
UNCLASSIFIED

UNCLASSIFIED

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Project Report
 LSP-156

Low-Power Embedded Analytics:
FY15 Line-Supported Information,

Computation, and Exploitation Program

TBD November 2015

Prepared for the Assistant Secretary of Defense for Research and Engineering
under Air Force Contract FA8721-05-C-0002.

H.T. Nguyen

J.B. Muldavin

V.N. Gadepally
Arvind

Non-Lincoln	Recipients	

This report is based on studies performed at Lincoln Laboratory, a
federally funded research and development center operated by
Massachusetts Institute of Technology. This work is sponsored by the
Assistant Secretary of Defense for Research and Engineering under
Air Force Contract FA8721-05-C-0002.

UNCLASSIFIED

UNCLASSIFIED

Low-Power Embedded Analytics:
FY15 Line-Supported Information, Computation, and Exploitation Program

H.T. Nguyen

J.B. Muldavin

Group 102

V.N. Gadepally

Group 53

Prof. Arvind

MIT Computer Science and Artificial Intelligence Laboratory

TBD November 2015

Massachusetts Institute of Technology

Lincoln Laboratory

Project Report LSP-156

Lexington Massachusetts

This page intentionally left blank.

 iii

EXECUTIVE SUMMARY

This report covers the second year of the low-power embedded analytics project, a three-year
university collaboration between Lincoln Laboratory and Professor Arvind’s group at the MIT Computer
Science and AI Laboratory (CSAIL). The goal of the project is to design and prototype a novel
architecture that has wide potential applicability to important applications ranging from back-office big-
data analytics to fieldable hot-spot systems providing storage-processing-communication services for off-
grid sensors. Speed and power efficiency are the key metrics.

Current state-of-the art approaches for big-data aim toward scaling out to many computers to meet
processing, storage capacity, and access bandwidth requirements. Data is distributed over many
computers, and complex processing is decomposed into tasks that operate on localized data and
aggregated back together. With an emphasis on scalability and cross-platform portability, applications are
written in high-level languages such as Java. New systems and new algorithms can be put together
quickly, but not optimal in terms of performance and power efficiency.

Our approach focusses on “drilling down” rather than scaling out. Storage, network, and
computation should be better integrated to meet challenging system requirements. Judicious data
processing in storage and directly off the network would significantly reduce transfer and activities on the
host computer, leading to better performance and power efficiency. The architecture to realize this vision
is shown below in Figure 1. A field-programmable gate-array (FPGA) is at the heart of the architecture. It
performs three tasks: a) Control non-volatile memory (NVM) storage such as flash, b) Provide high-speed
dedicated network with other storage modules, and c) Compute on data and interface to the processor(s)
of the host computer. The whole unit operates as a plug-in accelerator to the computer. Many units can be
connected to form a cluster, with as few or many computer “heads” as needed for the application. By
tightly integrating storage, network, and computing together using an FPGA, up to a 10× performance
boost and 10× power efficiency improvement could be achieved for application-specific designs.

Figure 1. In-storage processing architecture.

 iv

This project team consists of research staff from MIT Lincoln Laboratory and MIT Computer
Science and Artificial Intelligence Laboratory. Professor Arvind’s group and an industry partner, Quanta
Research, with additional support from Xilinx, Samsung, and Intel developed the architecture and
prototype accelerator called Blue Database Management (BlueDBM) [1], consisting of custom-built flash
modules with a local controller that interface with a Xilinx board hosting the FPGA. Software and
firmware is custom designed for each application. Lincoln Laboratory provides support and guidance for
system-level use cases and application concepts, which drive the development of high-level layer of
software and firmware to expand the application space and make the accelerator useful for a wider
community by lowering the barrier to entry. In addition, application insertion opportunities are being
pursued within Lincoln Laboratory as well as external sponsors. Our vision is to bring new capabilities in
big-data and internet-of-things applications with this new architecture.

Key research activities are listed below:

A. Application-specific demos: These provide concrete results to illustrate potential benefits for
classes of problems. In general, problems data sets larger than memory (1 TB) and random
access pattern score very well. Software and firmware are often customized for each application
at the C++/BlueSpec level. Example applications include:

a. Image similarity search
b. Document similarity search
c. Key-value store caching

d. Graph traversal
e. PageRank
f. Friends-of-friends

B. Interface with open-source software: This allows BlueDBM technology to participate and
contribute to the scale-out development approach used in the big-data algorithm prototyping
community on LLGrid and beyond. A plug-and-play accelerator would provide out-of-the-box
performance benefit, with further gains achieved through additional customization of the open-
source software and BlueDBM wrapper. The interface to open-source software is most likely
Java. Potential development and integration include:

a. D4M-on-BlueDBM graph traversal
b. Hadoop Distributed File System (HDFS) swap-in
c. Accumulo swap-in

C. Size, weight, and power (SWaP) constrained fieldable system and new application concepts:
Small fieldable units could provide “hotspot” storage, compute, and communication services
for fielded sensors in remote or disaster areas. Potential tasks are:

a. Application studies
b. “Headless” BlueDBM pulls all control and processing from CPU into embedded

processor in the FPGA

 v

PROJECT TIMELINE

FY14 was focused on building the flash modules and developing firmware for the FPGAs to control
the flash, provide high-speed networking, and interface to the computer. A few early benchmarks and
system-level analysis were performed to demonstrate potential benefits. High-level database applications
were surveyed and D4M was selected as a pilot package to be accelerated. [2]

In FY15, three mini applications were built (via BlueSpec) for demonstrations: a) Image similarity
search, b) Key-value store cache for database queries, and c) Graph traversal on web-link dataset. The
applications show a 7× to 13× performance improvement compared to standard server computer. Power
efficiency is improved by 2× to 5×. Two conference papers were presented in 2015 [3][4]. For open-
source efforts, the software stacks of processing (D4M, Matlab) and database (Accumulo, HDFS) were
analyzed for BlueDBM integration. Another open-source software package, Spark, was also selected as a
candidate for acceleration. Spark has a large user community and rich algorithmic development
environment spanning analytics, machine learning, etc.

In FY16, firmware and software infrastructure will be built up for BlueDBM to HDFS interface to
support open-source software such as Accumulo and Spark. Two applications will be demonstrated to
show performance gains and power savings. Application concepts exploration and follow-on sponsorship
search activities will leverage FY15 developments.

This page intentionally left blank.

 vii

TABLE OF CONTENTS

Page

Executive Summary iii	
List of Illustrations ix	
List of Tables xi	

1. INTRODUCTION 1	

2. APPLICATION AND TECHNOLOGY TRENDS 3	

3. TECHNICAL APPROACHES 5	

3.1	 BlueDBM Architecture 5	
3.2	 Open-System Architecture Considerations 7	
3.3	 Low-Power Application Concepts 9	

4. FY15 ACCOMPLISHMENTS 11	

4.1	 Application-Specific Demos 11	
4.2	 Open-Source Software Interface Analysis 14	
4.3	 Low-Power Fieldable System and Application Concepts 15	

5. SUMMARY 17	

6. REFERENCES 19	

APPENDIX A 21	

APPENDIX B 35	

This page intentionally left blank.

 ix

LIST OF ILLUSTRATIONS

 Figure Page
 No.

1 In-storage processing architecture. iii

2 Uses of big-data analysis. 1

3 Data handling and processing pipeline. 3

4 “Hotspot” storage-compute-communicate services for remote sensors. 4

5 Traditional computer and power profile [10]. 5

6 Previous approaches to boost performance. 6

7 BlueDBM approach. 6

8 BlueDBM software stack. 7

9 Application-level software interface to BlueDBM filesystem. 8

10 Optimization of application software for high performance. 8

11 Application software interface to BlueDBM accelerator 9

12 String search kernel. 11

13 Image similarity application. 12

14 Key-value caching. 13

15 One-server and four-server configurations. 14

This page intentionally left blank.

 xi

LIST OF TABLES

 Figure Page
 No.

1 Image Similarity Search 12

2 BlueDBM Advantage 13

This page intentionally left blank.

 1

1. INTRODUCTION

The analysis of previously unimaginable amount of data can provide deep insight and expose
certain information. Big data applications often involve the analysis of unstructured data, natural language
text, videos and images, using advanced machine learning techniques. There are numerous examples of
benefits from big data analysis. Google has predicted flu outbreaks a week earlier than the Center for
Disease Control. Analyzing personal genomes can determine predisposition to diseases. Social network
chatter analysis can identify political revolutions before newspapers. Scientific datasets can be mined to
extract accurate models. Figure 2 shows that as data models become more sophisticated, we can progress
from questions such as what happened, to why it happened, and what will happen, and how to make it
happen.

Figure 2. Uses of big-data analysis.

Data becomes so large and complex, growing 16x over the past 5 years, that traditional processing
methods are no longer effective. The volume to be analyzed is too large to fit reasonably in DRAM
computer memory. Furthermore, access is intensively random, making prefetching and caching
ineffective. Data is often stored in the secondary storage of multiple machines on a cluster, thus, storage
system and network performances become first-order concerns. Adding more computers brings only a
diminishing return. Therefore, a new paradigm is needed.

In this project, we are exploring a novel near-data processing architecture through a collaborative
effort with MIT CSAIL Professor Arvind. As depicted in Figure 1, the architecture is a plug-in accelerator
offering three functions: a fast storage with embedded computation capability, a high-speed dedicated
network with computation capability, and an efficient interface that interacts with the software on the

 2

computer. All three functions are performed by a field-programmable gate-array (FPGA), which can
provide superior performance and power efficiency compared to a general purpose computer processor.
An improvement of 3×–10× in performance and power efficiency could be achieved. The scope of
applications include back-office analytics acceleration, as well as field providing field storage-compute-
communication services to sensors in remote or disaster relief areas.

The rest of the report will discuss application and technology trends, followed by the technical
approach, FY15 accomplishments, and future work. Two conference papers [3][4] were published on the
accelerator architecture and mini-app performances in FY15. This report will address unpublished aspects
of the project.

 3

2. APPLICATION AND TECHNOLOGY TRENDS

Big data applications involve structure as well as unstructured data. New types of analysis include
text analytics for topic modeling, image similarity matching, face recognition, audio and video labeling,
etc. The analytics processing typically follows a data handling and processing pipeline involving parsing,
database ingesting, scanning and query and enriching a subset of interest, and finally performing analysis.
Figure 3 illustrates a processing pipeline example where D4M is used as an analysis environment.

Figure 3. Data handling and processing pipeline.

D4M, or Dynamic Distributed Dimensional Data Model, is a Lincoln Laboratory–developed
technology that offers rapid prototyping capabilities to scientists interested in working with large datasets
[5]. D4M provides support for database and computation systems that deal with big data through the
mathematical foundations of Associative Arrays, schema designed for NoSQL key-value store databases,
and the ability to interact with diverse database technologies such as SQL, Accumulo [6] and SciDB.
D4M is implemented with a MATLAB API. D4M has been adopted by a large number of users within
and outside Lincoln Laboratory, largely due to its low barrier to entry, easy to adopt API, and
applicability to a large variety of unstructured data.

Spark is another widely used open-source software package that provides an environment for
analytics algorithm development. Spark [7] was developed at U.C. Berkeley before released into the
Apache open-source domain. Its inventor has recently joined MIT faculty. Spark has a large industry user
base, and offers a unified environment for different types of analytics processing, from database query to
graph processing and machine learning.

Interestingly, both D4M/Accumulo and Spark use Hadoop Distributed File System (HDFS) as the
database file system. HDFS [8] was developed by Google and is an integral part of the Map-Reduce
distributed computing scheme that match up processing tasks to local data at each node – sending
processing tasks to data rather than traditionally moving data around to processors. Another interesting
point is all three packages, D4M, Accumulo, Spark, HDFS, are implemented with Java or a variant. Such
languages can be a factor of 1/3 as slow as C/C++, but it allows for the application code to run on any
platform without recompilation.

 4

Clearly, the current state-of-the art approach for big data is scaling out to many computers to meet
requirements on processing, storage capacity, and access bandwidth. With the emphasis on scalability,
companies use commodity-class computers and rely on quantity and technology upgrades to meet
performance. Systems and new algorithms can be put together quickly, but are not optimal in
performance and power efficiency.

There are emerging applications that require all available processing available to meet desired user
latency. These applications include natural language processing, voice and image query, and typical
Apple or Google cloud processing. Special accelerators, such as GPUs and FPGAs, are being explored to
help increase performance. It is estimated that a future system will have a mixture of processing
technologies to meet performance and power budget [9].

Our accelerator will need to fit well in this ecosystem to make a substantial impact. On one hand, it
needs to be work well with the open-source “scale-out” approach. It would need to conform to some
open-source interfaces and protocols. On the other hand, it also needs to be customizable to take on
application-specific acceleration, for example, in-storage processing or in an extreme case, low power
embedded processing of sensor data in remote area.

Figure 4. “Hotspot” storage-compute-communicate services for remote sensors.

 5

3. TECHNICAL APPROACHES

In this section, we will describe our detailed approaches for the BlueDBM architecture and the
open-system software architecture used for algorithm testbed and application development.

3.1 BLUEDBM ARCHITECTURE

Traditional computer systems pull data from disks into memory for subsequent processing. As
datasets exceed available memory, portions must get swapped out to disks during the processing,
resulting in large amount of disk transfer activity. Disk access is slow and also causes high workload for
the computer CPU.

Figure 5. Traditional computer and power profile [10].

Recently, driven by big-data processing demand and falling price of DRAM, new systems
incorporate more memory to reduce disk access [11]. To boost performance even further, Microsoft has
started using FPGAs in the processing of Bing queries [12]. These approaches achieve significantly
improved performance but with additional cost and power consumption.

 6

Figure 6. Previous approaches to boost performance.

Our BlueDBM architecture, depicted below, incorporates the FPGA as part of the storage system to
perform computations, reducing the amount of data handling and processing by the computer processor.
This leads to benefits both in performance and power consumption. Detail specifications are available in
[2][3].

Figure 7. BlueDBM approach.

The accelerator is interfaced to the host computer through the BlueDBM software stack [3]. The
stack allows for user-level access to files. For analytics acceleration, the user-level software would first
obtain physical locations of the data, then dispatch queries and analysis tasks to the FPGA through a

 7

special conduit. The results can be kept in the file system or sent back to the computer. User-level in this
context refers to the BlueSpec environment, which frees the user from low-level VHDL coding, but still
requires synthesis and C/C++ level programming. This approach is best used for developing customized
functions.

Figure 8. BlueDBM software stack.

3.2 OPEN-SYSTEM ARCHITECTURE CONSIDERATIONS

As discussed earlier, many open-source database and analytics software packages are architected to
be cross-platform portable. Accumulo/D4M is used for sparse database and analysis, whereas Spark
operates in different domains such as structured and streaming data. Accumulo and Spark both interface
with HDFS, which provides file management services at the Java level. In order for BlueDBM to support
such packages, it will need an HDFS wrapper, so that it can be accessed seamlessly. This is depicted in
Figure 9 below. Blue represents existing code with no modification.

 8

Figure 9. Application-level software interface to BlueDBM filesystem.

To fully benefit from the performance offered by BlueDBM, the packages may need some
modification to improve data transport mechanisms. For example, if file access is performed through an
inefficient software stack, then the speed up underneath is diminished by the slow API. Figure 10 depicts
a scenario with higher performance. The required modification is expected to be minor.

Figure 10. Optimization of application software for high performance.

On the analytic side, acceleration needs to go through the steps outlined in Figure 8 for the
BlueDBM software stack. Since the process involves calls through user space and kernel space, it is best
implemented as a manager unit and presented up to application software via an accelerator API. In the
case of Accumulo/D4M, this API needs to interface with Java code. The accelerator API could take on a
different flavor pending on the application software; it could be an interface for D4M when it is used
alone without Accumulo. Within D4M or Accumulo, additional development will be needed to
incorporate the acceleration capability. The architecture for integration with BlueDBM accelerator is
depicted below.

 9

Figure 11. Application software interface to BlueDBM accelerator

In terms of implementation, the platform would start with a single server with an option to scale up
and be part of Lincoln Laboratory’s LLGrid system.

3.3 LOW-POWER APPLICATION CONCEPTS

In addition to improving performance, off-loading activities from the processor to the FPGA also
results in better power efficiency. By tightly integrating storage, network, and computing together using
an FPGA, up to a 10× performance boost and 10× power efficiency improvement could be achieved for
application-specific designs. Notably, the reduction in power would open up new capabilities such as off-
grid portable field operation for storage-compute-communication services.

In general, low-power operation often has peaks and troughs, where system-level optimizations
such as clock gating, reduced duty cycle operation, etc. could bring out further power savings. For “cloud-
like” field services, the processing would need to be performed by the FPGA [9], the processor footprint
in the system could be further reduced into the embedded realm, or even pulled completely inside the
FPGA if appropriate.

This page intentionally left blank.

 11

4. FY15 ACCOMPLISHMENTS

FY15 was focused on the following activities: application-specific demonstrations, open-source
software interface analysis, and low-power fieldable system and application concepts.

4.1 APPLICATION-SPECIFIC DEMOS

The application-specific demos provide illustrate potential benefits for certain classes of problems.
In general, challenging problems with large data sets larger than memory (1 TB) and random access
pattern score really well. Software and firmware are often customized for each application at the
C++/BlueSpec level.

Listed below are the kernel and applications. The results are in the attached publications [3][4], so
only selected highlights are discussed in the report.

1. String search kernel
2. Image similarity search application
3. Document similarity search application
4. Key-value store caching application
5. Graph traversal application
6. PageRank application (FY16)
7. Friends-of-friends application (FY16)

String search is a common kernel in big-data applications, spanning from DNA sequencing to text
analytics. A string search engine was built on BlueDBM using Morris-Pratt algorithm. Figure 12 shows
BlueDBM in-storage processing yields 7.5x boost relative to CPU+disk, where the bottleneck is storage.
When faster storage – flash is used, performance increases with high CPU activity. Off-loading to FPGA
reduces CPU activity by 20x.

Figure 12. String search kernel.

 12

Illustrated in Figure 13 is an image similarity search application. The search subjects an image to a
large dataset of 80 million images (~300 GB) to return a set of similar images, there labels, and match
metrics. To reduce workload, the image set is organized (indexed) by histogram similarity. Thus, the
search is narrowed down to subsets prior to a thorough match is performed. The images in each indexed
subset are scattered in physical storage.

Figure 13. Image similarity application.

Performance results are shown in Tables 1 and 2 below. Relative to baseline configuration using
CPU+hard drives, copying the dataset (in this case 30 GB) into DRAM and running the search on the
CPU shows 9.2x performance boost. Note that this does not scale up for large datasets. BlueDBM with
FPGA+flash yields a speed up 12x for dataset up to 1 TB per server and larger using more computers.

TABLE 1

Image Similarity Search

Configuration Performance Power

CPU + hard drives 1x reference 140W = 90W idle + 50W activity

CPU + DRAM 9.2x speedup 240W = 90W idle + 150W activity

BlueDBM FPGA + flash 12x speed up 120W = 90W idle + 30W activity

Power-wise, BlueDBM offers peak performance at 30W activity power (or 120W if including
computer system idle power, which could be reduced significantly for application specific scenario).
BlueDBM activity power is only 1/5 compared to CPU+DRAM configuration.

 13

TABLE 2

BlueDBM Advantage

Configuration Performance Power

BlueDBM vs CPU+hard drives 12x speedup 50/30 = 1.6x less activity power

BlueDBM vs CPU+DRAM 1.3x speedup 150/30 = 5x less activity power

Key-value query is another form of search geared toward unstructured data. A page update on
Amazon or Facebook generates tens to hundreds of queries. The keys and values are cached in the
memory of web servers to provide faster response compared to reading from file systems. The cache is
distributed over many web servers, so that a miss from one could be serviced by another over a computer
network. Computer memory, however, is expensive compared to disks and flash. Furthermore, computer
network has long latency relative to memory access, so the benefit of distributed memory is limited.

BlueDBM uses flash rather than DRAM memory for caching, its FPGA-based network rather than
a generic computer network, and FPGA logic to perform caching. The integration of storage + network +
compute functions into one FPGA also makes the flow well streamlined. Figure 14 depicts the use of
BlueDBM in key-value caching. Compared to the CPU/DRAM configuration, the BLueDBM
FPGA/flash/ network solution is 13x faster, not to mention less expensive and lower power.

Figure 14. Key-value caching.

 14

4.2 OPEN-SOURCE SOFTWARE INTERFACE ANALYSIS

Interfacing with open-source software would allow BlueDBM technology to participate and
contribute to the scale-out development approach used in big-data algorithm prototyping community.
After analyzing Accumulo and Spark open-source software packages, we arrived at a vision for
BlueDBM usage in this environment: A plug-and-play accelerator would provide out-of-the-box
performance benefit, with further gains achieved through additional customization of the open-source
software and BlueDBM wrapper. The software architecture approach is described in Section 3.2, Open-
System Architecture Considerations.

We’ve identified three potential applications using BlueDBM with open-source software:

1. D4M/Accumulo graph traversal on BlueDBM
- Runs existing algorithms, with minor modification
- Enables out-of-core data size for D4M
- Accelerates sparse matrix multiplication in FPGA

2. Hadoop Distributed File System (HDFS) swap-in
- BlueDBM with HDFS look-and-feel
- Supports many software packages on LLGrid, including Acumulo and Spark
- Exceeds maximum throughput of HDFS client software

3. Accumulo swap-in
- BlueDBM key-value store with Accumulo look-and-feel
- Supports many software packages, including D4M
- Accelerates database operation
- Extreme performance with swap-in HDFS

The platform starts with a single server with options to scale up to four servers and be part of
Lincoln Laboratory’s LLGrid system.

Figure 15. One-server and four-server configurations.

 15

4.3 LOW-POWER FIELDABLE SYSTEM AND APPLICATION CONCEPTS

We’ve explored a few application concepts for low-power fiedable system. One notable concept is
to provide “hotspot” storage, compute, and communication services for fielded sensors in remote or
disaster areas. Enabled by compute capability, the system could also provide “cloud-like” services for
local users.

Through discussions with colleagues, we have identified open-domain large datasets for big-data
applications that can be shared for collaboration. A set of examples is listed below:

• https://www.data.gov
• http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim
• http://oad.simmons.edu/oadwiki/Data_repositories
• https://library.uoregon.edu/datamanagement/repositories.html
• http://www.nature.com/sdata/data-policies/repositories
• http://aws.amazon.com/datasets

- Size: 200 GB, Source: The US Census Bureau
- Size: 210 GB, Source: Fed. Energy Reg. Commission (FERC) investigate Enron
- Size: 500 GB, Source: http://labrosa.ee.columbia.edu/millionsong/
- Size: 800 GB, Source: Data Wrangling – wiki traffic
- Size: 2.2 TB, Source: Google Books
- Size: 5 TB, Source: Human Microbiome Project
- Size: 5 TB, Submitted By: modENCODE DCC (help@modencode.org)
- Size: 6 TB, Source: CCAFS Climate Portal www.ccafs-climate.org
- Size: 200 TB, Source: National Center for Biotechnology Information (NCBI)
- Size: 541 TB, Source: Common Crawl Foundation - http://commoncrawl.org

This page intentionally left blank.

 17

5. SUMMARY

The development of a low-power embedded analytics accelerator is a three-year university
collaboration between Lincoln Laboratory and Professor Arvind’s group at the MIT Computer Science
and AI Laboratory (CSAIL). The goal of the project is to design and prototype a novel architecture that
has wide potential applicability to the new types of applications ranging from back-office big-data
analytics to fieldable hot-spot systems providing storage-processing-communication services for off-grid
sensors. Our approach simultaneously optimizes storage, network, and computation performance within
the system. Up to 10× performance boost and 10× power efficiency improvement could be achieved for
application-specific designs. Our vision is to bring new capabilities in big-data and internet-of-things
applications with this new architecture.

Key research activities are listed below:

A. Application-specific demos
B. Interface with open-source software
C. Size, weight, and power (SWaP) constrained fieldable system and application concepts

FY14 was focused on building the BlueDBM prototype. In FY15, three mini applications were built
(via BlueSpec) for demonstrations. The applications show 7× - 13× in performance compared to a
standard server computer, and power efficiency is improved by 2× to 5×. With respect to the open-source
actions, the software stacks for D4M, Accumulo, HDFS, Spark were investigated for BlueDBM
integration. In FY16, firmware and software infrastructure will be built up for BlueDBM to interface with
open-source software. Application concepts exploration and follow-on sponsorship search activities will
leverage FY15 developments.

This page intentionally left blank.

 19

6. REFERENCES

[1] Arvind, “BlueDBM: A Multi-access, Distributed Flash Store for Big Data Analytics,” Keynote
presentation, IEEE High Performance Embedded Computing, September 2014

[2] H. Nguyen, V. Gadepally, J. Muldavin, and Arvind, “Low-Power Embedded Analytics: FY14 Line-
Supported Information, Computation, and Exploitation Program”, Project Report LSP-124

[3] S. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, Arvind, “BlueDBM: An Appliance for
Big Data Analytics,” Intl Symposium on Computer Architecture (ISCA), Portland, OR, June 2015

[4] S. Jun, M. Liu, S. Xu, Arvind, “A Transport-Layer Network for Distributed FPGA Platforms,
International Conference on Field-programmable Logic and Applications (FPL),” London, UK,
September 2015

[5] J. Kepner et al., “Dynamic Distributed Dimensional Data Model (D4M) Database and Computation
System,” ICASSP, March 2012

[6] M. Wall, A. Cordova and B. Rinaldi, Accumulo Application Development, Table Design, and Best
 Practices, O’Reilly, Sebastapol, California, US, 2013

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, I.
Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing,” NSDI’12

[8] A. Bialecki et al., “Hadoop: A Framework for Running Applications on Large Clusters Built of
Commodity Hardware,” 2005. Wiki at http://lucene.apache.org/hadoop.

[9] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R. Dreslinski, T. Mudge,
V. Petrucci, L. Tang, and J. Mars, “Sirius: An Open End-to-End Voice and Vision Personal
Assistant and Its Implications for Future Warehouse Scale Computers.” In Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), ASPLOS ’15, New York, NY, USA, 2015. ACM

[10] Tsirogiannis, Harizopoulos, Shah, “Analyzing the Energy Efficiency of a Database Server,”
SIGMOD, 2010

[11] Ma, Hong, Gu, “VOLUME: Enable arge-Scale In-Memory Computation on Commodity Cluster,”
CloudCom’13

[12] Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA,
2014

This page intentionally left blank.

 21

APPENDIX A

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

This page intentionally left blank.

 35

APPENDIX B

 36

 37

 38

UNCLASSIFIED

UNCLASSIFIED

