UNCLASSIFIED

Project Report
LSP-156

Low-Power Embedded Analytics:
FY15 Line-Supported Information,
Computation, and Exploitation Program

H.T. Nguyen
J.B. Muldavin
V.N. Gadepally
Arvind

TBD November 2015

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Lincoln Laboratory @

Prepared for the Assistant Secretary of Defense for Research and Engineering
under Air Force Contract FA8721-05-C-0002.

UNCLASSIFIED

This report is based on studies performed at Lincoln Laboratory, a
federally funded research and development center operated by
Massachusetts Institute of Technology. This work is sponsored by the
Assistant Secretary of Defense for Research and Engineering under
Air Force Contract FA8721-05-C-0002.

UNCLASSIFIED

Massachusetts Institute of Technology

Lincoln Laboratory

Low-Power Embedded Analytics:
FY15 Line-Supported Information, Computation, and Exploitation Program

H.T. Nguyen
J.B. Muldavin
Group 102

V.N. Gadepally
Group 53

Prof. Arvind
MIT Computer Science and Artificial Intelligence Laboratory

Project Report LSP-156

TBD November 2015

Lexington Massachusetts

UNCLASSIFIED

This page intentionally left blank.

EXECUTIVE SUMMARY

This report covers the second year of the low-power embedded analytics project, a three-year
university collaboration between Lincoln Laboratory and Professor Arvind’s group at the MIT Computer
Science and Al Laboratory (CSAIL). The goal of the project is to design and prototype a novel
architecture that has wide potential applicability to important applications ranging from back-office big-
data analytics to fieldable hot-spot systems providing storage-processing-communication services for off-
grid sensors. Speed and power efficiency are the key metrics.

Current state-of-the art approaches for big-data aim toward scaling out to many computers to meet
processing, storage capacity, and access bandwidth requirements. Data is distributed over many
computers, and complex processing is decomposed into tasks that operate on localized data and
aggregated back together. With an emphasis on scalability and cross-platform portability, applications are
written in high-level languages such as Java. New systems and new algorithms can be put together
quickly, but not optimal in terms of performance and power efficiency.

Our approach focusses on “drilling down” rather than scaling out. Storage, network, and
computation should be better integrated to meet challenging system requirements. Judicious data
processing in storage and directly off the network would significantly reduce transfer and activities on the
host computer, leading to better performance and power efficiency. The architecture to realize this vision
is shown below in Figure 1. A field-programmable gate-array (FPGA) is at the heart of the architecture. It
performs three tasks: a) Control non-volatile memory (NVM) storage such as flash, b) Provide high-speed
dedicated network with other storage modules, and ¢) Compute on data and interface to the processor(s)
of the host computer. The whole unit operates as a plug-in accelerator to the computer. Many units can be
connected to form a cluster, with as few or many computer “heads” as needed for the application. By
tightly integrating storage, network, and computing together using an FPGA, up to a 10x performance
boost and 10x power efficiency improvement could be achieved for application-specific designs.

In-Storage Processing Architecture

Non-Volatile
Memory

FPGA |

Big data acceleration
* Performance 10x

#

Figure 1. In-storage processing architecture.

Low-power fieldable
near-sensor processing
Power efficiency 10x
+ Size, weight
reduction 3x-10x

iii

This project team consists of research staff from MIT Lincoln Laboratory and MIT Computer
Science and Artificial Intelligence Laboratory. Professor Arvind’s group and an industry partner, Quanta
Research, with additional support from Xilinx, Samsung, and Intel developed the architecture and
prototype accelerator called Blue Database Management (BlueDBM) [1], consisting of custom-built flash
modules with a local controller that interface with a Xilinx board hosting the FPGA. Software and
firmware is custom designed for each application. Lincoln Laboratory provides support and guidance for
system-level use cases and application concepts, which drive the development of high-level layer of
software and firmware to expand the application space and make the accelerator useful for a wider
community by lowering the barrier to entry. In addition, application insertion opportunities are being
pursued within Lincoln Laboratory as well as external sponsors. Our vision is to bring new capabilities in
big-data and internet-of-things applications with this new architecture.

Key research activities are listed below:

A.

Application-specific demos: These provide concrete results to illustrate potential benefits for
classes of problems. In general, problems data sets larger than memory (1 TB) and random
access pattern score very well. Software and firmware are often customized for each application
at the C++/BlueSpec level. Example applications include:

a. Image similarity search d. Graph traversal
b. Document similarity search e. PageRank
c. Key-value store caching f. Friends-of-friends

Interface with open-source software: This allows BlueDBM technology to participate and
contribute to the scale-out development approach used in the big-data algorithm prototyping
community on LLGrid and beyond. A plug-and-play accelerator would provide out-of-the-box
performance benefit, with further gains achieved through additional customization of the open-
source software and BlueDBM wrapper. The interface to open-source software is most likely
Java. Potential development and integration include:

a. D4M-on-BlueDBM graph traversal

b. Hadoop Distributed File System (HDFS) swap-in

c. Accumulo swap-in
Size, weight, and power (SWaP) constrained fieldable system and new application concepts:
Small fieldable units could provide “hotspot™ storage, compute, and communication services
for fielded sensors in remote or disaster areas. Potential tasks are:

a. Application studies

b. “Headless” BlueDBM pulls all control and processing from CPU into embedded

processor in the FPGA

v

PROJECT TIMELINE

FY 14 was focused on building the flash modules and developing firmware for the FPGAs to control
the flash, provide high-speed networking, and interface to the computer. A few early benchmarks and
system-level analysis were performed to demonstrate potential benefits. High-level database applications
were surveyed and D4M was selected as a pilot package to be accelerated. [2]

In FY15, three mini applications were built (via BlueSpec) for demonstrations: a) Image similarity
search, b) Key-value store cache for database queries, and c¢) Graph traversal on web-link dataset. The
applications show a 7x to 13x performance improvement compared to standard server computer. Power
efficiency is improved by 2x to 5%. Two conference papers were presented in 2015 [3][4]. For open-
source efforts, the software stacks of processing (D4M, Matlab) and database (Accumulo, HDFS) were
analyzed for BlueDBM integration. Another open-source software package, Spark, was also selected as a
candidate for acceleration. Spark has a large user community and rich algorithmic development
environment spanning analytics, machine learning, etc.

In FY16, firmware and software infrastructure will be built up for BlueDBM to HDEFS interface to
support open-source software such as Accumulo and Spark. Two applications will be demonstrated to
show performance gains and power savings. Application concepts exploration and follow-on sponsorship
search activities will leverage FY 15 developments.

This page intentionally left blank.

TABLE OF CONTENTS

Page
Executive Summary iii
List of Illustrations X
List of Tables xi
1. INTRODUCTION 1
2. APPLICATION AND TECHNOLOGY TRENDS 3
3. TECHNICAL APPROACHES 5
3.1 BlueDBM Architecture 5
3.2 Open-System Architecture Considerations 7
3.3 Low-Power Application Concepts 9
4. FY15 ACCOMPLISHMENTS 11
4.1 Application-Specific Demos 11
4.2 Open-Source Software Interface Analysis 14
4.3 Low-Power Fieldable System and Application Concepts 15
5. SUMMARY 17
6. REFERENCES 19
APPENDIX A 21

APPENDIX B 35

vii

This page intentionally left blank.

Figure
No.

10
11
12
13
14

15

LIST OF ILLUSTRATIONS

In-storage processing architecture.
Uses of big-data analysis.

Data handling and processing pipeline.

“Hotspot” storage-compute-communicate services for remote sensors.

Traditional computer and power profile [10].

Previous approaches to boost performance.

BlueDBM approach.

BlueDBM software stack.

Application-level software interface to BlueDBM filesystem.
Optimization of application software for high performance.
Application software interface to BlueDBM accelerator
String search kernel.

Image similarity application.

Key-value caching.

One-server and four-server configurations.

X

Page

iii

11
12
13

14

This page intentionally left blank.

LIST OF TABLES

Figure Page
No.
1 Image Similarity Search 12

2 BlueDBM Advantage 13

X1

This page intentionally left blank.

1. INTRODUCTION

The analysis of previously unimaginable amount of data can provide deep insight and expose
certain information. Big data applications often involve the analysis of unstructured data, natural language
text, videos and images, using advanced machine learning techniques. There are numerous examples of
benefits from big data analysis. Google has predicted flu outbreaks a week earlier than the Center for
Disease Control. Analyzing personal genomes can determine predisposition to diseases. Social network
chatter analysis can identify political revolutions before newspapers. Scientific datasets can be mined to
extract accurate models. Figure 2 shows that as data models become more sophisticated, we can progress
from questions such as what happened, to why it happened, and what will happen, and how to make it
happen.

Prescriptive
Analytics

Value

>
rd

Difficulty Gartner

Figure 2. Uses of big-data analysis.

Data becomes so large and complex, growing 16x over the past 5 years, that traditional processing
methods are no longer effective. The volume to be analyzed is too large to fit reasonably in DRAM
computer memory. Furthermore, access is intensively random, making prefetching and caching
ineffective. Data is often stored in the secondary storage of multiple machines on a cluster, thus, storage
system and network performances become first-order concerns. Adding more computers brings only a
diminishing return. Therefore, a new paradigm is needed.

In this project, we are exploring a novel near-data processing architecture through a collaborative
effort with MIT CSAIL Professor Arvind. As depicted in Figure 1, the architecture is a plug-in accelerator
offering three functions: a fast storage with embedded computation capability, a high-speed dedicated
network with computation capability, and an efficient interface that interacts with the software on the

computer. All three functions are performed by a field-programmable gate-array (FPGA), which can
provide superior performance and power efficiency compared to a general purpose computer processor.
An improvement of 3x—10% in performance and power efficiency could be achieved. The scope of
applications include back-office analytics acceleration, as well as field providing field storage-compute-
communication services to sensors in remote or disaster relief areas.

The rest of the report will discuss application and technology trends, followed by the technical
approach, FY15 accomplishments, and future work. Two conference papers [3][4] were published on the
accelerator architecture and mini-app performances in FY15. This report will address unpublished aspects
of the project.

2. APPLICATION AND TECHNOLOGY TRENDS

Big data applications involve structure as well as unstructured data. New types of analysis include
text analytics for topic modeling, image similarity matching, face recognition, audio and video labeling,
etc. The analytics processing typically follows a data handling and processing pipeline involving parsing,
database ingesting, scanning and query and enriching a subset of interest, and finally performing analysis.
Figure 3 illustrates a processing pipeline example where D4M is used as an analysis environment.

1. Parse 2. Ingest 3a. Query 4. Analyze
Raw Triple Accumulo Assoc
Data Files, :> @ |::> Arrays
Files |C———>| Assoc —
Files ||

3b. Scan

Figure 3. Data handling and processing pipeline.

D4M, or Dynamic Distributed Dimensional Data Model, is a Lincoln Laboratory—developed
technology that offers rapid prototyping capabilities to scientists interested in working with large datasets
[5]. D4M provides support for database and computation systems that deal with big data through the
mathematical foundations of Associative Arrays, schema designed for NoSQL key-value store databases,
and the ability to interact with diverse database technologies such as SQL, Accumulo [6] and SciDB.
D4M is implemented with a MATLAB APIL. D4M has been adopted by a large number of users within
and outside Lincoln Laboratory, largely due to its low barrier to entry, easy to adopt API, and
applicability to a large variety of unstructured data.

Spark is another widely used open-source software package that provides an environment for
analytics algorithm development. Spark [7] was developed at U.C. Berkeley before released into the
Apache open-source domain. Its inventor has recently joined MIT faculty. Spark has a large industry user
base, and offers a unified environment for different types of analytics processing, from database query to
graph processing and machine learning.

Interestingly, both D4M/Accumulo and Spark use Hadoop Distributed File System (HDFS) as the
database file system. HDFS [8] was developed by Google and is an integral part of the Map-Reduce
distributed computing scheme that match up processing tasks to local data at each node — sending
processing tasks to data rather than traditionally moving data around to processors. Another interesting
point is all three packages, D4M, Accumulo, Spark, HDFS, are implemented with Java or a variant. Such
languages can be a factor of 1/3 as slow as C/C++, but it allows for the application code to run on any
platform without recompilation.

Clearly, the current state-of-the art approach for big data is scaling out to many computers to meet
requirements on processing, storage capacity, and access bandwidth. With the emphasis on scalability,
companies use commodity-class computers and rely on quantity and technology upgrades to meet
performance. Systems and new algorithms can be put together quickly, but are not optimal in
performance and power efficiency.

There are emerging applications that require all available processing available to meet desired user
latency. These applications include natural language processing, voice and image query, and typical
Apple or Google cloud processing. Special accelerators, such as GPUs and FPGAs, are being explored to
help increase performance. It is estimated that a future system will have a mixture of processing
technologies to meet performance and power budget [9].

Our accelerator will need to fit well in this ecosystem to make a substantial impact. On one hand, it
needs to be work well with the open-source “scale-out” approach. It would need to conform to some
open-source interfaces and protocols. On the other hand, it also needs to be customizable to take on
application-specific acceleration, for example, in-storage processing or in an extreme case, low power
embedded processing of sensor data in remote area.

s

o
- = Data
. : .\' 5
M | Near-site processing reduces bandwidth
and increases fidelity

Figure 4. “Hotspot” storage-compute-communicate services for remote Sensors.

Knowledge

Information

Processing

3. TECHNICAL APPROACHES

In this section, we will describe our detailed approaches for the BlueDBM architecture and the
open-system software architecture used for algorithm testbed and application development.

3.1 BLUEDBM ARCHITECTURE

Traditional computer systems pull data from disks into memory for subsequent processing. As
datasets exceed available memory, portions must get swapped out to disks during the processing,
resulting in large amount of disk transfer activity. Disk access is slow and also causes high workload for
the computer CPU.

48W | m2xCPUs idle

[Computer CPU] | Serveridle Ei:ﬁ%%?ﬂi
I\ f\/ | isew) S| 2o

(Disks] " D48 o

« Traditional architecture
« Slow data access
* High power consumption

/
4x SSDs ~— .
active (10W) 4x HDDs active (10W)

i

04GB DIMM

Figure 5. Traditional computer and power profile [10].

Recently, driven by big-data processing demand and falling price of DRAM, new systems
incorporate more memory to reduce disk access [11]. To boost performance even further, Microsoft has
started using FPGAs in the processing of Bing queries [12]. These approaches achieve significantly
improved performance but with additional cost and power consumption.

“RAMcloud” FPGA accelerated

Large DRAM (FPGA] FPGA
Memory I Module
Memo
ABAY, !
Computer CPU] [Computer CPU]

i FUfL
e R

« Data kept into large » Off-load heavy processing to
memory for faster access F'?GA

« High cost, high power * Microsoft Catapult

« VOLUME 3-30x faster - 2x faster,10% more power

Figure 6. Previous approaches to boost performance.

Our BlueDBM architecture, depicted below, incorporates the FPGA as part of the storage system to
perform computations, reducing the amount of data handling and processing by the computer processor.
This leads to benefits both in performance and power consumption. Detail specifications are available in

[21(3].

In-storage processing
tNetwork Flash

[Computer CPU] - -
) g 0
FPGA g . t
S pute
f x f x , FReA 20 nodes |
Flash in 2 racks

* Flash for storage

* Processing embedded at storage controller
* Minimum CPU utilization

*» 3-10x faster

+» 3-10x less power possible

Figure 7. BlueDBM approach.

The accelerator is interfaced to the host computer through the BlueDBM software stack [3]. The
stack allows for user-level access to files. For analytics acceleration, the user-level software would first
obtain physical locations of the data, then dispatch queries and analysis tasks to the FPGA through a

special conduit. The results can be kept in the file system or sent back to the computer. User-level in this
context refers to the BlueSpec environment, which frees the user from low-level VHDL coding, but still
requires synthesis and C/C++ level programming. This approach is best used for developing customized
functions.

User-Level Hardware-Accelerated Application m

A
1‘ (»elp[l)‘slcal locations | Daemon |
= of files to analyze
File System Send queries with 2)
(e.2., RFS, Extd, ...) physical locations =
i O
Kernel Block Device Driver | Get analyis reshits
Connectal

Flash Controller Hardware A ccelerato

I * ::3 Read and analyze data

Storage NAND Flash { DB Tables / Records]

Figure 8. BlueDBM software stack.

3.2 OPEN-SYSTEM ARCHITECTURE CONSIDERATIONS

As discussed earlier, many open-source database and analytics software packages are architected to
be cross-platform portable. Accumulo/D4M is used for sparse database and analysis, whereas Spark
operates in different domains such as structured and streaming data. Accumulo and Spark both interface
with HDFS, which provides file management services at the Java level. In order for BlueDBM to support
such packages, it will need an HDFS wrapper, so that it can be accessed seamlessly. This is depicted in
Figure 9 below. Blue represents existing code with no modification.

Connector
D4M

Spark

Accumulo Matlab

HDFS API wrapper

Linux file system
BlueDBM file system API API (Ext4)

Figure 9. Application-level software interface to BlueDBM filesystem.

To fully benefit from the performance offered by BlueDBM, the packages may need some
modification to improve data transport mechanisms. For example, if file access is performed through an
inefficient software stack, then the speed up underneath is diminished by the slow API. Figure 10 depicts
a scenario with higher performance. The required modification is expected to be minor.

Connector
D4M

Spark
F Accumulo Matlab

HDFS API wrapper

Linux file system
BlueDBM file system API API (Ext4)

Figure 10. Optimization of application software for high performance.

On the analytic side, acceleration needs to go through the steps outlined in Figure 8 for the
BlueDBM software stack. Since the process involves calls through user space and kernel space, it is best
implemented as a manager unit and presented up to application software via an accelerator API. In the
case of Accumulo/D4M, this API needs to interface with Java code. The accelerator API could take on a
different flavor pending on the application software; it could be an interface for D4M when it is used
alone without Accumulo. Within D4M or Accumulo, additional development will be needed to
incorporate the acceleration capability. The architecture for integration with BlueDBM accelerator is
depicted below.

Connector

i} F% D4M

Accumulo Matlab

| HDFS API wrapper || Acceleration API

BlueDBM Acceleration
manager

BlueDBM file system

Figure 11. Application sofiware interface to BlueDBM accelerator

In terms of implementation, the platform would start with a single server with an option to scale up
and be part of Lincoln Laboratory’s LLGrid system.

3.3 LOW-POWER APPLICATION CONCEPTS

In addition to improving performance, off-loading activities from the processor to the FPGA also
results in better power efficiency. By tightly integrating storage, network, and computing together using
an FPGA, up to a 10x performance boost and 10x power efficiency improvement could be achieved for
application-specific designs. Notably, the reduction in power would open up new capabilities such as oftf-
grid portable field operation for storage-compute-communication services.

In general, low-power operation often has peaks and troughs, where system-level optimizations
such as clock gating, reduced duty cycle operation, etc. could bring out further power savings. For “cloud-
like” field services, the processing would need to be performed by the FPGA [9], the processor footprint
in the system could be further reduced into the embedded realm, or even pulled completely inside the
FPGA if appropriate.

This page intentionally left blank.

4. FY15 ACCOMPLISHMENTS

FY15 was focused on the following activities: application-specific demonstrations, open-source
software interface analysis, and low-power fieldable system and application concepts.

4.1 APPLICATION-SPECIFIC DEMOS

The application-specific demos provide illustrate potential benefits for certain classes of problems.
In general, challenging problems with large data sets larger than memory (1 TB) and random access
pattern score really well. Software and firmware are often customized for each application at the
C++/BlueSpec level.

Listed below are the kernel and applications. The results are in the attached publications [3][4], so
only selected highlights are discussed in the report.

String search kernel

Image similarity search application
Document similarity search application
Key-value store caching application
Graph traversal application

PageRank application (FY16)
Friends-of-friends application (FY16)

NSk

String search is a common kernel in big-data applications, spanning from DNA sequencing to text
analytics. A string search engine was built on BlueDBM using Morris-Pratt algorithm. Figure 12 shows
BlueDBM in-storage processing yields 7.5x boost relative to CPU+disk, where the bottleneck is storage.
When faster storage — flash is used, performance increases with high CPU activity. Off-loading to FPGA
reduces CPU activity by 20x.

mmm= Throughput (MB/s) —a—CPU Loading (%)
1200 70
1000 - 60
- 50
800 —+

600 7.5X - 40
20x & 30
400 / 120
200 ¥ l 10
o N 0

CPU & CPU & In-storage

disk drive flash processing

Figure 12. String search kernel.

11

Illustrated in Figure 13 is an image similarity search application. The search subjects an image to a
large dataset of 80 million images (~300 GB) to return a set of similar images, there labels, and match
metrics. To reduce workload, the image set is organized (indexed) by histogram similarity. Thus, the
search is narrowed down to subsets prior to a thorough match is performed. The images in each indexed
subset are scattered in physical storage.

Parakeet
Dist: 15

.4 Demo » | Parakeet
4 :J»/ Dist : 27
—

{h1,h5,h7,h9}

Tree Frog
Dist: 54

Figure 13. Image similarity application.

Performance results are shown in Tables 1 and 2 below. Relative to baseline configuration using
CPU-hard drives, copying the dataset (in this case 30 GB) into DRAM and running the search on the
CPU shows 9.2x performance boost. Note that this does not scale up for large datasets. BlueDBM with
FPGA+flash yields a speed up 12x for dataset up to 1 TB per server and larger using more computers.

TABLE 1
Image Similarity Search
Configuration Performance Power
CPU + hard drives 1x reference 140W = 90W idle + 50W activity
CPU + DRAM 9.2x speedup 240W = 90W idle + 150W activity
BlueDBM FPGA + flash 12x speed up 120W = 90W idle + 30W activity

Power-wise, BlueDBM offers peak performance at 30W activity power (or 120W if including
computer system idle power, which could be reduced significantly for application specific scenario).
BlueDBM activity power is only 1/5 compared to CPU+DRAM configuration.

12

TABLE 2

BlueDBM Advantage

Configuration Performance Power
BlueDBM vs CPU+hard drives 12x speedup 50/30 = 1.6x less activity power
BlueDBM vs CPU+DRAM 1.3x speedup 150/30 = 5x less activity power

Key-value query is another form of search geared toward unstructured data. A page update on
Amazon or Facebook generates tens to hundreds of queries. The keys and values are cached in the
memory of web servers to provide faster response compared to reading from file systems. The cache is
distributed over many web servers, so that a miss from one could be serviced by another over a computer
network. Computer memory, however, is expensive compared to disks and flash. Furthermore, computer
network has long latency relative to memory access, so the benefit of distributed memory is limited.

BlueDBM uses flash rather than DRAM memory for caching, its FPGA-based network rather than
a generic computer network, and FPGA logic to perform caching. The integration of storage + network +
compute functions into one FPGA also makes the flow well streamlined. Figure 14 depicts the use of
BlueDBM in key-value caching. Compared to the CPU/DRAM configuration, the BLueDBM
FPGA/flash/ network solution is 13x faster, not to mention less expensive and lower power.

/

web
server

N

web web
server L server

PC

bluecache
FPGA

accelerator

bluecache
FPGA FGPA
accelerator accelerator

FPGA network

J

Ethernet

! Backend database

Bcluster 8
...)

Figure 14. Key-value caching.

13

4.2 OPEN-SOURCE SOFTWARE INTERFACE ANALYSIS

Interfacing with open-source software would allow BlueDBM technology to participate and
contribute to the scale-out development approach used in big-data algorithm prototyping community.
After analyzing Accumulo and Spark open-source software packages, we arrived at a vision for
BlueDBM usage in this environment: A plug-and-play accelerator would provide out-of-the-box
performance benefit, with further gains achieved through additional customization of the open-source
software and BlueDBM wrapper. The software architecture approach is described in Section 3.2, Open-
System Architecture Considerations.

We’ve identified three potential applications using BlueDBM with open-source software:

1. D4M/Accumulo graph traversal on BlueDBM
- Runs existing algorithms, with minor modification
- Enables out-of-core data size for D4M
- Accelerates sparse matrix multiplication in FPGA
2. Hadoop Distributed File System (HDFS) swap-in
- BlueDBM with HDFS look-and-feel
- Supports many software packages on LLGrid, including Acumulo and Spark
- Exceeds maximum throughput of HDFS client software
3. Accumulo swap-in
- BlueDBM key-value store with Accumulo look-and-feel
- Supports many software packages, including D4M
- Accelerates database operation
- Extreme performance with swap-in HDFS

The platform starts with a single server with options to scale up to four servers and be part of
Lincoln Laboratory’s LLGrid system.

Figure 15. One-server and four-server configurations.

4.3 LOW-POWER FIELDABLE SYSTEM AND APPLICATION CONCEPTS

We’ve explored a few application concepts for low-power fiedable system. One notable concept is
to provide “hotspot” storage, compute, and communication services for fielded sensors in remote or
disaster areas. Enabled by compute capability, the system could also provide “cloud-like” services for

local users.

Through discussions with colleagues, we have identified open-domain large datasets for big-data

applications that can be shared for collaboration. A set of examples is listed below:

* https://www.data.gov

e http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim

¢ http://oad.simmons.edu/oadwiki/Data repositories

e https://library.uoregon.edu/datamanagement/repositories.html

e http://www.nature.com/sdata/data-policies/repositories

e http://aws.amazon.com/datasets

Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:

200 GB, Source: The US Census Bureau

210 GB, Source: Fed. Energy Reg. Commission (FERC) investigate Enron
500 GB, Source: http://labrosa.ee.columbia.edu/millionsong/

800 GB, Source: Data Wrangling — wiki traffic

2.2 TB, Source: Google Books

5 TB, Source: Human Microbiome Project

5 TB, Submitted By: modENCODE DCC (help@modencode.org)

6 TB, Source: CCAFS Climate Portal www.ccafs-climate.org

200 TB, Source: National Center for Biotechnology Information (NCBI)
541 TB, Source: Common Crawl Foundation - http://commoncrawl.org

15

This page intentionally left blank.

5. SUMMARY

The development of a low-power embedded analytics accelerator is a three-year university
collaboration between Lincoln Laboratory and Professor Arvind’s group at the MIT Computer Science
and Al Laboratory (CSAIL). The goal of the project is to design and prototype a novel architecture that
has wide potential applicability to the new types of applications ranging from back-office big-data
analytics to fieldable hot-spot systems providing storage-processing-communication services for off-grid
sensors. Our approach simultaneously optimizes storage, network, and computation performance within
the system. Up to 10x performance boost and 10x power efficiency improvement could be achieved for
application-specific designs. Our vision is to bring new capabilities in big-data and internet-of-things
applications with this new architecture.

Key research activities are listed below:

A. Application-specific demos
B. Interface with open-source software
C. Size, weight, and power (SWaP) constrained fieldable system and application concepts

FY 14 was focused on building the BlueDBM prototype. In FY15, three mini applications were built
(via BlueSpec) for demonstrations. The applications show 7% - 13x in performance compared to a
standard server computer, and power efficiency is improved by 2x to 5x. With respect to the open-source
actions, the software stacks for D4M, Accumulo, HDFS, Spark were investigated for BlueDBM
integration. In FY 16, firmware and software infrastructure will be built up for BlueDBM to interface with
open-source software. Application concepts exploration and follow-on sponsorship search activities will
leverage FY15 developments.

17

This page intentionally left blank.

6. REFERENCES

[1] Arvind, “BlueDBM: A Multi-access, Distributed Flash Store for Big Data Analytics,” Keynote
presentation, IEEE High Performance Embedded Computing, September 2014

[2] H. Nguyen, V. Gadepally, J. Muldavin, and Arvind, “Low-Power Embedded Analytics: FY 14 Line-
Supported Information, Computation, and Exploitation Program”, Project Report LSP-124

[3] S. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, Arvind, “BlueDBM: An Appliance for
Big Data Analytics,” Intl Symposium on Computer Architecture (ISCA), Portland, OR, June 2015

[4] S. Jun, M. Liu, S. Xu, Arvind, “A Transport-Layer Network for Distributed FPGA Platforms,
International Conference on Field-programmable Logic and Applications (FPL),” London, UK,
September 2015

[5] J. Kepner et al., “Dynamic Distributed Dimensional Data Model (D4M) Database and Computation
System,” ICASSP, March 2012

[6] M. Wall, A. Cordova and B. Rinaldi, Accumulo Application Development, Table Design, and Best
Practices, O’Reilly, Sebastapol, California, US, 2013

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, I.
Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing,” NSDI’12

[8] A. Bialecki et al., “Hadoop: A Framework for Running Applications on Large Clusters Built of
Commodity Hardware,” 2005. Wiki at http://lucene.apache.org/hadoop.

[9] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. Dreslinski, T. Mudge,
V. Petrucci, L. Tang, and J. Mars, “Sirius: An Open End-to-End Voice and Vision Personal
Assistant and Its Implications for Future Warehouse Scale Computers.” In Proceedings of the

Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), ASPLOS ’15, New York, NY, USA, 2015. ACM

[10] Tsirogiannis, Harizopoulos, Shah, “Analyzing the Energy Efficiency of a Database Server,”
SIGMOD, 2010

[11] Ma, Hong, Gu, “VOLUME: Enable arge-Scale In-Memory Computation on Commodity Cluster,”
CloudCom’13

[12] Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA,
2014

19

This page intentionally left blank.

APPENDIX A

BlueDBM: An Appliance for Big Data Analytics

Sang-Woo Jun® Ming Liu®

John Ankcorn*

Sungjin Lee’
Myron King*

Jamey Hicks*

Shuotao Xu® Arvind?

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology”
Quanta Research Cambridge*
{wjun, ml, chamdoo, shuotao, arvind}@csail.mit. edu’

{jamey.hicks, john.ankcorn,myron.king}@qrclab.com*

Abstract

Complex data queries, because of their need for random
accesses, have proven to be slow unless all the data can be
accommodated in DRAM. There are many domains, such as
genomics, geological data and daily twitter feeds where the
datasets of interest are 5STB to 20 TB. For such a dataset, one
would need a cluster with 100 servers, each with 128GB to
256GBs of DRAM, to accommodate all the data in DRAM.
On the other hand, such datasets could be stored easily in the
flash memory of a rack-sized cluster. Flash storage has much
better random access performance than hard disks, which
makes it desirable for analytics workloads. In this paper we
present BlueDBM, a new system architecture which has flash-
based storage with in-store processing capability and a low-
latency high-throughput inter-controller network. We show
that BlueDBM outperforms a flash-based system without these
features by a factor of 10 for some important applications.
While the performance of a ram-cloud system falls sharply
even if only 5%~10% of the references are to the secondary
storage, this sharp performance degradation is not an issue
in BlueDBM. BlueDBM presents an attractive point in the
cost-performance trade-off for Big Data analytics.

1. Introduction

By many accounts, complex analysis of Big Data is going to
be the biggest economic driver for the IT industry. For exam-
ple, Google has predicted flu outbreaks by analyzing social
network information a week faster than CDC [13]; Analysis of
twitter data can reveal social upheavals faster than journalists;
Amazon is planning to use customer data for anticipatory ship-
ping of products [43]; Real-time analysis of personal genome
may significantly aid in diagnostics. Big Data analytics are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage. and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’15, June 13-17, 2015, Portland, OR USA

Rights management text and bibliographic strip from ACM placed here.

21

potentially going to have revolutionary impact on the way
scientific discoveries are made.

Big Data by definition doesn’t fit in personal computers or
DRAM of even moderate size clusters. Since the data may be
stored on hard disks, latency and throughput of storage access
is of primary concern. Historically, this has been mitigated
by organizing the processing of data in a highly sequential
manner. However, complex queries cannot always be orga-
nized for sequential data accesses, and thus high performance
implementations of such queries pose a great challenge. One
approach to solving this problem is ram cloud [34], where
the cluster has enough collective DRAM to accommodate the
entire dataset in DRAM. In this paper, we explore a much
cheaper alternative where Big Data analytics can be done with
reasonable efficiency in a single rack with distributed flash
storage, which has much better random accesses performance
than hard disks. We call our system BlueDBM and it provides
the following capabilities:

. A 20-node system with large enough flash storage to host
Big Data workloads up to 20 TBs;

. Near-uniform latency access into a network of storage de-
vices that form a global address space;

. Capacity to implement user-defined in-store processing
engines;

. Flash card design which exposes an interface to make
application-specific optimizations in flash accesses.

Our preliminary experimental results show that for some
applications, BlueDBM performance is an order of magnitude
better than a conventional cluster where SSDs are used only
as a disk replacement. BlueDBM unambiguously establishes
an architecture whose price-performance-power characteris-
tics provide an attractive alternative for doing similar scale
applications in a ram cloud.

As we will discuss in the related work section, almost every
element of our system is present in some commercial system.
Yet our system architecture as a whole is unique. The main
contributions of this work are: (1) Design and implementation
of a scalable flash-based system with a global address space,
in-store computing capability and a flexible inter-controller
network. (2) A hardware-software codesign environment for

incorporating user-defined in-store processing engines. (3)
Performance measurements that show the advantage of such
an architecture over using flash as a drop-in replacement for
disks. (4) Demonstration of a complex data analytics appliance
which is much cheaper and consumes an order of magnitude
less power than the cloud-based alternative.

The rest of the paper is organized as follows: In Section 2
we explore some existing research related to our system. In
Section 3 we describe the architecture of our rack-level system,
and in Section 4 we describe the software interface that can
be used to access flash and the accelerators. In Section 5 we
describe a hardware implementation of BlueDBM, and show
our results from the implementation in Section 6. In Section 7
we describe and evaluate some example accelerators we have
built for the BlueDBM system. Section 8 summarizes our

paper.
2. Related Work

In Big Data scale workloads, building a cluster with enough
DRAM capacity to accommodate the entire dataset can be
very desirable but expensive. An example of such a system is
RAMCloud, which is a DRAM-based storage for large-scale
datacenter applications [34, 39]. RAMCloud provides more
than 64TBs of DRAM storage distributed across over 1000
servers networked over high-speed interconnect. Although
RAMCloud provides 100 to 1000 times better performance
than disk-based systems of similar scale, its high energy con-
sumption and high price per GB limits its widespread use
except for extremely performance and latency-sensitive work-
loads.

NAND-Flash-based SSD devices are gaining traction as
a faster alternative to disks, and close the performance gap
between DRAM and persistent storage. SSDs are an order of
magnitude cheaper price compared to DRAM, and an order
of magnitude faster performance compared to disk. Many
existing database and analytics software has shown improved
performance with SSDs [8, 21, 27]. Several SSD-optimized
analytics softwares, such as the SanDisk Zetascale [40] have
demonstrated promising performance while using SSD as the
primary data storage. Many commercial SSD devices have
adopted high-performance PCle interface in order to overcome
the slower SATA bus interface designed for disk [11, 30, 16].
Attempts to use flash as a persistent DRAM alternative by
plugging it into a RAM slot are also being explored [45].

SSD storage devices have been largely developed to be a
faster drop-in replacement for disk drives. This backwards
compatibility has helped their widespread adoption. How-
ever, additional software and hardware is required to hide the
difference in device characteristics [1]. Due to the high perfor-
mance of SSDs, even inefficiencies in the storage management
software becomes significant, and optimizing such software
has been under active investigation. Moneta [4] modifies the
operating system’s storage management components to reduce
software overhead when accessing NVM storage devices. Wil-

22

low [41] provides an easy way to augment SSD controllers
with additional interface semantics that make better use of
SSD characteristics, in addition to a backwards compatible
storage interface. Attempts to remove the translation layers
and let the databse make high-level decisions [14] have shown
to be beneficial.

Due to their high performance, SSDs also affect the network
requirements. The latency to access disk over Ethernet was
dominated by the disk seek latency. However, in a SSD-based
cluster the storage access latency could even be lower than
network access. These concerns are being addressed by faster
network fabrics such as 10GbE and Infiniband [2], and by
low-overhead software protocols such as RDMA [29, 17, 38,
46, 29, 37] or user-level TCP stacks that bypass the operating
system [19, 15]. QuickSAN [5] is an attempt to remove a layer
of software overhead by augmenting the storage device with a
low-latency NIC, so that remote storage access does not need
to go through a separate network software stack.

Another important attempt to accelerate SSD storage per-
formance is in-store processing, where some data analytics is
offloaded to embedded processors inside SSDs. These proces-
sors have extremely low-latency access to storage, and helped
overcome the limitations of the storage interface bus. The
idea of in-store processing itself is not new. Intelligent disks
(IDISK) connected to each other using serial networks have
been proposed in 1998 [23], and adding processor to disk
heads to do simple filters have been suggested as early as in
the 1970s [28, 35, 3]. However, performance improvements
of such special purpose hardware did not justify their cost at
the time.

In-store processing is seeing new light with the advance-
ment of fast flash technology. Devices such as Smart
SSDs [9, 22, 41] and Programmable SSDs [6] have shown
promising results, but gains are often limited by the perfor-
mance of the embedded processors in such power constrained
devices. Embedding reconfigurable hardware in storage de-
vices is being investigated as well. For example, Ibex [48]
is a MySQL accelerator platform where a SATA SSD is cou-
pled with an FPGA. Relational operators such as selection
and group-by are performed on the FPGA whenever possible,
otherwise they are forwarded to software. Companies such
as IBM/Netezza [42] offload operations such as filtering to a
reconfigurable fabric near storage. On the other end of the
spectrum, systems such as XSD [6] embeds a GPU into a SSD
controller, and demonstrates high performance accelerating
MapReduce.

Building specialized hardware for databases have been ex-
tensively studied and productized. Companies such as Ora-
cle [33] have used FPGAs to offload database queries. FP-
GAs have been used to accelerate operations such as hash
index lookups [25]. Domain-specific processors for database
queries are being developed [44, 47], including Q100 [49] and
LINQits [7]. Q100 is a data-flow style processor with an in-
struction set architecture that supports SQL queries. LINQits

mapped a query language called LINQ to a set of acceler-
ated hardware templates on a heterogeneous SoC (FPGA +
ARM). Both designs exhibited order of magnitude perfor-
mance gains at lower power, affirming that specialized hard-
ware for data processing is very advantageous. However, un-
like BlueDBM, these architectures accelerate computation on
data that is in DRAM. Accelerators have also been placed
in-path between network and processor to perform operations
at wire speed [32], or to collect information such as histogram
tables without overhead [18].

Incorporating reconfigurable hardware accelerators into
large datacenters is also being investigated actively. Microsoft
recently has built and demonstrated the power/performance
benefits of an FPGA-based system called Catapult [36]. Cat-
apult uses a large number of homogeneous servers each aug-
mented with an FPGA. The FPGAs form a network among
themselves via high-speed serial links so that large jobs can be
mapped to groups of FPGAs. Catapult was demonstrated to
deliver much faster performance while consuming less power,
compared to a normal ram cloud cluster. BlueDBM has similar
goals in terms of reconfigurable hardware acceleration, but it
uses flash devices to accelerate lower cost systems that do not
have enough collective DRAM to host the entire dataset.

This system improves upon our previous BlueDBM proto-
type [20], which was a 4-node system with less than 100GB
of slow flash. It was difficult to extrapolate the performance of
real applications from the results obtained from our previous
prototype, because of both its size and different relative perfor-
mance of various system components. The current generation
of BlueDBM has been built with the explicit goal of running
real applications, and will be freely available to the community
for developing Big Data applications.

3. System Architecture

The BlueDBM architecture is a homogeneous cluster of host
servers coupled with a BlueDBM storage device (See Fig-
ure 1). Each BlueDBM storage device is plugged into the
host server via a PCle link, and it consists of flash storage, an
in-store processing engine, multiple high-speed network inter-
faces and on-board DRAM. The host servers are networked
together using Ethernet or other general-purpose networking
fabric. The host server can access the BlueDBM storage de-
vice via a host interface implemented over PCle. It can either
directly communicate with the flash interface, to treat is as a
raw storage device, or with the in-store processor to perform
computation on the data.

The in-store processing engine has access to four major
services: The flash interface, network interface, host interface
and the on-storage DRAM buffer. Figure | and Figure 2
shows the four services available to the in-store processor. In
the following sections we describe the flash interface, network
interface and host interface in order. We omit the DRAM
buffer because there is nothing special about its design.

23

3.1. Flash Interface

Flash devices or SSDs achieve high bandwidth by grouping
multiple flash chips into several channels, all of which can
operate in parallel. Because NAND flash has limited pro-
gram/erase cycles and frequent errors, complex flash manage-
ment algorithms are required to guarantee reliability. These
include wear leveling, garbage collection, bit error correction
and bad block management. These functions are typically
handled by multiple ARM-based cores in the SSD controller.
The host side interface of an SSD is typically SATA or PCle,
using AHCI or NVMe protocols to communicate with host.
SSDs are viewed as a typical block device to the host oper-
ating system, and its internal architecture and management
algorithms are completely hidden.

However, this additional layer of management duplicates
some file system functions and adds significant latency [26].
Furthermore, in a distributed storage environment, such as
BlueDBM, independent flash devices do not have a holistic
view of the system and thus cannot efficiently manage flash. Fi-
nally, in-store processors that we have introduced in BlueDBM
would also incur performance penalties if passing through this
extra layer. Thus in BlueDBM, we chose to shift flash manage-
ment away from the device and into file system/block device
driver (discussed in Section 4).

3.1.1. Interface for High Performance Flash Access Our
flash controller exposes a low-level, thin, fast and bit-error
corrected hardware interface to raw NAND flash chips, buses,
blocks and pages. This has the benefit of (i) cutting down
on access latency from the network and in-store processors;
(ii) exposing all degrees of parallelism of the device and (iii)
allowing higher level system stacks (file system, database
storage engine) to more intelligently manage data.

To access the flash, the user first issues a flash command
with the operation, the address and a tag to identify the request.
For writes, the user then awaits for a write data request from
the controller scheduler, which tells the user that the flash
controller is ready to receive the data for that write. The user
will send the write data corresponding to that request in 128-
bit bursts. The controller returns an acknowledgement once
write is finished. For read operations, the data is returned
in 128-bit bursts along with the request tag. For maximum
performance, the controller may send these data bursts out
of order with respect to the issued request and interleaved
with other read requests. Thus completion buffers may be
required on the user side to maintain FIFO characteristics.
Furthermore, we note that to saturate the bandwidth of the
flash device, multiple commands must be in-flight at the same
time, since flash operations can have latencies of 50 (s or
more.

3.1.2. Multiple Access Agents Multiple hardware endpoints
in BlueDBM may need shared access to this flash controller
interface. For example, a particular controller may be accessed
by local in-store processors, local host software over PCle

i Storage Network

BlueDBM BlueDBM BlueDBM
Storage Storage s Storage
;| _Host Server | [Host Server Host Server |-,
! Node 1 Node 2%._, Node N !
Y.
I‘->: Ethernet fet

| 178 Flash |

Flash
Interface
| DRAM H In-Storage H Network
Processor Interface
Interface
< 5
| Host Server |

Figure 2: BlueDBM Node Architecture

DMA, or remote in-store processors over the network. Thus
we implemented a Flash Interface Splitter with tag renaming
to manage multiple users (Figure 3). In addition, to ease
development of hardware in-store processors, we also provide
an optional Flash Server module as part of BlueDBM. This
server converts the out-of-order and interleaved flash interface
into multiple simple in-order request/response interfaces using
page buffers. It also contains an Address Translation Unit that
maps file handles to incoming streams of physical addresses
from the host. The in-store processor simply makes a request
with the file handle, offset and length, and the Flash Server
will perform the flash operation at the corresponding physical
location. The software support for this function is discussed
in Section 4). The Flash Server’s width, command queue
depth and number of interfaces is adjustable based on the
application.

3.2. Integrated Storage Network

BlueDBM provides a low-latency high-bandwidth network in-
frastructure across all BlueDBM storage devices in the cluster,
using a simple design with low buffer requirements. BlueDBM
storage devices form a separate network among themselves

{ o H
! Flash Interface Flash i
i Splitter Interface !
! 1
' 1
i Flash Server xS e
! Processor Interface
|
i
i
1,

Figure 3: Flash Interface

24

via high-performance serial links. The BlueDBM network
is a packet-switched mesh network, in which each storage
device has multiple network ports and is capable of routing
packets across the network without requiring a separate switch
or router. In addition to routing, the storage network supports
functionality such as flow control and virtual channels while
maintaining high performance and extremely low latency. For
data traffic between the storage devices, the integrated network
ports removes the overhead of going to the host software to
access a separate network interface.

Figure 4 shows the network architecture. Switching is done
at two levels, the internal switch and the external switch. The
internal switch routes packets between local components. The
external switch accesses multiple physical network ports, and
is responsible for forwarding data from one port to another in
order to relay a packet to its next hop. It is also responsible for
relaying inbound packets to the internal switch, and relaying
outbound packets from the internal switch to a correct physical
port.

Due to the multiple ports on the storage nodes, the
BlueDBM network is very flexible and can be configured
to implement various topologies, as long as there is sufficient
number of ports on each node. Figure 5 shows some example
topologies. To implement a ditferent topology the physical
cables between each node has to be re-wired, but the rout-
ing across a topology can be configured dynamically by the
software.

3.2.1. Logical Endpoint The BlueDBM network infrastruc-
ture exposes virtual channel semantics to the users of the
network by providing it with multiple logical endpoints. The
number of endpoints are determined at design time by setting a
parameter, and all endpoints share the physical network. Each
endpoint is parameterized with a unique index that does not
need to be contiguous. Each endpoint exposes two interfaces,
send and receive. An in-store processor can send data to a

Node 1 (e pmemememmemeeeen
.
P |
i|_Interface ' Switch
H 1
i| In-Storage Internal External 0 .
H . . VS 2 .
+|__Processor Switch Switch % .
1 12z
H H

H
i |

iL_Interface

Figure 4: Network Architecture

QO : One Node
<+— : One 10Gbps Link

Aok B

a) Distributed Star b) Mesh c) Fat Tree

Figure 5: Any Network Topology Is Possible As Long As It
Requires Less Than 8 Network Ports Per Node

remote node by calling send with a pair of data and destina-
tion node index, or receive data from remote nodes by calling
receive, which returns a pair of data and source node index.
These interfaces provide back pressure, so that each endpoint
can be treated like a FIFO interface across the whole cluster.
Such intuitive characteristics of the network ease development
of in-store processors.

3.2.2. Link Layer The link layer manages physical connec-
tions between network ports in the storage nodes. The most
important aspect of the link layer is the simple token-based
flow control implementation. This provides back pressure
across the link and ensures that packets will not drop if the
data rate is higher than what the network can manage, or if
the data cannot be received by the destination node which is
running slowly.

Node 1
[Endpoint 1 }—m’
Endpoint 3 B

Switch

—m‘l Endpoint 1
=] Endpoint 2
_’l‘- Endpoint 3

Node 3

Node 4

Figure 6: Packets From The Same Endpoint to a Destination
Maintain FIFO Order

3.2.3. Routing Layer In order to make maximum use of
the bandwidth of the network infrastructure while keeping
resource usage to a minimal, the BlueDBM network imple-
ments deterministic routing for each logical endpoint. This
means that all packets originating from the same logical end-
point that are directed to the same destination node follow the
same route across the network, while packets from a different
endpoint directed to the same destination node may follow a
different path. Figure 6 shows packet routing in an example
network. The benefits of this approach is that packet traffic
can be distributed across multiple links, while maintaining the
order of all packets from the same endpoint. If packets from
the same endpoint are allowed to take different paths, it would
require a completion buffer which may be expensive in an
embedded system. For simplicity, the BlueDBM network does
not implement a discovery protocol, and relies on a network
configuration file to populate the routing tables.

In order to maintain extremely low network latency, each
endpoint is given a choice whether to use end-to-end flow
control. If the developer is sure that a particular virtual link
will always drain on the receiving end, flow end-to-end flow
control can be omitted for that endpoint. However, if the

25

| Flash | Network | In-Sto
Contamller Interface :roce:g:
Per-buffer L

HEEH .-BH

FIFOs
Burst data—"1 ~_Burst ready
v L s

uffer index

=

Figure 7: Host-FPGA Interface Over PCle

receiver fails to drain data for a long time, the link-level back
pressure may cause related parts of the network to block. On
the other hand, an endpoint can be configured to only send data
when there is space on the destination endpoint, which will
assure safety but result in higher latency due to flow control
packets, and more memory usage for buffers.

3.3. Host Interface

The in-store processing core can be accessed from the host
server over either a direct interface that supports RPC and
DMA operations, or a file system abstraction built on top of
the direct interface. The file system interface is described in
detail in Section 4.

In order to parallelize requests and maintain high perfor-
mance, the host interface provides the software with 128 page
buffers, each for reads and writes. When writing a page, the
software will request a free write buffer, copy data to the write
buffer, and send a write request over RPC with the physical ad-
dress of the destination flash page. The buffer will be returned
to the free queue when the hardware has finished reading the
data from the buffer. When reading a page, the software will
request a free read buffer, and send a read request over RPC
with the physical address of the source flash page. The soft-
ware will receive an interrupt with the buffer index when the
hardware has finished writing to software memory.

Using DMA to write data to the storage device is straight-
forward to parallelize, but parallelizing reads is a bit more
tricky due to the characteristics of flash storage. When writing
to storage, the DMA engine on the hardware will read data
from each buffer in order in a contiguous stream. So hav-
ing enough requests in the request queue is enough to make
maximum use of the host-side link bandwidth. However, data
reads from flash chips on multiple buses in parallel can arrive
interleaved at the DMA engine. Because the DMA engine
needs to have enough contiguous data for a DMA burst before
issuing a DMA burst, some reordering may be required at the
DMA engine. This becomes even trickier when the device
is using the integrated network to receive data from remote
nodes, where they might all be coming from different buses.
To fix this issue, we provide dual-ported buffer in hardware
which has the semantics of a vector of FIFOs, so that data for
each request can be enqueued into its own FIFO until there is
enough data for a burst. Figure 7 describes the structure of the
host interface for flash reads.

4. Software Interface

In BlueDBM, we aim to provide a set of software interfaces
that support the execution of any existing application as well
as modified applications that leverage the in-store processors
in the system. Furthermore, software layers in BlueDBM must
perform flash management functions since we chose to expose
a raw flash interface in hardware for higher efficiency (pre-
viously discussed in Section 3.1). The software architecture
is shown in Figure 8. Three interfaces are supplied to the
user application: (i) a file system interface, (ii) a block device
driver interface and (iii) an accelerator interface.

We first discuss the file system. Commercial SSDs incorpo-
rate a Flash Translation Layer (FTL) inside the flash device
controller to manage flash and maintains a block device view
to the operating system. However, common file systems man-
age blocks in a fashion optimized for hard disks. SSDs use the
FTL to emulate block device interfaces for compliance with
operating systems, performing logical-to-physical mapping
and garbage collection, which require large DRAM and incur
lots of extra I/Os. Some file systems have tried to remedy this
by refactoring the I/0 architecture in order to offload most of
the FTL functions into a flash-optimized log-structured file
system. A prominent example of this is RFS [26]. Unlike
conventional FTL designs where the flash characteristics are
hidden from the file system, RFS performs some functionality
of an FTL, including logical-to-physical address mapping and
garbage collection. This achieves better garbage collection ef-
ficiency at much lower memory requirement. The file system
interface in BlueDBM is built on the same paradigm.

For compatibility with existing software, BlueDBM also
offers a full-fledged FTL implemented in the device driver,
similar to Fusion I0’s driver. This allows us to use well-known
Linux file systems (e.g., ext2/3/4) as well as database systems
(directly running on top of a block device) with BlueDBM.

The BlueDBM software allows developers to easily make
use of fast in-storage processing without any efforts to write
their own custom interfaces manually. Figure 8 shows how
user-level applications access hardware accelerators. In the
BlueDBM software stack, user-level applications can query
the file system for the physical locations of files on the flash
(see (1) in Figure 8). This was made possible because the file
system maintains the mapping information. Applications can
then provide in-storage processors with a stream of physical
addresses (see (2)), so that the in-storage processors can di-
rectly read data from flash with very low latency (see (3)). The
results are sent to software memory and the user application
can be notified (see (4)).

It is worth noting that, in BlueDBM, all the user requests,
including both user queries and data, are sent to the hardware
directly, bypassing almost all of the operating system’s kernel,
except for essential driver modules. This helps us to avoid deep
OS kernel stacks that often cause long I/0 latencies. It is also
very common that multiple instances of a user application may

compete for the same hardware acceleration units. For efficient
sharing of hardware resources, BlueDBM runs a scheduler that
assigns available hardware-acceleration units to competing
user-applications. In our implementation, a simple FIFO-
based policy is used for request scheduling.

User-Level Hardware-Accelerated Application P

S

Get physical locations | Daemon

of files to analyze

Send queries with /3
physical locations ="

File System

(e.g., RFS, Ext4, ...)

Kernel l Block Device Driver I Get analysis respilts
I Connectal I

FPGA | Flash Controller | Hardware Acceleratom
[‘:3:‘ Read and analyze data

Storage NAND Flash [DB Tables / Records J

Figure 8: Software Interface

5. Hardware Implementation

We have built a 20-node BlueDBM cluster to explore the
capabilities of the architecture. Figure 9 shows the photo of
our implementation.

-)
r 4, Ethernet

BlueDBM Storage

— DI Host Server

BlueDBM Storage

—II Host Server I

—H Host Server “

l BlueDBM Storage #
L
— II Host Server I

Figure 9: A 20-node BlueDBM Cluster

PCle

In our implementation of BlueDBM, we have used a Field
Programmable Gate Array (FPGA) to implement the in-store
processor and also the flash, host and network controllers.
However, the BlueDBM Architecture should not be limited to
an FPGA-based implementation. Development of BlueDBM
was done in the high-level hardware description language
Bluespec. It is possible to develop in-store processors in any
hardware description language, as long as they conform to the

26

interface exposed by the BlueDBM system services. Most of
the interfaces are latency-insensitive FIFOs with backpressure.
Bluespec provides a lot of support for such interfaces, making
in-store accelerator development easier.

The cluster consists of 20 rack-mounted Xeon servers, each
with 24 cores and 50GBs of DRAM. Each server also has
a Xilinx VC707 FPGA development board connected via a
PCle connection. Each VC707 board hosts two custom-built
flash boards with SATA connectors. The VC707 board, cou-
pled with two custom flash boards is mounted on top of each
server. The host servers run the Ubuntu distribution of Linux.
Figure 10 shows the components of a single node. One of
the servers also had a 512GB Samsung M.2 PCle SSD for
performance comparisons.

We used Connectal [24] and its PCle Gen | implementation
for the host link. Connectal is a hardware-software codesign
framework built by Quanta Research. Connectal reads the
interface definition file written by the programmer and gen-
erates glue logic between hardware and software. Connectal
automatically generates RPC-like interface from developer-
provided interface specification, as well as a memory-mapped
DMA interface for high bandwidth data transfer. Connec-
tal’s PCIe implementation caps our performance at 1.6GB/s
reads and 1GB/s writes, which is a reasonable performance
for a commodity flash storage device. In the future we will
also explore the benefits of a faster host link including later
generation PCle links.

CERIC)

v |

Figure 10: A BlueDBM Storage Node

5.1. Custom Flash Board

We have designed and built a high-capacity custom flash board
with high-speed serial connectors, with the help of Quanta
Inc., and Xilinx Inc.

Each flash card has 512GBs of NAND flash storage and a
Xilinx Artix 7 chip, and plugs into the host FPGA develop-
ment board via the FPGA Mezzanine Card (FMC) connector.
The flash controller and Error Correcting Code (ECC) is imple-
mented on this Artix chip, providing the Virtex 7 FPGA chip
on the VC707 a logical error-free access into flash. The com-
munication between the flash board and the Virtex 7 FPGA
is done by a 4-lane aurora channel, which is implemented
on the GTX/GTP serial transceivers included in each FPGA.
This channel can sustain up to 3.3GB/s of bandwidth at 0.5us

27

latency. The flash board also hosts 8 SATA connectors, 4 of
which pin out the high-speed serial ports on the host Virtex 7
FPGA, and 4 of whch pin out the high-speed serial ports on
the Artix 7 chip. The serial ports are capable of 10Gbps and
6.6Gbps of bandwidth, respectively.

5.2. Network Infrastructure

In our BlueDBM implementation, the link is implemented
over the low-latency serial transceivers. By implementing
routing in the hardware and using a very low-latency network
fabric, we were able to achieve very high performance, with
less than 0.5us of latency per network hop, and near 10Gbps
of bandwidth per link. Our implementation has a network
fan-out of 8 ports per storage node, so the aggregate network
bandwidth available to a node reaches up to 8GB/s, including
packet overhead.

5.3. Software Interface

Our host interface is implemented using Connectal [24]. Con-
nectal provides a PCle Gen | endpoint and driver pair, and
provides up to 1.6GB/s DMA read to host DRAM bandwidth
and 1GB/s of DMA write from host DRAM bandwidth. Read-
ing or writing data from the host buffers were done by DMA
read/write engines implemented in the Connectal framework.
In our BlueDBM implementation, there are four read engines
and four write engines each, in order to more easily make
maximum use of the PCle bandwidth.

6. Evaluation

This section evaluates the characteristics of the BlueDBM
implementation.

6.1. FPGA Resource Utilization

The FPGA resource usage of each of the two Artix-7 chips
are shown in Table 1. 46% of the 1/0 pins were used either to
communicate with the FMC port or to control the flash chips.

Module Name | # | LUTs | Registers | BRAM |

Bus Controller 8 7131 4870 21

— ECC Decoder | 2 1790 1233 2

— Scoreboard 1 1149 780 0

— PHY 1 1635 607 0

— ECC Encoder | 2 565 222 0

SerDes 1 3061 3463 13
Artix-7 Total 75225 (56%) | 62801 (23%) | 181(50%) |

Table 1: Flash Controller on Artix 7 Resource Usage

The FPGA resource usage of the Virtex 7 FPGA chip on
the VC707 board is shown in Table 2. As it can be seen, there
is still enough space for accelerator development on the Virtex
FPGA.

Module Name |

#
Flash Interface 1 1389 2139 0 0
Network Interface | 1 29591 27509 0 0
DRAM Interface 1 11045 7937 0 0
Host Interface 1 88376 46065 169 14
Virtex-7 Total 135271 135897 224 18
(45%) ‘ (22%) | (22%) ’ (1%) ‘

Table 2: Host Virtex 7 Resource Usage

6.2. Power Consumption

Table 3 shows the overall power consumption of the system,
which were estimated using values from the datasheet. Each
Xeon server includes 24 cores and S0GBs of DRAM. Thanks
to the low power consumption of the FPGA and flash devices,
BlueDBM adds less than 20% of power consumption to the
system.

Component | Power (Watts)

VC707 30
Flash Board x2 10
Xeon Server 200
Node Total 240

Table 3: BlueDBM Estimated Power Consumption

6.3. Network Performance

We measured the performance of the network by transferring
a single stream of 128 bit data packets through multiple nodes
across the network in a non-contentious traffic setting. The
maximum physical link bandwidth is 10Gbps, and per-hop
latency is 0.48 us. Figure 11 shows that we are able to sustain
8.2Gbps of bandwidth per stream across multiple network
hops. This shows that the protocol overhead is under 18%.
The latency is 0.48 s per network hop, the end-to-end latency
is simply a multiple of network hops to the destination.

Each node in our BlueDBM implementation includes a fan-
out of 8 network ports, so each node can have an aggregate
full duplex bandwidth of 8.2GB/s. With such a high fan-out,
it would be unlikely that a remote node in a rack-class cluster
to be over 4 hops, or 2 s away. In a naive ring network of
20 nodes with 4 lanes each to next and previous nodes, the
average latency to a remote node is 5 hops, or 2.5 us. The ring

throughput is 32.8 Gbps. Assuming a flash access latency of

50 us, such a network will only add 5% latency in the worst
case, giving the illusion of a uniform access storage.

6.4. Remote Storage Access Latency

We measured the latency of remote storage access by read-

ing an 8K page of data from the following sources using the

integrated storage network:

1. ISP-F: From in-store processor to remote flash storage;

2. H-F: From host server to remote flash storage;

3. H-RH-F: From host server to remote flash storage via its
host server.

28

| LUTs | Registers | RAMB36 | RAMBIS | 4 H.D: From host server to remote DRAM;

In each case, the request is sent from either the host server
or the in-store processor on the local BlueDBM node. In the
third and fourth case, the request is processed by the remote
server, instead of the remote in-store processor, adding extra
latency. However, data is always transferred back via the
integrated storage network. We could have also measured
the accesses to remote servers via Ethernet, but that latency
is at least 100x of the integrated network, and will not be
particularly illuminating.

The latency is broken up into four components as shown in
Figure 14. First is the local software overhead of accessing the
network interface. Second is the storage access latency, or the
time it takes for the first data byte to come out of the storage
device. Third is the amount of times it takes to transfer the
data until the last byte is sent back over the network, and last
is the network latency.

Figure 12 shows the exact latency breakdown for each ex-
periment. Notice in all 4 cases, the network latency is insignif-
icant. The data transfer latency is similar except when data
is transferred from DRAM (H-D), where it is slightly lower.
Notice that except in the case of ISP-F, storage access incurs
the additional overhead of PCle and host software latencies.
If we compare ISP-F to H-RH-F, we can see the benefits of an
integrated storage network, as the former allows overlapping
the latencies of storage and network access.

6.5. Storage Access Bandwidth

We measured the bandwidth of BlueDBM by sending a stream
of millions of random read requests for 8KB size pages to local
and remote storage nodes, and measuring the elapsed time to
process all of the requests. We measured the bandwidth under
the following scenarios:

1. Host-Local: Host sends requests to the local flash and all

data is streamed returned over PCle;

ISP-Local: Host sends requests to the local flash and all

data is consumed at the local in-store processor;

. ISP-2Nodes: Like ISP-Local except 50% of the requests
are sent to a remote flash controller. Only one serial link
connects the two nodes;

. ISP-3Nodes: Like ISP-Local except 33% of the requests
are sent to each of the two remote flash controllers. Two
serial links connect each remote controller to the local
controller.

Figure 13 shows the read bandwidth performance for each
of these cases. Our design of the flash card provides 1.2GB/s
of bandwidth per card. Therefore in theory, if both cards
are kept completely busy 2.4GB/s should be the maximum
sustainable bandwidth from the in-store processor, and this is
what we observe in the ISP-Local experiment. In our Host-
Local experiment, we observed only 1.6GB/s of bandwidth.
This is because this is the maximum bandwidth our PCle
implementation can sustain. In ISP-2Nodes, the aggregate
bandwidth of two flash devices should add up to 4.8GB/s, but

2.

10 25 350 r r . . .
g Network mmm
Data Tsransfev s
torage =0 sk
300 Software —— i
’ e 2 |
g 250
: @ |
2 1%, 3
g o 5k 2 Nodes
9 = :
: : St
s w150
=4 3 _ :
: =
c | ?
©
) " PCle
2 bandwidth
I 05
50
bandwidth(Gb/s) —>— osesamaasmac])
Latency(us) ======--
0 . . 0
1 2 3 4 5 ISP-F H-RH-F H-D Host-Local 1SP-Local ISP-2Nodes ISP-3Nodes

Hops

Figure 11: BlueDBM Integrated Net-

work Performance cess in BlueDBM

we only observe about 3.4GB/s, because remote storage access
is limited by the single 8Gbps-serial link. In ISP-3Nodes, the
aggregate bandwidth of three flash devices should add up
to 7.2GB/s, but we only observe about 6.5GB/s because the
aggregate bandwidth of the four serial links connecting the
remote controllers is limited to 32.8Gbps (=4.1GB/s).

What these sets of experiments show is that in order to make
full use of flash storage, some combination of fast networks,
fast host connections and low software overhead is necessary.
These requirements can be somewhat mitigated if we make use
of in-store computing capabilities, which is what we discuss
next.

7. Application Acceleration

In this section, we demonstrate the performance and benefits
of the BlueDBM architecture by presenting some accelerator
demonstrations.

7.1. Nearest Neighbor Search

Description: Nearest neighbor search is required by many
applications, e.g., image querying. One of the modern tech-
niques in this field is Locality Sensitive Hashing [12]. LSH
hashes the dataset using multiple hash functions, so that simi-
lar data is statistically likely to be hashed to similar buckets.
When querying, the query is hashed using the same hash func-
tions, and only the data in the matching buckets are actually

AR

N\NK

Remote Storage

Local Storage

Host SW

Figure 12: Latency of Remote Data Ac-

f

Software
Latency Network
Latency

Storage Access
Latency

Data Transfer :
!

Latency i
Software

Network Latency
Latency

Figure 14: Breakdown of Remote Storage Access Latency

Access Type

Access Type

Figure 13: Bandwidth of Data Access
in BlueDBM

Locality-sensitive

hash table

Data

Figure 15: Data Accesses in LSH are Randomly Distributed

compared. The bulk of the work during a query process is
traversing hash buckets and reading the corresponding data
to perform distance calculation. Because data pointed to by
the hash buckets are most likely scattered across the dataset,
access patterns are quite random (See Figure 15).

We have built a LSH query accelerator, where all of the data
is stored in flash and the distance calculation is done by the
in-store processor on the storage device. For simplicity, we
assume 8KB data items, and calculate the hamming distance
between the query data and each of the items in the hash
bucket. The software sends a stream of addresses from a hash
bucket along with the query data page, and the system returns
the index of the data item most closely matching the query.
Since we do not expect any performance difference for queries
emanating from two different hash buckets, we simply send
out a million nearest-neighbor searches for the same query.

Evaluation: In this study, we were interested in evaluating
and comparing the benefits of flash storage (as opposed to
DRAM) and in-store processors. We also wanted to com-
pare the BlueDBM design with off-the-shelf SSDs with PCle
interface. The following experiments aims to evaluate the
performance of each system during various access patterns,
such as random or sequential access, and when accesses are
partially serviced by secondary storage.

We have used a commercially available M.2 mPCle
SSD, whose performance, for 8KB accesses, was limited
to 600MB/s. Since BlueDBM performance is much higher
(2.4GB/s), we also conducted several experiments with
BlueDBM throttled to 600MB/s. Since performance should

29

160

DRAM —w— DRAM —w— ISP —a— ISP =—a—
1Node swewee 140 ISP see@em 140 Seq Flash ---@--- 140 BlUEDBM+SW ---@---
600 Throttled - 10% Flash @ Full Flash woeeee
5% Disk
120 120 120
500
- =100 =100 =100
3 3 3 3
2400 =3 o a
£ £ £ £
4 20 e 2- 80
] |2 /- 2 7 g g
£300 s L/ e £ / - el B
= 60 —— e op / wop . -
P p—
200 /
wp - a0 b w0
¢
100 0 0 20
0 0 0 o
2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6
Threads Threads Threads Threads

Figure 16: Nearest Neigh-
bor with BlueDBM up to
Two Nodes

Figure 17: Nearest Neigh-
bor with Mostly DRAM

scale linearly with the number of nodes for this application,

we concentrated on various configurations in a single node

setting:

1. Baseline: BlueDBM with in-store acceleration;

. Baseline-T: Throttled BlueDBM with in-store acceleration;

. H-DRAM: Multithread software on multi-core host access-

ing host DRAM as storage;

4. H-F Throttled: Multithreaded software on multi-core host
accessing Throttled BlueDBM as storage;

5. DRAM + 10% Flash: Same as H-DRAM with 10% ac-
cesses to SSD;

6. DRAM + 5% Disk: Same as H-DRAM with 5% accesses
to HDD;

7. H-RFlash: Multithreaded software on multi-core host ac-
cessing Off-the-shelf SSD;

8. H-SFlash: Same as H-RFlash except data accesses are
artificially arranged to be sequential.

Figure 16 shows the relative performance of a throttled
BlueDBM (Baseline-T) and multithreaded software accessing
data on host DRAM (H-DRAM), with Baseline BlueDBM.
The baseline performance we observed on BlueDBM was
320K Hamming Comparisons per second. There are two
important takeaways from this graph. (1) BlueDBM can keep
up with DRAM-resident data for up to 4 threads, because
host is getting compute-bound. However, as more threads
are added, performance will scale, until DRAM bandwidth
becomes the bottleneck. Since DRAM bandwidth as compared
to flash bandwidth is very high, DRAM-based processing wins
with enough resources. (2) Native flash speed matters i.e.,
when flash performance is throttled to 1/4th of the maximum,
the performance drops accordingly. The relationship between
flash performance and application performance will not be so
simple if flash was being accessed by software.

To make the comparisons fair, we conducted a set of experi-
ments shown in Figures 17, 18, 19 using throttled BlueDBM
as the baseline.

Results of DRAM + 5% Disk and DRAM + 10% Flash
experiments shown in Figure 17 show that the performance of
ram cloud (H-DRAM) falls off very sharply if even a small
fraction of data does not reside in DRAM. Assuming 8 threads,

[SSIN]

Figure 18: Nearest Neigh-
bor with Off-the-shelf
SSD

Figure 19: Nearest Neigh-
bor with In-Store Process-
ing

the performance drops from 350K Hamming Comparisons
per second to < 80K and < 10K Hamming Comparisons
per second for DRAM + 10% Flash and DRAM + 5% Disk,
respectively. At least one commercial vendor has observed
similar phenomena and claimed that even when 40% of data
fits on DRAM, performance of Hadoop decreases by an order
of magnitude [10]. Complex queries on DRAM show high
performance only as long as all the data fits in DRAM.

The Off-the-shelf SSD experiment H-RFlash results in Fig-
ure 18 showed that its performance is poor as compared to even
throttled BlueDBM. However, when we artificially arranged
the data accesses to be sequential, the performance improved
dramatically, sometimes matching throttled BlueDBM. This
suggests that the Off-the-shelf SSD may be optimized for
sequential accesses.

Figure 19 comparing Baseline-T and H-F Throttled shows
the advantage of accelerators. In this example, the accelerator
advantage is at least 20%. Had we not throttled BlueDBM,
the advantage would have been 30% or more. This is be-
cause while the in-store processor can process data at full
flash bandwidth, the software will be bottlenecked by the PCle
bandwidth at 1.6GB/s. We expect this advantage to be larger
for applications requiring more complex accelerators Com-
pared to a fully flash-based execution, BlueDBM performs an
order of magnitude faster.

7.2. Graph Traversal

Description: Efficient graph traversal is a very important
component of any graph processing system. Fast graph traver-
sal enables solving many problems in graph theory, including
maximum flow, shortest path and graph search. It is also a
very latency-bound problem because one often cannot pre-
dict the next node to visit, until the previous node is visited
and processed. We demonstrate the performance benefits of
our BlueDBM architecture by implementing distributed graph
traversal that takes advantages of the in-store processor and
the integrated storage network, which allows extremely low-
latency access into both local and remote flash storage.

Evaluation: Graph traversal algorithms often involve depen-
dent lookups. That is, the data from the first request determines

30

5000

Throughput
g

5000

1sP-F

HE OHRHF SONF

Access Type

30%F H-DRAM

Figure 20: Graph Traversal Performance

the next request, like a linked-list traversal at the page level.

Since such traversals are very sensitive to latency, we con-

ducted the experiments with settings that are very similar to

the settings in Section 6.4.

1. IPS-F: In-store processor requests data from remote storage
over integrated network

. H-F: Software requests data from remote storage over inte-
grated network

. H-RH-F: Software requests data from remote software to
read from flash

. DRAM + 50% F: Store requests data from remote software.
50% chance of hitting flash

. DRAM + 30% F: Store requests data from remote software.
30% chance of hitting flash

. H-DRAM: Software requests data from remote software.
Data read from DRAM
As expected the results in Figure 20 show that the integrated

storage network and in-store processor together show almost a

factor of 3 performance improvement over generic distributed

SSD. This performance difference is large enough that even

when 50% of the accesses can be accommodated by DRAM,

performance of BlueDBM is still much higher.

The performance difference between H-F and H-RH-F il-
lustrates the benefits of using the integrated network to reduce
a layer of software access. Performance of ISP-F compared to
H-F shows the benefits of further reducing software overhead
by having the ISP manage the graph traversal logic.

7.3. String Search

Description: String search is common operation in analyt-
ics, often used in database table scans, DNA sequence match-
ing and cheminformatics. It is primarily a sequential read and
compare workload. We examine its performance on BlueDBM
with assistance from in-store Morris-Pratt (MP) string search
engines [31] fully integrated with the file system, flash con-
troller and application software. The software portion of string
search initially sets up the accelerator by transferring the target
string pattern (needle) and a set of precomputed MP constants
over DMA. Then it consults the file system for a list of phys-
ical addresses of the files to search (haystack). This list is
streamed to the accelerator, which uses these addresses to re-

31

1200

Bandwidth =
Host CPU Utiization EX203

1000

8

800

8

Search Throughput (MB/s)
&
CPU Utilization (%)

8

Flash'SW Grep HDD/S\
Search Method

FlashiSP rep

Figure 21: String Search Bandwidth and CPU Utilization

quest for pages from the flash controller. The accelerated MP
engines may operate in parallel either by searching multiple
files or by dividing up the haystack into equal segments (with
some overlaps). This choice depends on the number of files
and size of each file. Since 4 read commands can saturate a
single flash bus, we use 4 engines per bus to maximize the
flash bandwidth. Only search results are returned to the server.

Evaluation: We compared our implementation of hardware-
accelerated string search running on BlueDBM to the Linux
Grep utility querying for exact string matches running on
both SSD and hard disk. Processing bandwidth and server
CPU utilizations are shown in Figure 21. We observe that
the parallel MP engines in BlueDBM are able to process a
search at 1.1GB/s, which is 92% of the maximum sequential
bandwidth a single flash board. Using BlueDBM, the query
consumes almost no CPU cycles on the host server since the
query is entirely offloaded and only the location of matched
strings are returned, which we assume is a tiny fraction of the
file (0.01% is used in our experiments). This is 7.5x faster
than software string search (Grep) on hard disks, which is
1/0 bound by disk bandwidth and consumes 13% CPU. On
SSD, software string search remains I/O bound by the storage
device, but CPU utilization increases significantly to 65% even
for this type of simple streaming compare operation. This high
utilization is problematic because string search is often only
a small portion of more complex analytic queries that can
quickly become compute bound. As we have shown in the
results, BlueDBM can effectively alleviate this by offloading
search to the in-store processor thereby freeing up the server
CPU for other tasks.

8. Conclusion and Future Work

We have presented BlueDBM, an appliance for Big Data ana-
lytics that uses flash storage, in-store processing and integrated
networks for cost-effective analytics of large datasets. A rack-
size BlueDBM system is likely to be an order of magnitude
cheaper and less power hungry than a cloud based system
with enough DRAM to accommodate 10TB to 20TB of data.
We have demonstrated the performance benefits of BlueDBM
using simple examples on large amounts of data in compari-
son to a generic flash-based system without such architectural
improvements. We have also shown that the performance of

a system which relies on data being resident in DRAM, falls
rapidly if even a small fraction of data has to reside in sec-
ondary storage. BlueDBM like architecture does not suffer
from this problem because flash based systems with 10TB to
20TB of storage are very affordable.

Our current implementation uses an FPGA to implement
most of the new architectural features, that is, in-store pro-
cessors, integrated network routers, flash controllers. It is
straightforward to implement most of these features using
ASICs and provide some in-store computing capability via
general-purpose processors. This will simultaneously improve
the performance and lower the power consumption even fur-
ther. Notwithstanding such developments we are developing
tools to make it easy to develop in-store processors for the
reconfigurable logic inside BlueDBM.

We are currently developing or planning to develop several
new applications including: SQL Database Acceleration by
offloading query processing and filtering to in-store proces-
sors, Sparse-Matrix Based Linear Algebra Acceleration and
BlueDBM-Optimized MapReduce, which attempts to optimize
data flow of MapReduce to best fit an SSD-based cluster with
in-store processors. We plan to collaborate with other research
groups to explore more applications.

9. Acknowledgements

This work was partially funded by Quanta (Agmt. Dtd.
04/01/05), Samsung (Res. Agmt. Eff. 01/01/12), Lincoln
Laboratory (PO7000261350), and Intel (Agmt. Eff. 07/23/12).
We also thank Xilinx for their generous donation of VC707
FPGA boards and FPGA design expertise.

32

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance.” in USENIX
2008 Annual Technical Conference on Annual Technical Conference.
ser. ATC'08. Berkeley, CA, USA: USENIX Association, 2008, pp.
57-70. Available: http://dl.acm.org/citation.cfm?id=1404014.1404019
I. T. Association, Infiniband, 2014 (Accessed November 18, 2014).
Available: http://www.infinibandta.org

J. Banerjee, D. Hsiao, and K. Kannan, “Dbc: A database computer for
very large databases,” Computers, IEEE Transactions on, vol. C-28,
no. 6, pp. 414-429, June 1979.

A. M. Caulfield, A. De, J. Coburn, T. 1. Mollow. R. K.
Gupta, and S. Swanson, “Moneta: A high-performance storage
array architecture for next-generation, non-volatile memories,” in
Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO '43. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 385-395. Available:
http://dx.doi.org/10.1109/MICRO.2010.33

A. M. Caulfield and S. Swanson, “Quicksan: A storage area
network for fast, distributed, solid state disks.” SIGARCH Comput.
Archit. News, vol. 41, no. 3, pp. 464—474, Jun. 2013. Available:
http://doi.acm.org/10.1145/2508148.2485962

B. Y. Cho, W. S. Jeong, D. Oh, and W. W. Ro, “Xsd: Accelerating
mapreduce by harnessing the gpu inside an ssd.” 2013.

E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on
little clients,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, ser. ISCA "13. New
York, NY, USA: ACM, 2013, pp. 261-272. Available: http:
/ldoi.acm.org/10.1145/2485922.2485945

J. Dai, “Toward efficient provisioning and performance tuning for
hadoop.” Proceedings of the Apache Asia Roadshow., vol. 2010, pp.
14-15, 2010.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and
D. J. DeWitt, “Query processing on smart ssds: Opportunities
and challenges.” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
"13. New York, NY, USA: ACM, 2013, pp. 1221-1230. Available:
http://doi.acm.org/10.1145/2463676.2465295

FusionlO, Using HBase with ioMemory, 2012 (Accessed Novem-
ber 22, 2014). Available: http://www.fusionio.com/white-papers/
using-hbase-with-iomemory

FusionlO, FusionlO, 2014 (Accessed November 18, 2014). Available:
http://www.fusionio.com

A. Gionis, P. Indyk, R. Motwani er al., “Similarity search in high
dimensions via hashing.” in VLDB, vol. 99, 1999, pp. 518-529.
Google, Google Flu Trends, 2011 (Accessed November 18, 2014).
Available: http://www.google.org/flutrends

S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann, “Noftl:
Database systems on ftl-less flash storage,” Proc. VLDB Endow.,
vol. 6, no. 12, pp. 12781281, Aug. 2013. Available: http:
/ldx.doi.org/10.14778/2536274.2536295

M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo, “Rekindling
network protocol innovation with user-level stacks.” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 52-58, Apr. 2014. Available:
http://doi.acm.org/10.1145/2602204.2602212

Intel, Intel Solid-State Drive Data Center Family for PCle, 2014 (Ac-
cessed November 18, 2014). Available: http://www.intel.com/content/
www/us/en/solid-state-drives/intel-ssd-dc-family-for-pcie.html

N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High performance
rdma-based design of hdfs over infiniband.” in Proceedings of
the International Conference on High Performance Computing,
Netrworking, Storage and Analysis, ser. SC "12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 35:1-35:35. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389044

Z.Istvan, L. Woods, and G. Alonso, “Histograms as a side effect of data
movement for big data,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 2014, pp.
1567-1578.

E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Thm, D. Han,
and K. Park, “mtcp: A highly scalable user-level tcp stack for
multicore systems,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI" 14,
Berkeley, CA, USA: USENIX Association, 2014, pp. 489-502.
Available: http:/dl.acm.org/citation.cfm?id=2616448.2616493

(2]

3

[4]

(6]

[71

(8]

[91

[16]

(171

[18]

[19]

[20]

[21]

[22

[23

[24]

[25]

[26]

127

28

=
2

[33]

[34]

[35]

[36]

[37]

S.-W. Jun, M. Liu, K. E. Fleming, and Arvind, “Scalable multi-access
flash store for big data analytics,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate
Arrays, ser. FPGA "14. New York, NY, USA: ACM, 2014, pp. 55-64.
Available: http://doi.acm.org/10.1145/2554688.2554789

S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee, “A case for flash
memory ssd in hadoop applications.” International Journal of Control
and Automation, vol. 6, no. 1, 2013.

Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-effective
data processing with smart ssd.” in Mass Storage Systems and Tech-
nologies (MSST), 2013 IEEE 29th Symposium on. 1EEE, 2013, pp.
1-12.

K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for
intelligent disks (idisks).,” SIGMOD Rec., vol. 27, no. 3, pp. 42-52,
Sep. 1998. Available: http://doi.acm.org/10.1145/290593.290602

M. King, J. Hicks, and J. Ankcorn, “Software-driven hardware
development,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA
'15. New York, NY, USA: ACM, 2015, pp. 13-22. Available:
http://doi.acm.org/10.1145/2684746.2689064

O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals
for in-memory databases.” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-46. New York, NY, USA: ACM., 2013, pp. 468-479.
Available: http://doi.acm.org/10.1145/2540708.2540748

S. Lee, J. Kim, and Arvind., “Refactored design of i/o architecture for
flash storage.” Computer Architecture Letters, vol. PP, no. 99, pp. 1-1,
2014.

S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for
flash memory ssd in enterprise database applications,” in Proceedings
of the 2008 ACM SIGMOD international conference on Management
of data. ACM, 2008, pp. 1075-1086.

H. Leilich, G. Stiege, and H. C. Zeidler, “A search processor for data
base management systems,” in Fourth International Conference on
Very Large Data Bases, September 13-15, 1978, West Berlin, Germany.,
1978, pp. 280-287.

J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High
performance rdma-based mpi implementation over infiniband.” in
Proceedings of the 17th Annual International Conference on
Supercomputing, ser. ICS "03. New York, NY, USA: ACM., 2003, pp.
295-304. Available: http://doi.acm.org/10.1145/782814.782855

V. Memory, Violin Memory, 2014 (Accessed November 18, 2014).
Available: http://www.violin-memory.com

J. Morris Jr and V. Pratt, A linear pattern-matching algorithm. 1970.

R. Mueller, J. Teubner, and G. Alonso, “Streams on wires: A query
compiler for fpgas,” Proc. VLDB Endow., vol. 2, no. 1, pp. 229-240,
Aug. 2009. Available: http:/dx.doi.org/10.14778/1687627.1687654

Oracle, Exadata Database Machine, 2014 (Accessed November
18, 2014). Available: https://www.oracle.com/engineered-systems/
exadata/index.html

J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for
ramclouds: Scalable high-performance storage entirely in dram,”
SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp. 92-105, Jan. 2010.
Available: http:/doi.acm.org/10.1145/1713254.1713276

E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, “RAP -
an associative processor for database management,” in American
Federation of Information Processing Societies: 1975 National
Computer Conference, 19-22 May 1975, Anaheim, CA, USA, 1975, pp.
379-387. Available: http://doi.acm.org/10.1145/1499949.1500024

A. Putnam, A. M. Caulfield, E. S. Chung. D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth, G. Jan,
G. Michael, H. S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Yi, and X. D.
Burger, “A reconfigurable fabric for accelerating large-scale datacenter
services,” SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 13-24,
Jun. 2014. Available: http://doi.acm.org/10.1145/2678373.2665678

M. W.-u. Rahman, N. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang,
and D. Panda, “High-performance rdma-based design of hadoop mapre-
duce over infiniband.” in International Workshop on High Performance
Data Intensive Computing (HPDIC), in conjunction with IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
2013.

33

[40]

[41]

[42]

143

[44

[45]

[46]

[47]

[48]

[49]

M. W.-u. Rahman, X. Lu, N. S. Islam, and D. K. D. Panda,
“Homr: A hybrid approach to exploit maximum overlapping in
mapreduce over high performance interconnects,” in Proceedings
of the 28th ACM International Conference on Supercomputing, ser.
ICS "14. New York, NY, USA: ACM, 2014, pp. 33-42. Available:
http://doi.acm.org/10.1145/2597652.2597684

S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured
memory for dram-based storage,” in Proceedings of the 12th
USENIX Conference on File and Storage Technologies, ser. FAST' 14,
Berkeley, CA, USA: USENIX Association, 2014, pp. 1-16. Available:
http://dl.acm.org/citation.cfm?id=2591305.2591307

SanDisk, Sandisk ZetaScale Software, 2014 (Accessed November 22,
2014). Available: http://www.sandisk.com/enterprise/zetascale/

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: A user-programmable ssd.”
in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI'14. Berkeley,
CA, USA: USENIX Association, 2014, pp. 67-80. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685055

M. Singh and B. Leonhardi, “Introduction to the ibm netezza
warehouse appliance,” in Proceedings of the 2011 Conference of
the Center for Advanced Studies on Collaborative Research, ser.
CASCON "11. Riverton, NJ, USA: IBM Corp., 2011, pp. 385-386.
Available: http://dl.acm.org/citation.cfm?id=2093889.2093965

J. Spiegel, M. McKenna, G. Lakshman, and P. Nordstrom, “Method
and system for anticipatory package shipping.” Dec. 27 2011, uS Patent
8,086,546. Available: http://www.google.com/patents/US8086546

B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database analytics acceleration
using fpgas.” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT
'12. New York, NY, USA: ACM, 2012, pp. 411-420. Available:
http://doi.acm.org/10.1145/2370816.2370874

D. Technologies, Diablo Technologies, 2014 (Accessed November 18,
2014). Available: http://www.diablo-technologies.com/

T. S. Woodall, G. M. Shipman, G. Bosilca, R. L. Graham, and A. B.
Maccabe, “High performance rdma protocols in hpe.” in Proceedings
of the 13th European PVM/MPI User’s Group Conference on Recent
Advances in Parallel Virtual Machine and Message Passing Interface.
ser. EuroPVM/MPI'06. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 76-85. Available: http://dx.doi.org/10.1007/11846802_18

L. Woods. Z. Istvan, and G. Alonso. “Hybrid fpga-accelerated sql query
processing.” in Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on. Sept 2013, pp. 1-1.

L. Woods, Z. Istvan, and G. Alonso, “Ibex - an intelligent storage
engine with support for advanced sql off-loading,” in Proceedings
of the 40th International Conference on Very Large Data Bases, ser.
VLDB 14, 2014, pp. 963-974.

L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit.” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS "14. New York. NY, USA: ACM, 2014, pp. 255-268.
Available: http://doi.acm.org/10.1145/2541940.2541961

This page intentionally left blank.

APPENDIX B

A Transport-Layer Network
for Distributed FPGA Platforms

Sang-Woo Jun, Ming Liu, Shuotao Xu, Arvind
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
{wjun, ml, shuotao, arvind}@csail .mit.edu

Abstract—We present a transport-layer network that aids
developers in building safe, high-performance distributed FPGA
applications. Two essential features of such a network are virtual
channels and end-to-end flow control. Our network implements
these features, taking advantage of the low error characteristic of
a rack level FPGA network to implement a low overhead credit
based end-to-end flow control. Our design has many parameters
in the source code which can be set at the time of FPGA synthesis,
to provide flexibility in setting buffer size and flow control
credits to make best use of scarce on-chip memory resources and
match the traffic pattern of a virtual channel. Our prototype
cluster, which is composed of 20 Xilinx VC707 boards, each with
4 20Gb/s serial links, achieves effective bandwidth of 85% of
the maximum physical bandwidth, and a latency of 0.5us per
hop. User feedback suggest that these features make distributed
application development significantly easier.

I. INTRODUCTION

In order to tackle large data intensive applications, many
modern FPGA-based deployments are exploring the use of
FPGA clusters, where a network of FPGAs are deployed
and a large body of work is distributed across the FPGAs.
A network protocol for an FPGA cluster largely has three
important criteria: (1) it must be easily usable by an application
developer, (2) It must have high performance with low latency,
and (3) it must consume only a small amount of scarce on-chip
FPGA memory.

Two essential features for a usable network implementation
are virtual channels and end-to-end flow control, corresponding
to the transport layer of the OSI network model. Without
these features, the developer would have to manually manage
channel multiplexing and deadlock management, making the
development of high performance distributed FPGA applica-
tions difficult.

Due to the high engineering and performance overhead
of existing network solutions, many inter-FPGA networks on
a distributed FPGA deployment are implemented using low-
overhead link-layer protocols such as Aurora using multi-
gigabit serial transceivers included in the FPGA. Many existing
network implementations using this network fabric often pro-
vide link and network level interfaces, but they rarely provide
higher-level functionality such as end-to-end flow control.

For deadlock-free operations, all virtual channels need sep-
arate packet buffers which are large enough to mask network
latency as well as bursts from multiple sources. Scarcity of on-
chip memory resources prevent safe over-allocation of packet
buffers, and using off-chip DRAM also consumes a lot of pre-
cious DRAM bandwidth. A solution may be clever allocation

35

of buffer space by allowing different amount of buffers for
different channels. Application developers can adjust the buffer
space per channel to meet the performance criteria without
increasing the total buffer requirement.

This paper presents the design and implementation results
of a transport level network for a cluster of FPGAs. Our
transport layer is parameterized such that flow control features
for each virtual channel can be configured at FPGA synthesis
time. Parameters include buffer size and flow control credits.
We demonstrate that a parameterized transport-layer imple-
mentation can achieve high performance in a distributed FPGA
environment while maintaining a small BRAM footprint, by
adjusting a few parameters to best fit the usage characteristics
of a virtual channel. In our router, we make use of the high
reliability of the serial link and deterministic routing to ensure
lossless in-order arriving of packets, greatly simplifying the
transport layer protocol.

We have implemented a prototype of our network on a
cluster of 20 Xilinx VC707 FPGA development boards, with
4 20Gb/s serial links each. Our prototype achieves an effective
bandwidth of 17Gb/s per link, which is 85% of maximum
physical link bandwidth, at a latency of 0.5us.

The rest of the paper is organized as follows: Section II
covers the previous and related work. Section III describes
our implementation of the network and transport layer, and
Section IV describes the details of a prototype implementation
of the network. Section V presents the performance evaluation
of our implementation, and conclude in Section VI.

II. RELATED WORK

FPGAs offer very desirable performance and power char-
acteristics, but modern data-intensive applications often re-
quire more resources that are available on a single FPGA
chip. As a result, exploration of distributed FPGA computing
systems is gaining popularity. The scale of distributed FPGA
deployments range from a cluster-in-a-box systems such as
BlueHive [1], to rack-level deployments such as Maxwell [2],
to datacenter scale deployments such as Catapult [3]. Some
have also attempted heterogeneous deployments including
GPUs and FPGAs [4], or to insert FPGA accelerators into
the storage datapath [5], [6]. Such systems offer a much
better power performance characteristics over their off-the-
shelf server counterparts.

The TCP/IP network protocol stack is by far the most
popular protocol for internetworking computer systems, but
it may not be a good fit for inter-FPGA communication as

it is a complex and resource-heavy protocol designed for an
unpredictable network such as the internet. Some FPGA cluster
projects have used Ethernet’s physical and data link layers
for its network, but full implementation of the TCP/IP stack
is rare unless it has to interact with a legacy interface [7].
Datacenter scale protocols such as Infiniband [8] implement a
more efficient transport layer protocol on top of a more reliable
network layer implementation. It also offloads major parts of
the protocol to the NIC to achieve higher performance. Some
have modified the TCP protocol [9] to significantly reduce the
packet buffer size using intelligent congestion control.

BlueLink [10] demonstrated that a new protocol using
high-speed serial links has a better area-performance charac-
teristics than implementing existing network protocols. Many
distributed FPGA computing systems have demonstrated high
performance with FPGA nodes networked over such high-
speed serial links [11], [2]. Some have developed meta lan-
guage compilers that generate application-specific network
logic with features such as flow control from separate network
specifications [12].

III. NETWORK ARCHITECTURE

The overall architecture of the network components can
be seen in Figure 1. The network architecture can be divided
largely into two parts, the network layer and the transport layer.
The network layer is implemented in the form of the router,
and the transport layer is implemented in the endpoints that are
chained to the router interface. Flow control is implemented
in both layers.

The distributed application components communicate with
remote nodes using the network endpoints. Endpoints expose
send and receive interfaces, and behaves like a FIFO, in that
it blocks when it cannot safely send any more packets. Many
endpoints can be instantiated, resources permitting, and each
endpoint can have a different type, meaning it can expose send
and receive interfaces of different bit widths.

Physical Port
Physical Port

Endpoints

Physical Port

Fig. 1: Network Architecture

A. Network Layer

The network layer implements lossless, in-order packet
routing, which assures that packets always arrive in the order
they were sent. This removes the need for try-resend or
reordering functionalities at the transport layer, allowing a
much simpler design.

The router implements in-order routing by being determin-
istic, in that a packet from a certain endpoint of a certain
source node being delivered to a certain destination node will
always travel through the same path Parallelism is achieved
by distributing packets from different endpoints to different
paths. The router is oblivious to the existence of multiple
network endpoints or virtual channels they represent. The

36

router only deals with routing individual packets, and higher
level functions such as virtual channels and end-to-end flow
control is implemented by the endpoints, which are organized
into a chain to reduce fan-in on the FPGA.

A packet consists of four fields: source node ID,
destination node ID, endpoint ID and payload
data. Destination node ID and payload data is supplied by
the user. Source node ID is supplied by the router, and the
endpoint ID is determined by the position of an endpoint in the
endpoint chain. Endpoint ID is filled out by the endpoint
chain when a packet is injected into it, and it is used to direct
a packet to the correct endpoint at the receiving side.

B. Transport Layer

Virtual channels multiplex a single physical network link
to provide the logical interface of multiple links. Figure 2
describes the flow of packets in such an environment. Our
network implements a per-channel end-to-end flow control, so
that a sender can only send data onto the network when it
is guaranteed that the receiving endpoint has enough buffer
space to accommodate it. The transport layer is implemented
in individual endpoints, and its design aims to provide a very
low latency and efficient memory space usage. Each design
can have multiple instantiations of endpoints, parameterized

differently.

Fig. 2: Packet Flow in Virtual Channels

The structure of an endpoint is described in Figure 3.
Whenever a packet is received by an endpoint, it checks a
table of packets received per source node to determine if it is
time to send a flow control credit to the source node. If the
send budget of the source node is predicted to have become
small enough and there is enough space on the local receive
buffer, it enters a packet into the ack queue and marks the
amount of space as allocated.

In order to maintain maximum bandwidth, flow control
packets must be received before the send budget of the source
node runs out. However, it is often not possible to provide a
large enough buffer to conservatively accommodate the flow
control packet’s round trip latency for all nodes in the system.

Under such constraints, each endpoint can have a different
flow control configuration that attempts to best suit its usage.
For example, for some endpoints the expected traffic pattern
may be that most of the data transfer happens between a pair
of two nodes. In such a case, it might be effective to have
a very low granularity flow control, so that a large buffer
is allocated on request, but the total receive buffer may be
small. On the other hand, if many nodes are expected to send
data to one node, a fine granularity flow control and a large
buffer may be required for performance. If the endpoint is
used for low-bandwidth traffic such as commands, the buffer
size and granularity can be set to a small value. To enable such
control, endpoints are initialized with the parameters described
in Table L.

User

To Router
Interface

recvQ

Fig. 3: Endpoint Architecture

Initially, all nodes start with a small send budget
(initBudget) to all remote nodes, and therefore the actual
size of the receive packet buffer is init Budget x nodeCount
slots larger than the BufferSize parameter. When the first
packet arrives, space in the receive buffer is allocated to the
source node and a flow control packet is sent. The endpoint
can choose to periodically allocate only initBudget size
buffers, instead of FlowCredit in an attempt to more fairly
allocate buffer space across source nodes. Yielding buffers like
this achieves better buffer usage when many nodes are going
to send data to one node.

The network infrastructure also provides an unmanaged
endpoint which does not implement a transport layer protocol.
The unmanaged endpoint can sustain the highest bandwidth
and lowest latency as it does not check if the receiving endpoint
has available buffers before sending packets. It should be used
very carefully, since if the arriving data is not always imme-
diately consumed and dequeued from the receiving buffer, it
may cause the entire network to block.

Iv.

We have implemented a prototype of the network described
using a cluster of machines. Each node in the cluster consists
of one Intel Xeon-based server, Xilinx VC707 FPGA develop-
ment board, and a network expansion card which pinned out
eight GTX multi-gigabit serial transceivers. Two lanes were
grouped together to form a channel, resulting in a fan-out of
up to 4 channels per node. A node can implement any direct
network with a fan-out per node of 4 or less, such as a 2D
mesh or torus.

IMPLEMENTATION DETAILS

The link latency of an aurora link based on the GTX multi-
gigabit transceiver was measured to be around 0.48us, which
translates to about 75 cycles on the 6.4ns user clock.

A. FPGA Resource Utilization

We have measured the FPGA resource utilization of our
network using a simple setup with two endpoints: one high
speed endpoint with larger flow control credit and buffer
size (Credit size of 200 and buffer size of 1024 packets),
and one small endpoint with smaller buffers. The endpoint
row in the table below described the larger endpoint. The
router component includes the chaining logic used to link the
endpoints to it. The user logic was clocked at 125MHz.

Parameter Description

BufferSize Size of the total allocated buffer space

FlowOffset | Offset of flow control packet transmission

FlowCredit | Number of packets each flow control credit represents

TABLE I: Endpoint Parameters

37

Component LUTS | RAMB36 |
Aurora Link 4843 36
Router 3743 0
Endpoint (x2) 753 3

Total 10092 42
Virtex 7 Percentage (3%) (4%)

TABLE II: FPGA Resource Utilization

V. PERFORMANCE EVALUATION

We demonstrate that the performance of the network does
not suffer from the addition of transport-layer network func-
tions. We measured the bandwidth and latency of the network
under various configurations, and show that our network can
usually achieve a bandwidth of 17Gb/s, which is 85% of
the maximum physical link bandwidth. This performance is
reasonable considering the packet header and flow control
overhead.

Single Endpoint Over Multiple Hops : We measured the
bandwidth of the network implementation by measuring the
time it takes for a single endpoint to send a large amount of
data to remote nodes variable hops away, under various flow
control settings. Larger credit settings mean a larger buffer size
is required. Flow control offset was set to be half of the credit
size. The results can be seen in Figure 4a.

When the flow control credit was small, performance of
the network was lower when going over a longer network
distance. This is because the round trip latency over multiple
hops is longer than the time it takes to deplete the send buffer,
resulting in idle cycles when no data can safely be sent over
the network. With the low network latency of the serial links,
maximum bandwidth over 3 network hops could be achieved
using a single endpoint when the flow control credit is over
512 packets large.

Multiple Endpoints Over Multiple Hops : Since most
interesting distributed FPGA applications will have more than
one network endpoint, maximum network performance can be
achieved even when a single endpoint’s flow control credit
setting is large enough. We measured the aggregate network
bandwidth of a varying number of endpoints sending data
to a node three network hops away. We also measured the
performance with varying flow control credit sizes. Flow
control offset was set to be half of the credit size. The results
can be seen in Figure 4b. It shows that a collection of smaller
sized endpoints can saturate the network by filling in each
others’ idle cycles.

Buffer Size and Flow Control Offset : Endpoints can
be characterized not only by its flow control credit size, but
also by the flow control offset and buffer size parameters.
The same amount of buffer space can also be allocated to
a different number of nodes under different flow control credit
settings. Setting a smaller offset has the risk of incurring idle
time by delivering a flow control packet too late, but a large
offset requires a larger buffer to accommodate earlier buffer
allocation.

We measured the effect of such parameters by having three
nodes send a stream of packets to the same remote node. We
tested three scenarios, described in Table III. Two had the same

andwidth (Gbps)

Bandwidth (Gbps)

64

©
&

o~
Flow Control Credits(Packets)

(a) Network Bandwidth With Vari-
able Network Distance

Flow Control Credits(Packets)

(b) Network Bandwidth With Vari-
able Number of Channels

total buffer size organized into different organizations, and one
had a smaller buffer. In the first scenario, the three source
nodes will be contending to be scheduled into the two possible
slots, where in the latter two scenarios they will be contending
for one 64 packet slot.

Setting
32%72+16
1+16
64%1+8

Description

Buffer has space for two 32 packet blocks, with offset of 16
Buffer has space for one 64 packet block. with offset of 16
Buffer has space for one 64 packet block, with offset of 8

TABLE III: Flow Control Parameters

The results can be seen in Figure 4c. It shows that even with
the same butfer size, having a larger credit setting is beneficial
to a small buffer configuration. The difference is pronounced
enough that even reducing buffer usage further by making the
offset smaller results in a better performance compared to the
configuration with smaller credit sizes.

Multi-Hop Latency : Network latency was measured by
measuring the round-trip latency by sending a packet to nodes
of varying distances, where the user logic immediately sends
the packet back to the original sender. The results can be seen
in Figure 4d. We show a consistent latency of less than 0.5us
per hop.

VI. CONCLUSION

In this paper, we have presented our design of a parameter-
ized, low overhead transport-layer network that provides useful
features such as virtual channels and end-to-end flow control.
Our network takes advantage of the high reliability of the high-
speed serial links, which are integrated in the FPGA fabric, to
implement a lossless in-order network layer, which allowed us
to simplify the transport layer and use less FPGA resources.
The design of the transport layer is parameterized, so that
the developer can choose to use less resources while meeting
the performance requirements of the individual endpoint. Our
prototype implementation demonstrated a high performance in
an FPGA cluster setting. We predict that our network will
accelerate future research of distributed FPGA applications.

ACKNOWLEDGEMENT

This work was partially funded by Quanta (Agmt. Dtd.
04/01/05) and Lincoln Laboratory(PO7000261350). We also
thank Xilinx for their generous donation of VC707 FPGA
boards and FPGA design expertise.

Throughput (Gbps
E RTINS

Nw

(¢) Network Bandwidth With Dif-

Latency (us)

=

Latency (us) —@—

32*2+16 64*1+16

64*1+8 1 2 3 4
Flow Control Credits Hops

(d) Network Latency Per Hop

ferent Flow Control Settings

(1

(2]

[31

(4]

(6]

(71

(8]

191

[10]

[11]

[1

38

REFERENCES

S. Moore, P. Fox, S. Marsh, A. Markettos, and A. Mujumdar, “Bluehive
- a field-programable custom computing machine for extreme-scale
real-time neural network simulation,” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on, April 2012, pp. 133-140.

R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, “Maxwell - a 64 fpga supercomputer.”
in Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA
Conference on, Aug 2007, pp. 287-294.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth. G. Jan,
G. Michael, H. S. Hauck. S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Yi, and X. D.
Burger, “A reconfigurable fabric for accelerating large-scale datacenter
services,” SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 13-24,
Jun. 2014.

K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA "10. New
York, NY, USA: ACM, 2010, pp. 115-124.

S.-W. Jun, M. Liu, K. E. Fleming, and Arvind. “Scalable multi-
access flash store for big data analytics.” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate
Arrays, ser. FPGA "14. New York, NY, USA: ACM, 2014, pp. 55-64.
S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King. S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics.” in Proceedings
of the 42Nd Annual International Symposium on Computer Architecture.
ser. ISCA "15. New York, NY, USA: ACM, 2015, pp. 1-13.

M. Blott, K. Karras, L. Liu, K. Vissers, J. Biir, and Z. Istvén, “Achieving
10gbps line-rate key-value stores with fpgas.” in Presented as part of the
Sth USENIX Workshop on Hot Topics in Cloud Computing. Berkeley,
CA: USENIX, 2013.

I. T. Association, Infiniband, 2014 (Accessed November 18, 2014).
[Online]. Available: http://www.infinibandta.org

M. Alizadeh, A. Greenberg. D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctep),” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
'10. New York, NY, USA: ACM, 2010, pp. 63-74.

A. Theodore Markettos, P. Fox. S. Moore, and A. Moore, “Interconnect
for commodity fpga clusters: Standardized or customized?” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1-8.

T. Bunker and S. Swanson, “Latency-optimized networks for clustering
fpgas.” in Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on, April 2013, pp.
129-136.

K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, Arvind, and
J. Emer, “Leveraging latency-insensitivity to ease multiple fpga design.”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA "12. New York, NY, USA:
ACM, 2012, pp. 175-184.

UNCLASSIFIED

UNCLASSIFIED

