodynamically
infeasible reaction loops that drive unrealistic rates of ATP
production and H2O2 detoxification with limited nutrients (see
Supplementary Methods). We formulated new shared metabolic
tasks that captured physiologically relevant ATP yields from
glucose with and without oxygen, and verified that no ATP could
be ‘re-phosphorylated’ with only inorganic ions as inputs (see
Supplementary Data 4).

Benchmarking biomarker predictions for IEMs. Metabolic
biomarkers are routinely screened to pinpoint genetic deficiencies
in metabolic enzymes and to diagnose IEMs19. We evaluated the
ability of iHsa to predict known metabolic biomarkers for 49
IEMs (Supplementary Fig. 5). Metabolites were predicted as
elevated, reduced or unchanged for iHsa, HMR2 and Recon 2
using data previously described in the validation of Recon 2
(ref. 13). iHsa correctly predicted 83% of 99 IEM biomarkers
compared with 81% for HMR2 and 82% for the most recent
iteration of Recon 2 (Table 2). For IEM predictions, we applied
open constraints to exchange reactions that were more consistent
across iHsa, HMR2 and Recon 2 than default constraints (see
Methods). Compared with predictions described in the original
Recon 2 publication13 (Table 2), predictions for all three human
GENREs were slightly more sensitive for elevated biomarkers but
less sensitive for reduced biomarkers. We also explored possible

Table 2 | Sensitivity of iHsa in predicting known biomarkers
of IEMs compared with previous human reconstructions.

IEM biomarker Count iHsa HMR 2.0 Recon 2.04 Recon 2.00

Elevated 83 80 78 77 66
Reduced 16 3 2 4 10
Total 99 83.8% 80.8% 82.8% 76.8%

IEM, inborn errors of metabolism.
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species-specific differences and found that most GPR rules
associated with IEM mutations were closely mirrored by
equivalent rat GPR rules.

Physiological constraints for hepatocyte growth. To interrogate
the use of these reconstructions for making cell-specific predic-
tions, we defined quantitative biomass compositions for rat and
human hepatocytes (Supplementary Fig. 6 and also see Supple-
mentary Methods). Using flux balance analysis54 (FBA) with
biomass production as the objective, iRno and iHsa predicted
maximum growth rates of 0.048 and 0.040 h� 1, respectively,
under strict physiological constraints (Supplementary Fig. 7).
These predicted doubling times of 14.44 h by iRno and 17.33 h by
iHsa were remarkably consistent with reported doubling times of
16.9 h in rat55 and 17.8 h in human56 hepatocyte cell cultures. As
biomass compositions and boundary conditions were indepen-
dently formulated from different resources, these quantitative
biomass predictions served as validation for these models and
their comprehensive representations of hepatocellular growth
(Table 1). Physiological constraints also enable off-the-shelf use of
iRno and iHsa for integration of comparative genomics data and
systems-level analyses of hepatocyte metabolism.

Systems toxicology applications of iRno and iHsa. Rats are
often used as a surrogate model for understanding human
hepatotoxicity; consequently, it is critically important to under-
stand species-specific responses to experimental compounds, to
efficiently translate preclinical studies. To explore the effects of
exposure to pharmaceutical compounds and environmental tox-
icants on normal metabolic functions, high-throughput gene
expression profiles of rat and human hepatocytes were obtained
from the Open Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation system2,10 (Open TG-GATEs) and analysed
within the computational frameworks of iRno and iHsa. We
preprocessed raw microarray data from the Open TG-GATEs
independently for 119 individual compounds and calculated gene
expression changes between control samples and samples treated
with a low, medium or high dose for 8 h (see Methods). Of 119
compounds with expression data available, 76 were considered
suitable for comparative toxicogenomics analyses after excluding
treatments that did not significantly affect (false discovery rate
(FDR)o0.1) at least 1% of the 1,927 or 2,175 metabolic genes that
mapped to iRno or iHsa, respectively (Supplementary Data 6).

To demonstrate the utility of iRno and iHsa in biomarker
discovery for human toxicology, we generated biomarker
predictions for rat and human hepatocytes exposed to these 76
environmental toxicants and pharmaceuticals (Supplementary
Data 7). Species-specific gene expression changes in response to
76 compounds were integrated into iRno and iHsa using
transcriptionally inferred metabolic biomarker response (TIMBR;
Fig. 4), a new algorithm that estimates the feasibility of producing
a metabolite given changes in gene expression (see Methods).
First, TIMBR summarizes gene expression log2 fold changes into
reaction weights that represent the relative cost or demand
of carrying flux through each reaction for treatment and control
conditions (Fig. 4a,b). Second, TIMBR calculates the global
network demand required for biomarker production by mini-
mizing the weighted sum of fluxes across all reactions for each
condition (Fig. 4c,d). This general approach, known as parsimo-
nious enzyme usage FBA57, was previously adapted for
integrating absolute gene expression measurements (present or
absent)24,58 but not for relative gene expression changes
(upregulated or downregulated) as done here with TIMBR.

By integrating relative changes in gene expression, TIMBR
predictions represented the relative propensity to produce

metabolites in response to an individual compound. As a result,
relative production scores were determined independently for
each treatment by normalizing TIMBR predictions across all
exchangeable metabolites (Fig. 4e). By applying similar physio-
logical constraints to iRno and iHsa (Supplementary Fig. 7) and
requiring similar production rates for each metabolite (Fig. 4b),
TIMBR provided a novel framework for making biomarker
predictions across metabolites, treatments and organisms. In
contrast, a similar approach that integrated absolute expression
was described as capable of making comparisons across
experimental conditions but not between individual metabo-
lites58. As most species-specific reactions take place in peripheral
pathways (Fig. 3), it is not immediately apparent that there would
be species-specific differences in the ability to produce a
metabolic biomarker under physiological constraints. However,
TIMBR biomarker predictions can account for species-specific
differences in gene expression patterns with an explicit mapping
of species-specific GPR rules as accounted for in iRno and iHsa
(Fig. 2).

Caffeine-induced biomarker predictions for rat hepatocytes.
We validated TIMBR as a quantitative method for predict-
ing relative metabolic changes in response to caffeine using
previously published data59 (Fig. 5). Caffeine-induced gene
expression changes from rat hepatocytes (Fig. 4b) were inte-
grated into iRno using TIMBR to generate biomarker production
scores (Fig. 4e). An increased production score for a metabolite
such as urea indicated that genes involved in urea synthesis and
secretion were more consistently upregulated than downregulated
by caffeine. Reaction weights and fluxes that contributed to urea
production in caffeine treatment and control conditions are
visualized in Fig. 4d. We quantitatively compared TIMBR
production scores (Fig. 5) with previously reported concen-
tration changes after caffeine exposure in rats59. We evaluated our
biomarker predictions against serum levels of urea and ten
additional metabolites measured in rat liver samples59. We found
that rat production scores based on in vitro gene expression data
significantly correlated (Pearson’s r¼ 0.667; P-value¼ 0.0249)
with caffeine-induced liver metabolic changes reported in vivo
(Fig. 5). In addition, all metabolites that were experimentally
elevated (urea, citrulline and aspartate) or reduced (glutamate) by
caffeine treatment were consistently predicted in the top or
bottom 25% of production scores, respectively. For metabolites
that were not significantly affected after caffeine treatment, most
TIMBR predictions were within the middle 50% of production
scores, with the exception of ornithine and arginine. The TIMBR
algorithm also successfully predicted in vivo metabolite
concentration changes in response to caffeine with a Matthew’s
correlation coefficient of 0.69, indicating both high sensitivity
(100%) and specificity (71%). As TIMBR predictions are based
on transcriptional changes and do not rely on any knowledge of a
compound’s mechanism of action, we anticipate this compu-
tational approach will be broadly applicable to any compound
that induces a detectable physiological response.

Comparative biomarker predictions. Species-specific differences
in the metabolic response to a drug candidate could hamper the
successful translation of preclinical biomarkers of efficacy or
toxicity from rats to humans. We compared TIMBR predictions
generated by integrating gene expression changes into iRno and
iHsa, and found a weak but significant positive correlation (Pear-
son’s r¼ 0.1958; P-valueo10� 11) between rat and human pro-
duction scores across 286 metabolites and 76 compounds. We
analysed rat and human production scores predicted in response to
individual compounds and categorized 40 as positively correlated,
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23 as uncorrelated and 13 as negatively correlated using an FDR
significance threshold of 0.1 (Supplementary Data 7).

We validated TIMBR predictions against known metabolic
changes related to the therapeutic efficacy for antipyretic and
anti-gout medicines. Ibuprofen and acetaminophen are over-the-
counter antipyretics that are known to inhibit cyclooxygenase
enzymes (COX-1 and COX-2 encoded by PTGS1 and PTGS2)60.
We compared rat and human biomarker predictions for indivi-
dual metabolites across all 76 compounds and found that rat and

human production of prostaglandin E2, a metabolite synthesized
downstream of COX1/2, was predicted to decrease in response to
acetaminophen and ibuprofen (Fig. 6b). For anti-gout com-
pounds, we analysed the predicted effects of benzbromarone61,
benziodarone61, colchicine62 and phenylbutazone63 on urate
production. Despite differences in chemistry, we found that both
rat and human production scores for urate were decreased for
three out of four anti-gout medications, consistent with their
abilities to decrease urate accumulation (Fig. 6c). Furthermore,
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(a) TIMBR calculates reaction weights using log2 fold changes of significantly (FDRo0.1) differentially expressed genes. For each reaction, log2 fold

changes are averaged across isozymes after assigning a value of 0 to any insignificant changes. For reactions associated with protein complexes, the

subunit with the largest value after averaging is selected. Summarized values are then transformed into larger (or smaller) reaction weights for representing

relative expression between treatment and control conditions. (b) Caffeine-induced gene expression changes are displayed as a volcano plot for rat

hepatocytes. (c) Optimization problem formulated by TIMBR to estimate the global network demand needed to produce a metabolite. The objective

function minimizes the sum of all reaction fluxes (v) multiplied by TIMBR reaction weights (w). Treatment and control conditions were simulated separately
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whichever was smaller. (d) Optimal caffeine-weighted (wtreatment) and control-weighted (wcontrol) flux distributions (vtreatment and vcontrol) for biomarker

production of urea determined by integrating gene expression changes from (b) into iRno. Non-zero fluxes that were higher (purple), equal (grey) or lower
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induced expression changes that were more consistent with the production of urea compared to controls. (e) Raw production scores in response to

individual treatment strategies were calculated for each metabolite separately by comparing global network demands determined in c for the treatment and

control conditions. TIMBR production scores represent these raw production scores normalized across all relevant metabolites with biomarker predictions.
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urate production was predicted to increase in response to several
compounds for human hepatocytes but rarely for rat hepatocytes
(Fig. 6c), consistent with known species-specific differences in
purine degradation (Fig. 3b).

Validation of species-specific biomarker predictions. TIMBR
biomarker predictions were generally consistent between iRno
and iHsa for caffeine but not for theophylline, despite the fact that
both compounds are structurally related derivatives of xanthine
(Fig. 6). We investigated species-specific differences and found
that theophylline-induced urate production was predicted to
increase for human hepatocytes and decrease for rat hepatocytes
(Fig. 6c). As validation, we experimentally confirmed that extra-
cellular urate levels were decreased for primary rat hepatocytes
and increased for a human hepatocyte cell line treated with
theophylline for 24 h (Fig. 7). In contrast, caffeine was predicted
to decrease urate production in both rat and human hepatocytes
(Fig. 6c), despite known differences in the urate degradation
pathway (Fig. 3b). By comparing reaction weights and fluxes
associated with urate production, we found that shared reactions
involved in purine synthesis and purine degradation were
uniquely upregulated in human hepatocytes by theophylline and
not by caffeine (Supplementary Fig. 8). Interestingly, caffeinated
beverages have been associated with a decreased incidence of
hyperuricemia in patients64 (Fig. 6c), whereas theophylline has
been reported to increase serum urate levels in patients
(hyperuricemia)65. Using only toxicogenomics gene expression
data as an input into iRno and iHsa, TIMBR provided compa-
rative predictions that led to mechanistic insights into how two
nearly indistinguishable compounds (Fig. 6f) induced similar
responses in rat (Fig. 6d) but drastically different responses in
human (Fig. 6e)66.

To support the use of the TIMBR algorithm in comparative
toxicogenomics analyses across species, metabolites and com-
pounds, we experimentally measured extracellular concentrations
of urate (as described above), glutamate, glucose and urea after
treating rat and human hepatocytes with 0 or 10 mM theophylline
for 24 h (Fig. 7). As a result, we confirmed predicted species-

specific differences in urate (Fig. 7a), glutamate (Fig. 7b) and
glucose levels (Fig. 7c), and supported a shared trend towards
increased urea production (Fig. 7d). Individually, seven out of
eight experimental results were qualitatively consistent with
significantly (FDRo0.05) elevated, reduced or insignificant
concentration changes (Fig. 7). Similar to our analyses described
for caffeine (Fig. 5), we found that theophylline-induced changes
in metabolite concentrations were quantitatively consistent with
TIMBR production scores generated by iRno (Pearson’s r¼ 0.959;
P-value¼ 0.041) and iHsa (Pearson’s r¼ 0.963; P-value¼ 0.034)
(Fig. 7e). In addition, our validated rat predictions related to
glutamate (Fig. 7a) and urea (Fig. 7d) were also consistent with
our validated predictions for caffeine (Fig. 5), supporting analyses
between treatments as highlighted in Fig. 6d. Overall, these results
demonstrate the utility of iRno and iHsa in integrating gene
expression data, generating functional predictions and in
identifying species-specific biomarkers.

Discussion
This study provides a systems-level overview of species-specific
differences between rat and human metabolism captured with
GENREs. Through the process of network reconciliation25, we
discovered that rats and humans share an overwhelming majority
of their biochemical capabilities at the genome level, underscoring
the important role of rats as a model organism for understanding
human biology and disease. To demonstrate the use of these
highly curated rat and human metabolic networks in systems
toxicology, we developed a novel platform for comparative
toxicogenomics analyses and integrating high-throughput
genomics data sets. These mechanistic models of cellular metabo-
lism faithfully recapitulated known species-specific metabolic
functions, quantitatively captured cellular growth rates and
generated comparative biomarker predictions.

With an improved understanding of rat and human metabo-
lism at a global level, we can partially address inherent limitations
in the use of rats to study human physiology and disease. Despite
a surprisingly small number of species-specific differences
at the genome level, individual differences at the gene-level can
alter network functionality. Unlike rats, humans exclusively
rely on dietary sources of vitamin C, which may obfuscate the
clinical translation of rat studies that have described vitamin C
as a potential biomarker7,9. The abundance and absence of
b-muricholic acids in rats and humans, respectively, can have
substantial implications within the context of toxicology, because
bile acids are frequently used as blood-based biomarkers of liver
damage8. Furthermore, species-specific differences in gene
network regulation and downstream cellular responses to
stimuli have been observed but are not well understood67.

The comparative toxicogenomics workflow developed in this
study could be used to further the translational impact of rats in
biomarker discovery by highlighting metabolic biomarkers that
should be avoided. Using relative changes in gene expression, we
demonstrated the sensitivity of the TIMBR algorithm in predict-
ing species-specific differences related to glutamate, glucose and
urate production in response to theophylline. With the ability to
analyse biomarker predictions between treatments and across
metabolites, TIMBR could also be informative in prioritizing
biomarkers that are sensitive for a specific toxicological response.

Together, iRno and iHsa serve as a computational resource for
the understanding of rat metabolism within the context of human
biology. iRno and iHsa have the capacity to improve the
effectiveness of rat as a model organism in drug development
and biomarker discovery. Potential applications include identify-
ing combinatorial therapeutic strategies against cancers that
minimize toxicity in normal cells21, optimizing cell culture media
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formulations or experimental diets for specific diseases and
exploring potential genetic engineering strategies for new rat
strains that better mimic human biology. Resources can be
prioritized for simulated experiments that minimize species-
specific differences in silico over those not supported by the
mechanistic framework of these reconciled rat and human
metabolic networks.

Methods
Draft reconstruction of a rat metabolic network. Several published metabolic
network reconstructions were considered for the basis of iHsa and iRno. These
included HMR2 (ref. 15), H. sapiens Recon 1 (ref. 12) and Recon 2 (ref. 13),
HumanCyc30 and Hepatonet1 (ref. 20); ultimately, the largest network, HMR2, was
chosen for its inclusivity. In addition, HMR2 was capable of performing 256 well-
curated metabolic tasks relevant to hepatocyte metabolism in both humans and
rats. Constructing iRno based on a mouse metabolic network was also considered;
however, each mouse model was derived from one of the human models described
above31,32.

To construct a rat metabolic network from a human metabolic network, human
GPR rules were converted into rat GPR rules by replacing human genes with
known rat orthologues (Fig. 1a). Pairs of orthologous genes between humans and
rats were downloaded from five separate genomics databases: the Rat Genome
Database33, Ensembl35, Kyoto Encyclopedia of Genes and Genomes28,29, Uniprot36

and Homologene34. Each individual database contained varying amounts of
orthology information and unique orthology pairs, suggesting a lack of consensus
(see Supplementary Methods and Supplementary Fig. 2). All five databases were
used in the GPR conversion process, because inferring function through orthology
can be especially difficult when considering genes with multiple orthologues
(Supplementary Fig. 1). Before GPR conversion, annotations mapping a human
gene to ten or more rat orthologues were excluded to avoid inferring function from

nonspecific annotations. A draft of iHsa was adapted from HMR2 by replacing
human GPR rules consisting of Ensembl gene identifiers with protein-coding
Entrez genes. Ensembl genes without equivalent protein-coding Entrez genes were
discarded before GPR conversion. In addition, several reactions with excessively
large GPR rules such as generic protein kinase reactions were simplified or
discarded to streamline the GPR conversion process (Supplementary Data 1).

Aggregating orthology annotations from multiple databases increases the risk of
inappropriately replacing human genes with rat orthologues that do not perform
the same function. A consensus approach was used to filter out low-quality
orthology annotations during the GPR conversion process. Each orthologous pair
of rat and human genes was assigned a score of 1–5 corresponding to the number
of databases in which that pair was annotated. Individual genes were also assigned
confidence scores (Supplementary Data 2) determined by protein-level evidences
and annotation scores from Ensembl35 and Uniprot36 (see Supplementary
Methods). For human genes mapped to multiple rat genes, orthologues were
prioritized first by database scores then confidence scores to assign orthology ranks.
Sensitivity analysis was performed to explore how filtering out orthologue pairs
based on different cutoff values for database scores and orthology ranks affected the
distributions of rat and human GPR sizes (see Supplementary Methods).
Ultimately, a subset of 2,629 orthologue pairs were selected that were annotated in
at least 2 of 5 databases and limited each human gene to a maximum of 2
orthologues (Supplementary Data 2). This filtering step was important, because
methods that integrate gene expression data or simulate the impact of genomic
alterations rely heavily on the number of redundant enzymes associated with a
reaction.

After applying automated methods to construct draft GENREs, rat and human
GPR rules were manually examined in the context of experimental literature and
functional databases. As part of the network reconciliation process, discrepancies
were resolved for both rat and human GPR rules when possible. Manual changes
frequently affected both rat and human GPR rules (Supplementary Data 1),
highlighting the reliance of this automated approach on the accuracy of GPR rules
from the original model and the quality of orthology annotations. Interestingly, the
need to filter orthology annotations was only realized after manually inspecting
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Figure 7 | Validation of iRno and iHsa biomarker predictions in response to theophylline. (a–d) Comparative biomarker predictions were experimentally

validated in vitro using primary rat hepatocytes or an immortalized human hepatocyte cell line (HepG2). Extracellular changes in metabolite concentrations

were measured after 24 h of treatment with theophylline (10 mM) or control (0mM). To the left of each metabolite, predictions are summarized as elevated

(up arrow), reduced (down arrow) or unchanged (equals sign). Below each measured metabolite, FDR-adjusted q-values are displayed for rat and human

experimental comparisons between treatment (n¼4) and control (n¼4) sample concentrations using an unpaired two-sided Student’s t-test. Individual

points represent biological replicates from one rat and one human experiment. Of the eight predictions tested, seven were experimentally confirmed, while

urea from HepG2 cells (d) was insignificant but trending in the expected direction. Horizontal lines represent average metabolite concentrations from two

fresh media replicates and indicate that all metabolites were being produced on average with the exception of glucose in HepG2 cells. (e) Quantitative

comparisons between model predictions and experimental results across metabolites. Positive and negative values represent elevated and reduced

biomarkers based on TIMBR production scores (x axis) and average log2 fold changes between treatment and control (y axis) concentrations displayed in

a–d.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14250 ARTICLE

NATURE COMMUNICATIONS | 8:14250 | DOI: 10.1038/ncomms14250 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


evidence for both rat and human GPR rules. Converting all orthology annotations
present in any of the five orthology databases generated rat GPR rules with
disproportionately more genes compared with the original human GPR rules
(Supplementary Fig. 3). The consensus-based approach for filtering orthology
annotations was designed to minimize the introduction of species-specific
differences between rat and human GPR rules (see Supplementary Methods),
consistent with the principles of network reconciliation25. Furthermore, humans
and rats have similarly sized genomes with B20,000 genes, so genome-scale
properties were assumed to be consistent unless manually curated GPR rules based
on literature evidence suggested otherwise. The automated reconstruction methods
described in this study could also be used to generate draft GENREs for other
organisms by mapping orthology annotations to an existing GENRE. Importantly,
this network-driven approach to determine thresholds for orthology annotation
filtering can accommodate varying amounts of consensus-based orthology
information available for an organism. This novel approach can also be modified to
prioritize orthology annotations based on other data types such as protein
sequences similarity36, overlapping functional annotations29 or homologous gene
clusters34.

During the manual curation process, new reactions were added to iRno and/or
iHsa, which were not previously present in HMR2 (Supplementary Data 3).
Identification of species-specific reactions was prioritized, because rat-specific
reactions were unlikely to be included in a human GENRE (see Supplementary
Methodsfor details). Interestingly, some rat-specific functions were already
included as non-gene associated reactions in HMR2 and deleted from iHsa as part
of the reconciliation process. Furthermore, many reactions originally annotated as
human-specific were considered shared reactions after identifying appropriate rat
enzymes (Supplementary Data 1). Ultimately, 14 rat-specific and 7 human-specific
metabolic reactions were included in iRno and iHsa (Table 1) in addition to 16
artificial reactions involved in the formation of species-specific components used in
the biomass formulation (Supplementary Fig. 6).

Resolving known species-specific differences in metabolism. Network recon-
ciliation was emphasized throughout the entire reconstruction process for iHsa and
iRno to facilitate cross-species predictions. Oberhardt et al.25 compared GENREs of
two closely related Pseudomonas species developed independently and found that
cross-species predictions were unrealistic without extensive network reconciliation.
The percentage of reactions shared between the two bacterial models increased
from 33 to 86%, achieved mostly by resolving differences in nomenclature used to
describe reactions and metabolites themselves. Between iRno and iHsa, a much
higher percentage (499%) of reactions was shared, probably as a result of
bypassing the need to reconcile terminology-based differences between species. In
contrast, the per cent of reactions that overlapped between previous mouse and
human GENREs was closer to 98% due in part to reactions that were not reconciled
(Table 1).

In addition to resolving differences at the reaction level, iRno and iHsa were
further reconciled for comparative analyses by manually updating GPR rules. A
major disadvantage of using HMR2 for the basis of iRno and iHsa was the absence
of complex GPR relationship rules with multiple subunits in a protein complex
(Table 1). Manually curated GPR rules containing protein complexes were based
primarily on GPR relationships from H. sapiens Recon 2 (ref. 13), experimental
literature and genome annotation databases (see Supplementary Data 1). As a
result, GPR rules with multiple subunits were constructed for 620 reactions in iRno
and iHsa (see Fig. 2b for example). After network reconciliation and extensive
manual curation, the numbers of rat and human genes mapped across shared
reactions remained balanced (Figs 2a and 3c).

Biomass formulations. A novel system of reactions representing biomass synth-
esis was developed to enable cross-species predictions of growth between iRno and
iHsa with a single biomass reaction (Supplementary Fig. 6). Using quantitative
values from hepatocyte-based experimental literature (see Supplementary Methods
and Supplementary Data 1 for details), iRno and iHsa included reactions that
consumed known quantities of individual metabolites to produce an ‘average’
biomass precursor metabolite that was species independent. For biomass pre-
cursors with relatively similar compositions such as the average nucleotide incor-
porated into DNA (Supplementary Fig. 6b), macromolecular synthesis reactions
were shared by iRno and iHsa. Species-specific macromolecular synthesis reactions
were added to represent distinct compositions of bile acids (Supplementary Fig. 6c)
and amino acids obtained from studies comparing metabolomics profiles of rat and
human hepatocytes47,48,68. This generalized framework for biomass formulations
was implemented in iRno and iHsa to simulate hepatocyte growth and can be
extended to formulate species-specific compositions for groups of metabolites in
any tissues with quantitative or comparative metabolomics data. In addition,
hepatocyte growth and production of each of the eight macromolecular precursors
under strict physiological constraints were simulated as separate metabolic tasks
(Supplementary Data 4). Strict physiological constraints were defined as inputs
(Supplementary Fig. 7) for quantitative predictions of maximum growth rates using
the unified biomass reaction as the cellular objective for iRno and iHsa (see
Supplementary Methods for additional details). It is important to note that upper-
and lower-bound constraints were consistent across all shared rat and human
reactions, including physiological constraints for exchange reactions. Thus, species-

specific differences in growth rate predictions could be explained by minor
differences in biomass requirements for essential amino acids.

Simulation of metabolic tasks. Metabolic tasks representing known biological
functions of rats and humans were simulated in iRno and iHsa using the Recon-
struction, Analysis and Visualization of Metabolic Networks (RAVEN) tool-
box15,69. These included 256 metabolic tasks from HMR2 (ref. 15) and 15 tasks
adapted from Recon 2 (ref. 13). An additional set of 53 new tasks were defined
including 14 species-specific tasks such de novo synthesis of vitamin C (Fig. 3a).
Identifying species-specific tasks and tasks related to hepatocyte metabolism was
prioritized to capture biological functions that might be important for the use of
these models in studying toxicology (see Supplementary Data 4). As a result, nearly
all species-specific enzymes were also supported by functionally important species-
specific task.

As none of the original 271 metabolic tasks were considered unique to humans,
metabolic task simulations were expected to be consistent between iRno and iHsa.
Before manual curation, the automated draft of iRno originally failed to complete
three human tasks related to bile acid synthesis that have been described as
functional in rats48. Assigning the rat gene Akr1c14 to 3a-hydroxysteroid
dehydrogenase (EC 1.1.1.50) was sufficient to resolve all three inconsistent
metabolic task predictions between iRno and iHsa38. In contrast, the mouse
GENRE, iMM1415, required the addition of 95 reactions to complete 260
metabolic tasks after automated conversion from H. sapiens Recon 1 (refs 12,32
and Table 1). As orthology between Akr1c14 and AKR1C4 had not previously been
annotated in any of the five orthology databases (Supplementary Data 2), we
manually investigated all reactions that were annotated as human specific after
automated reconstruction of iRno to resolve differences attributed to missing
orthology annotations.

Biomarker predictions for IEMs. The ability to predict known metabolic bio-
markers for IEMs was evaluated using iHsa. Known associations between genes
and metabolites for various IEMs were evaluated as previously described in the
validation of H. sapiens Recon 2 (refs 13,19). Biomarkers change for each IEM were
estimated by comparing feasible flux ranges via flux variability analysis for
metabolite exchange reactions between healthy and unhealthy conditions. Healthy
and unhealthy conditions were simulated by forcing and disabling flux through
reactions associated with an IEM, respectively. For the healthy condition,
individual reactions associated with IEM genes were constrained to 90% of the
maximum possible flux value determined by FBA under open exchange conditions
as described previously13. Open exchange conditions were formulated to allow
unconstrained uptake of 12 inorganic ions (Supplementary Fig. 7d) and limited
uptake (� 1 arbitrary units) of all metabolites with exchange reactions. Biomarker
prediction performance was measured by the sensitivity to detect known
biomarkers of IEMs. The performance of iHsa to predict 99 biomarker/IEM
pairs was compared with Recon 2 (ref. 13) (version 2.04) and HMR2 (ref. 15).

Toxicogenomics analysis of rat and human hepatocyte data. Gene expression
profiles of rat and human hepatocytes treated with 119 different compounds were
obtained from the Open TG-GATEs (http://toxico.nibiohn.go.jp)2,10. Raw
microarray data were downloaded from ArrayExpress (E-MTAB-797 for rat
hepatocytes; E-MTAB-798 for human hepatocytes) and pre-processed using the
oligo package in the R/Bioconductor programming environment. Expression
changes after 8 h of treatment were independently determined for each compound
and organism using the limma package. Genes with a FDR-corrected q-value o0.1
were considered significantly differentially expressed. Of the 119 compounds with
data available for both rat and human hepatocytes, 76 were selected for model
integration that significantly altered at least 1% of the 1,925 rat genes or the 2,177
human genes common to both microarrays and models.

Transcriptionally inferred metabolic biomarker predictions. Biomarker changes
in response to 76 pharmaceutical compounds and environmental toxicants were
predicted for rat and human hepatocytes with TIMBR, a novel constraint-based
analysis algorithm (Fig. 4). TIMBR integrates gene expression data from treatment
and control samples, and calculates a production score for each exchangeable
metabolite under relaxed physiological constraints (Supplementary Fig. 7). TIMBR
production scores represent the consistency between the reactions needed to
synthesize and secrete a potential biomarker and the relative expression of genes
associated with those reactions. For each metabolite, a production cost was cal-
culated by minimizing the total weighted flux across all reactions while maintaining
positive flux through its extracellular exchange reaction:

Minimize w � vj j subject to S � v ¼ 0; vlb � v � vub½ � ð1Þ
In equation (1), v is a vector of reaction fluxes, w is a scalar vector of reaction
weights based on gene expression measurements, S is the stoichiometric matrix,
and vlb and vub are scalar vectors of lower- and upper-bound constraints for
reaction fluxes. To simulate physiologically relevant conditions, nutrient uptake
was limited to physiological values by setting lower-bound constraints of meta-
bolite exchange reactions to quantitative values derived from experimental litera-
ture (Supplementary Fig. 7b). To simulate production of a potential biomarker,
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non-zero positive flux was forced by setting the lower-bound through a metabo-
lite’s exchange reaction to 90% of the maximum possible secretion rate determined
by flux variability analysis under relaxed physiological constraints or a value of
100 fmol cell� 1 hour� 1, whichever was smaller. To solve this optimization pro-
blem with a linear programming solver, metabolic networks were first converted
into irreversible metabolic networks where each reversible reaction was represented
by separate forward and reverse reactions in the stoichiometric matrix and vlb is
non-negative.

Reaction weights based on treatment-induced changes in gene expression were
calculated independently for each compound in each organism. Given a set of gene
expression changes, TIMBR generates two sets of reaction weights representing
treatment and control conditions (Fig. 4a). For the optimization problem in
equation (1), each set of reaction weights represent the costs associated with
carrying flux through reactions in treatment or control conditions (Fig. 4b).
In general, reaction weights for the treatment condition are increased by
downregulated genes and decreased by upregulated genes, whereas reaction weights
for the control condition are decreased by downregulated genes and increased
by upregulated genes. In contrast to approaches that integrate gene expression
measurements as weights for flux minimization24,58, TIMBR uses differential
expression instead of absolute expression values.

To transform relative gene expression changes into reaction weights for
treatment and control conditions, TIMBR implements a novel approach for
summarizing multiple expression changes through GPR relationships. In general,
GPR rules use Boolean operators to describe multiple genes that encode redundant
isozymes with an ‘OR’ relationship and genes that encode subunits in an enzyme
complex with an ‘AND’ relationship. For a group of isozymes, the log2-fold change
was averaged such that the effect of one upregulated isozyme could either be offset
by downregulation in another isozyme or diluted by the presence of multiple
unaffected isozymes. For subunits in an enzyme complex, the log2-fold change with
the largest absolute value was used (see Supplementary Methods for additional
details). Expression changes were summarized for log2-fold changes, because the
distributions of log2-fold changes were more evenly distributed (Fig. 4b).
Summarized reaction values based on log2-fold changes were inverse log
transformed and multiplied to the default vector of reaction weights to represent
the control condition (Fig. 4a). For the treatment condition, default reaction
weights were divided by reaction fold change values such that upregulated reactions
contributed less to the sum of weighted fluxes than downregulated reactions and
vice versa for controls (Fig. 4a). Default weights of one for biochemical reactions
and two for transport reactions were doubled for reactions with no gene
associations or expression data available. Treatment and control condition weights
were then applied separately to either iRno or iHsa, to calculate the global network
demand (sum of weighted fluxes) for the production of each potential biomarker
(Fig. 4c).

Production scores representing relative biomarker changes were determined by
comparing biomarker production costs based on treatment and control reaction
weights (Fig. 4e). Raw production scores were calculated based on the relative
global network demand defined in equation (1) between treatment and control
conditions for each biomarker:

Raw production score ¼ Control�Treatment
TreatmentþControl

ð2Þ

Raw production scores from equation (2) across all potential metabolic
biomarkers were normalized independently for each compound in each organism
using a z-score transformation (Fig. 4e). With this method, positive or negative
production scores could be interpreted as the increased or decreased propensity for
a metabolite to be synthesized and secreted in response to a treatment relative to
other metabolites. To determine whether rat and human hepatocytes were more or
less similar in their metabolic response to individual compounds, production scores
were analysed across all 286 potential biomarkers shared between iRno and iHsa.
Biomarker-level similarity was assessed by calculating the correlation coefficient
between rat and human production scores across all compounds. Similarly,
consistencies were determined for individual compounds by calculating the
correlation coefficient between rat and human production scores across all
metabolites.

Compounds classified as xanthine derivatives, xanthine oxidase inhibitors and
antipyretics were selected for subsequent analysis and visualization. Potential
biomarkers were manually chosen to include PGE2 and urate, which are directly
downstream of enzymes targeted by COX-2 inhibitors (antipyretics) and xanthine
oxidase inhibitors (anti-gout compounds), metabolites with validation data and
select common metabolites.

The TIMBR algorithm was developed to provide a proof-of-principle
application of iRno and iHsa in comparative toxicogenomics analyses; however,
significant challenges remain in generating quantitatively accurate biomarker
predictions that can facilitate the clinical translation of preclinical studies in rats
with this method. High-throughput validation with untargeted metabolomics
data would be necessary to comprehensively assess the predictive ability of the
TIMBR algorithm across many subsystems in these metabolic networks. As
transcriptional changes do not immediately have an impact on metabolite
abundances, accurate knowledge of metabolite kinetics in response to a
perturbation might be important when designing a validation experiment with
both metabolomics and transcriptomics profiles.

As most species-specific reactions take place in peripheral pathways (Fig. 3), it is
not immediately apparent that there would be species-specific differences in the
ability to produce a metabolic biomarker under physiological constraints. However,
TIMBR biomarker predictions can account for species-specific differences in gene
expression patterns with an explicit mapping of species-specific GPR rules as
accounted for in iRno and iHsa (Fig. 2). In addition, the TIMBR algorithm was
designed to use relative expression changes, because absolute expression was
difficult to compare across species-specific microarray technologies. To overcome
this limitation, absolute expression from untargeted transcriptomics or proteomics
experiments could be integrated into the TIMBR algorithm to further modify
reaction weights. Alternatively, absolute expression can be used to constrain
generic rat and human metabolic networks into tissue-specific models before
simulating biomarker predictions. By disabling reactions in tissue-specific models,
newly introduced species-specific differences could negatively impact comparative
analyses between rat and biomarker predictions.

Metabolic network visualization. Metabolic network maps of reactions
and metabolites from iRno and iHsa were generated using MetDraw70 in the
Python programming environment (http://www.python.org). An Systems Biology
Markup Language (SBML) file containing the superset of reactions capable of
carrying flux in either iRno or iHsa under relaxed physiological conditions was
input into MetDraw for visualization of global networks. SBML files containing the
subset of rat reactions with non-zero flux values from TIMBR simulations of urea
production in response to caffeine.

Cell culture. Primary rat hepatocytes (Invitrogen, Carlsbad, CA) or human HepG2
cells (ATCC via the Tissue Core Facility at the University of Virginia) were thawed
and plated in William’s E Media (WEM) with appropriate thawing and plating
supplements according to manufacturer’s instructions. Mycoplasma testing was
performed for HepG2 cells using the MycoAlert System (Lonza, Walkersville, MD).
Hepatocytes were plated into a 12-well tissue culture plate at a density of B6� 105

cells in each well resulting in 85–90% confluence. The day after plating, cells were
exposed to 0 or 10 mM of theophylline (reconstituted in WEMþ 0.1% dimethyl
sulfoxide) for 24 h. After exposure, supernatants from four biological replicates for
each condition were removed and frozen before running metabolite assays.
Spearman’s rank correlation coefficients were calculated to determine relationships
between theophylline concentration and assay results from supernatants. Data
presented were obtained from one experiment with rat and human hepatocytes.
Separate rat and human pilot experiments were each performed once before
obtaining the comparative results.

Metabolite assays. Levels of glucose, glutamic acid and urate from supernatants
were measured using AmplexRed-based assays (Invitrogen: A22189, A12221 and
A22181) according to manufacturer’s directions for the Qubit fluorometer. Urea
levels were measured using a colorimetric assay kit (Biovision, K375-100)
according to manufacturer’s directions. Following the assays, the background level
of each measured metabolite in fresh WEM or WEM with theophylline was
averaged (n¼ 2) and subtracted from the individual respective supernatant sam-
ples. Endpoint concentrations were determined by adding back the average base-
line concentration of fresh media without theophylline. Endpoint concentration
changes between theophylline (n¼ 4) and control treated samples (n¼ 4) were
determined for each metabolite using an unpaired two-sided Student’s t-test.
Statistical significance was determined independently for rat and human hepato-
cyte experiments by correcting for multiple hypothesis testing across the four
metabolites and applying a FDR-adjusted q-value threshold of 0.05.

Code availability. To promote reproducibility of this research, computer code
(MATLAB and R scripts) related to this study are available at www.github.com/
csbl/ratcon1. Constraint-based methods were implemented within MATLAB and
R/Bioconductor programming environments using the Constraint-based Recon-
struction and Analysis (COBRA) toolbox (www.opencobra.github.io/cobratoolbox),
the RAVEN toolbox (www.biomet-toolbox.org) and the Systems Biology
Library for R package (sybil package). Gurobi 6.0.5 (www.gurobi.com), Mosek
(www.mosek.com) and GLPK (glpkAPI package) were used for solving linear
programming problems on a 64-bit desktop computer running Windows 10.

Data availability. SBML formatted files of iRno and iHsa are publically available
for download at www.github.com/csbl/ratcon1. Spreadsheet formatted files of iRno
and iHsa that can be imported into the COBRA toolbox and the RAVEN toolbox
are also included as Supplementary Data. Consensus orthology annotations map-
ped onto HMR2 reactions, which are used to generate Supplementary Fig. 3, are
provided in Supplementary Data 2. Updated annotation information for reactions
and metabolites that are not usually stored in SBML, COBRA and RAVEN for-
matted files can be found in Supplementary Data 1 and 3. Data needed to simulate
metabolic tasks using the RAVEN toolbox are provided in Supplementary Data 4.
Raw gene expression data are available in ArrayExpress with the primary accession
codes E-MTAB-797 and E-MTAB-798. Normalized gene expression data and
differential expression analysis results can be reproduced using data described in
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Supplementary Data 6 and R code available at www.github.com/csbl/ratcon1.
TIMBR predictions depicted in Figs 5–7 are provided in Supplementary Data 7.
Additional source data needed to reproduce figures can be obtained via the code
available at www.github.com/csbl/ratcon1. All other data supporting the findings of
this study are available within the article and its Supplementary Information files.
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