

 ARL-TR-8018 ● MAY 2017

 US Army Research Laboratory

Accelerating Calculations of Reaction
Dissipative Particle Dynamics in LAMMPS

by Christopher P Stone, Timothy I Mattox, James P Larentzos,
and John K Brennan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8018 ● MAY 2017

 US Army Research Laboratory

Accelerating Calculations of Reaction
Dissipative Particle Dynamics in LAMMPS

by Christopher P Stone
Computational Science and Engineering, LLC, DOD HPCMP PETTT,
APG, MD

Timothy I Mattox
Engility Corporation, DOD HPCMP PETTT, APG, MD

James P Larentzos and John K Brennan
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

May 2017
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

September 2015–December 2016
4. TITLE AND SUBTITLE

Accelerating Calculations of Reaction Dissipative Particle Dynamics in
LAMMPS

5a. CONTRACT NUMBER

PP-CCM-KY07-005
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Christopher P Stone, Timothy I Mattox, James P Larentzos, and
John K Brennan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Weapons and Materials Research Directorate
Energetic Materials Science Branch (ATTN: RDRL-WML-B)
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

High Performance Computing Modernization Program (HPCMP)
10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Reaction Dissipative Particle Dynamics (DPD-RX) is a promising coarse-graining (CG) method for modeling energetic
materials at the mesoscale. The LAMMPS DPD-RX multiscale-modeling software combines stochastic particle dynamics with
intra-particle chemical kinetics. The chemical kinetics model requires the solution of a system of ordinary differential equations
(ODEs) within each CG particle at each time step. The ODE solutions are computationally intensive and exceed 99% of the run
time for some cases. Several acceleration methods were tested for the chemical kinetics DPD-RX component including different
ODE solver methods (implicit vs. explicit), parallel programming paradigms (MPI vs. OpenMP vs. GPU), and matrix storage
representations (dense vs. sparse). For a small, reduced-order reaction mechanism, the best acceleration was 6.1 times. For a
larger, more chemically detailed mechanism, the best acceleration exceeded 60 times the baseline performance. This level of
acceleration enables the use of higher fidelity reaction mechanisms, which have a broader modeling applicability.

15. SUBJECT TERMS

DPD, LAMMPS, hybrid/heterogeneous/accelerated algorithms, numerical methods, linear and nonlinear systems,
computational materials science and engineering, multiscale modeling, GPU, ODE solvers, dissipative particle dynamics,
coarse-graining

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

34

19a. NAME OF RESPONSIBLE PERSON

James P Larentzos
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-306-0809
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

Acknowledgments vi

1. Introduction 1

2. Methodology 3

2.1 System Hardware used for Benchmarks 3

2.2 DPD-RX Benchmark Scenario 3

2.3 Two Reaction Mechanisms 4

2.4 Baseline LAMMPS DPD-RX Software 4

3. Analysis 5

3.1 Performance and Strong Scaling of Baseline DPD-RX 5

3.2 Cost and Weak Scaling of Baseline DPD-RX 6

3.3 Percentages and Load Imbalance of Baseline DPD-RX 6

4. Results 8

4.1 Impact of Solvers and Parallelism 9

4.2 Impact of Sparse-Matrix Formulation 12

4.3 Impact across All Optimizations 16

5. Conclusions 20

6. References 23

List of Symbols, Abbreviations, and Acronyms 25

Distribution List 26

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Baseline DPD-RX total simulation time on Thunder for 100-DPD time
steps using MPI and the CVODE implicit solver with an analytical
Jacobian with a dense stoichiometric matrix for the 9S4R and
45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and
8-M particles ... 5

Fig. 2 “Cost” of baseline DPD-RX on Thunder where cost is computed as
CPU cores multiplied by total time in milliseconds for 100-DPD time
steps. Runs used MPI and the CVODE implicit solver with an
analytical Jacobian with a dense stoichiometric matrix for the 9S4R
and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M,
and 8-M particles. ... 6

Fig. 3 Maximum and average run-time percentage of 9S4R mechanism
across all MPI processes in the baseline DPD-RX relative to the total
run time ... 7

Fig. 4 Maximum and average run-time percentage of 45S201R mechanism
across all MPI processes in the baseline DPD-RX relative to the total
run time ... 7

Fig. 5 Comparison of the average reaction run times using various ODE
solver methods and compute devices for the 128-k particle case with
the a) 9S4R and b) 45S201R reaction mechanisms. Three ODE solver
algorithms are compared: CVODE with an analytical Jacobian
(CVAN), CVODE with a finite-difference Jacobian (CVDQ), and the
explicit RKF45 solver. Three implementations of each of those
algorithms are compared: the original MPI-only implementation (MPI)
running on 14 cores (i.e., one CPU), an OpenMP implementation
(OMP) using dynamic load-balancing on 14 cores, and a CUDA
implementation (GPU) offloaded onto a Kepler K40m GPU. For MPI,
the hashed bars show the average MPI process run times and the solid
bars show the maximum MPI process run time over all 14 MPI
processes. .. 10

Fig. 6 Comparison of 128-k particle reaction solution times of the CVODE
solver with an analytical Jacobian (CVAN) using different matrix
storage formats while implementing the a) 9S4R and b) 45S201R
reaction mechanisms. .. 14

Fig. 7 Comparison of 128-k particle reaction solution times of the RKF45
ODE solver using different matrix storage formats while implementing
the a) 9S4R and b) 45S201R reaction mechanisms. 15

Approved for public release; distribution is unlimited.
v

Fig. 8 Throughput (particles integrated per device millisecond) of the
reaction kinetics integration run time as a function of workload
intensity with the 9S4R mechanism with the 16-k, 128-k, 1-M, and
8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ,
or RKF45; and dense or sparse stoichiometric matrix. Parallelism
paradigms are delineated by colors, solvers by symbols, and matrix
format by line structure. .. 17

Fig. 9 Throughput (particles integrated per device millisecond) of the
reaction kinetics integration run time as a function of workload
intensity with the 45S201R mechanism with the 16-k, 128-k, 1-M, and
8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ,
or RKF45; and dense, sparse, or Sp-PowI stoichiometric matrix.
Parallelism paradigms are delineated by colors, solvers by symbols,
and matrix format by line structure. .. 19

Approved for public release; distribution is unlimited.
vi

Acknowledgments

The authors acknowledge the contribution of Dr Martin Lísal (Hála Laboratory of
Thermodynamics, Institute of Chemical Process Fundamentals of the Advanced
Scientific Computing Research and Department of Physics, JE Purkinje University,
Ústí nad Labem, Czech Republic) for his contribution to the Reaction Dissipative
Particle Dynamics software.

This study was supported by the US Department of Defense High Performance
Computing Modernization Program User Productivity Enhancement, Technology
Transfer, and Training (PETTT) activity (General Services Administration
Contract No. GS04T09DBC0017 through Engility Corporation).

Approved for public release; distribution is unlimited.
1

1. Introduction

Dissipative Particle Dynamics (DPD) is a well-established coarse-graining (CG)
technique for simulating materials at the micro- and mesoscale. A novel extension
of this simulation capability is a unique mesoscale description of chemical
reactivity that occurs within the local volume of the CG particles.1 In particular, the
extension of Reaction DPD (DPD-RX) into LAMMPS2 is a critical advance in
capability for modeling the multiscale nature of the energy release and propagation
mechanisms in advanced energetic materials (EM).3 Decomposition and energy
release of EMs occurs at the molecular scale, yet the explosive response manifests
at the macroscale. The microstructural heterogeneities that dictate the response of
composite EMs to various stimuli require multiscale modeling at length and time
scales that are far beyond those amenable to both quantum mechanical and
atomistic simulation approaches.

Despite the tremendous gain in modeling capability enabled by our prior work,3 the
time-to-solution of DPD-RX simulations must be further reduced to capture the
complete chemically reacting response of EMs. DPD simulations of EMs are
computationally taxing and routinely require tracking O(107-8) CG particles to
examine microstructural heterogeneities. Thus, the primary goal of this study is to
investigate methods to optimize and accelerate the calculations of the DPD-RX
software to better utilize high performance computing (HPC) resources and exploit
emerging, heterogeneous architectures (e.g., co-processors and graphics processing
units [GPUs]), while enabling EM simulations at previously inaccessible scales.

A principle feature of DPD-RX is its ability to model chemical reactions within
each CG particle. The change in composition due to chemical reactions is described
by a system of ordinary differential equations (ODEs) that are evaluated at each
DPD time step. These ODE systems are local to each particle and can be solved
using a variety of ODE solver methods. The ODE system for each particle is written
as

 𝑑𝑑𝑦𝑦𝑘𝑘
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝐶𝐶𝐶𝐶 ∑ 𝜈𝜈𝑘𝑘𝑘𝑘 [𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑏𝑏]𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖 , (1)

where 𝑦𝑦𝑘𝑘 is the number of moles of the kth species within the CG particle, 𝜈𝜈𝑘𝑘𝑘𝑘 is the
net stoichiometric coefficient, and [𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑏𝑏]𝑖𝑖 is the rate-of-progress of the ith
reaction of NR total reactions, and 𝑉𝑉𝐶𝐶𝐶𝐶 is the volume of the CG particle. The current
implementation uses only irreversible reactions and the forward rate-of-progress
for reaction j is written as

 𝑟𝑟𝑗𝑗
𝑓𝑓 = 𝑘𝑘𝑗𝑗

𝑓𝑓 ∏ � 𝑦𝑦𝑖𝑖
𝑉𝑉𝐶𝐶𝐶𝐶

�
𝜐𝜐′𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖 (2)

Approved for public release; distribution is unlimited.
2

 𝑘𝑘𝑗𝑗
𝑓𝑓 = 𝐴𝐴𝑗𝑗 exp �−

𝐸𝐸𝑗𝑗
𝑘𝑘𝐵𝐵𝜃𝜃

� , (3)

where 𝜐𝜐′𝑖𝑖𝑖𝑖 is the reactant stoichiometric coefficient; 𝑘𝑘𝑗𝑗
𝑓𝑓 is the forward Arrhenius

rate with activation energy 𝐸𝐸𝑗𝑗 and pre-exponential 𝐴𝐴𝑗𝑗; 𝑘𝑘𝐵𝐵 is the Boltzmann constant;
and 𝜃𝜃 is the internal temperature of the particle.

The right-hand-side (RHS) of Eq. 1 is a nonlinear function of the chemical
composition (with NS species) and internal temperature. Nonlinear ODEs are often
categorized as “stiff” and are usually solved using implicit or semi-implicit
methods. Implicit methods are generally more efficient (e.g., they require fewer
integrator steps) than explicit solvers for stiff systems since the explicit step size
(h) is limited by stability, not by the desired accuracy.4 However, implicit solvers
are more expensive per step, so moderately stiff ODE systems may be solved faster
with explicit schemes under certain conditions.

The ODE systems of each of the CG particles are independent and can be solved
concurrently using various data and thread parallel processing techniques. Recent
studies5–11 related to atmospheric chemistry and combustion modeling have
investigated solving concurrent ODE systems on GPUs or similar many-core
devices. GPUs are throughput-oriented devices designed to operate on tens of
thousands of threads concurrently. In the majority of the cited studies, a single GPU
thread is used to solve each individual ODE system. That is, thousands of
independent ODE systems are solved concurrently.

In this study, we employ 2 ODE solvers—CVODE* and RKF45—which we
previously developed for NVIDIA Compute Unified Device Architecture (CUDA)
GPUs.9 The CPU versions of both algorithms implemented by us are also used for
comparison. CVODE is a widely used multistep, variable-order (up to fifth-order),
implicit ODE solver based on a backwards differentiation formula (BDF).12 RKF45
is an explicit, single-step, fourth-order adaptive Runge-Kutta-Fehlberg (RKF)
method with a fifth-order error estimator.13

CUDA GPUs rely upon the single-instruction, multiple-thread (SIMT) parallel
processing paradigm. In SIMT, optimal efficiency is achieved when each thread
within the same “warp” (i.e., a team of 32 threads) executes the same instruction.
In the context of parallel ODE solvers, this is achieved if each thread follows the
same control flow through the solver logic. When ODE systems require different
numbers of integrator steps or nonlinear iterations (e.g., different initial conditions),
the warp’s sibling threads will diverge (i.e., follow different code paths) and the
throughput of the GPU will degrade. In previous work,9 we demonstrated that
single-step, explicit ODE solvers such as RKF45 have lower divergence on mildly

*CVODE stands for C Variable Order Differential Equation.

Approved for public release; distribution is unlimited.
3

stiff ODEs and can be faster than implicit methods such as CVODE when executed
on a GPU. Niemeyer and Sung11 showed similar behavior with a Runge-Kutta-
Chebyshev solver for moderately stiff combustion kinetics.

In the next section we present details of the baseline LAMMPS DPD-RX software,
the benchmark design, and the methods for measuring the computational
performance. This is followed by an analysis of the baseline performance and
identification of performance-limiting aspects of the application. In the results
section, we present several techniques aimed at improving the performance of the
DPD-RX software. These include using different ODE solver algorithms,
offloading the reaction kinetics to GPUs and investigating different matrix
representations for the stoichiometric matrices in Eqs. 1 and 2. Finally, we
summarize the optimization methods and analyze how these performance
improvements will impact the scientific productivity of the LAMMPS DPD-RX
software.

2. Methodology

2.1 System Hardware used for Benchmarks

All of the benchmarks presented here were run on the Thunder system located at
the US Air Force Research Laboratory’s Department of Defense Supercomputing
Resource Center. Thunder is an SGI ICE X* system with 356 accelerator nodes and
3,216 CPU-only nodes. Half of the accelerator nodes (178) have 2 NVIDIA Kepler
K40m GPUs and the remaining 178 accelerator nodes have 2 Intel Xeon Phi 7120P
co-processors. All accelerator nodes have 2 Intel E5-2697v3 (Haswell) CPUs with
14 cores per CPU. All compute nodes use a dedicated (NUMAlink v5)
communications network for message passing interface (MPI) messages. For
uniformity, all of the benchmarks reported here were run on accelerator nodes even
when not offloading the computations to the GPUs. Also, for all MPI-only
benchmarks, except serial cases, a multiple of 14 MPI processes were used so that
all 14 cores within each CPU were fully utilized.

2.2 DPD-RX Benchmark Scenario

A prototypical DPD-RX benchmark scenario was created that can be scaled from a
single-core simulation to a very-large simulation requiring thousands of cores and
hundreds of GPU accelerators. An ideal DPD fluid is modeled, where the
conservative forces between particles are neglected and the dynamics are governed

*SGI is a corporate name standing for Silicon Graphics Inc. ICE is a product line; X is a series.

Approved for public release; distribution is unlimited.
4

purely by the dissipative and random forces. The simulation sizes studied are
16,000; 128,000; 1,024,000; and 8,192,000 particles, respectively (i.e., increasing
by a factor of 8). All benchmarks initialize half of the particles with high
temperature (3,500 K) and the other half as low temperature (1,500 K). All particles
are initially pure reactant (RDX, detailed as follows). The simulation is run for 100
DPD time steps at 1.0 fs per time step. Complete simulations typically require a
few nanoseconds to a microsecond of simulated time, thus requiring several orders
of magnitude more time steps; however, the salient performance features of the
DPD-RX algorithm can be assessed with this shorter benchmark.

2.3 Two Reaction Mechanisms

To make practical use of DPD-RX simulations, a proper balance of overall run time
versus fidelity of the reaction kinetics must be found. We use 2 reaction
mechanisms to study this tradeoff: a small, reduced-order reaction mechanism with
9 chemical species and 4 reactions (9S4R) and a larger mechanism with 45 species
and 201 reactions (45S201R).

The 9S4R mechanism models the thermal decomposition of crystalline
cyclotrimethylenetrinitramine, a model explosive commonly referred to as RDX,
with 4 global, irreversible reactions.3 The 45S201R mechanism is based on a
detailed RDX decomposition reaction mechanism14 containing 228 reactions with
45 intermediate and product species. A simplified version of this mechanism was
created that excludes third-body fall-off reactions, which are not currently
supported within the DPD-RX software. The focus of this study is to gauge the
performance impact of large and complex mechanisms of comparable size to the
complete RDX14 mechanism on the DPD-RX software. Therefore, the 45S201R
mechanism, even incomplete, is representative of higher fidelity reaction
mechanisms and is suitable for gauging the performance levels that would be
needed for the practical use of such detailed chemical kinetics in DPD-RX
simulations.

2.4 Baseline LAMMPS DPD-RX Software

The baseline DPD-RX method was implemented within the LAMMPS software
package (the “15 May 2015” version), which uses a distributed memory parallel
model with MPI. Particles are partitioned using a spatial partitioning scheme to
balance the number of particles per MPI process. The CVODE implicit ODE
solver12 was used to integrate Eq. 1. The stiff BDF method was used with equal
(scalar) absolute and relative tolerances (10-8). The Jacobian of Eq. 1 was derived
and used by CVODE to solve the nonlinear BDF equations with Newton iterations.

Approved for public release; distribution is unlimited.
5

Finally, the initial step size (ho) was automatically selected using the default
algorithm within CVODE. A dense matrix representation was used for the
stoichiometric matrices in Eqs. 1 and 2.

3. Analysis

3.1 Performance and Strong Scaling of Baseline DPD-RX

The performance on Thunder of the baseline DPD-RX software is shown in Fig. 1.
It shows the total wall-clock time for executing 100-DPD time steps with the 9S4R
and 45S201R reaction mechanisms in systems with 16,000–8,192,000 particles on
1–3,584 CPU cores. Dotted lines denote runs with the 9S4R mechanism; solid lines
are for the 45S201R mechanism. As can be seen in Fig. 1, the execution time for
the 45S201R mechanism is approximately 100 times longer than for the 9S4R
mechanism regardless of the number of particles in the system. As the benchmarks
are run on larger numbers of MPI processes for a given number of particles, the
simpler 9S4R mechanism does not strong-scale as well as the 45S201R mechanism.
This effect of Amdahl’s law can be seen in Fig. 1 as the dotted lines diverge upward
from the lower-right-end of each of the solid lines.

Fig. 1 Baseline DPD-RX total simulation time on Thunder for 100-DPD time steps using
MPI and the CVODE implicit solver with an analytical Jacobian with a dense stoichiometric
matrix for the 9S4R and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and
8-M particles

Approved for public release; distribution is unlimited.
6

3.2 Cost and Weak Scaling of Baseline DPD-RX

To efficiently use compute resources for typical production runs of the baseline
DPD-RX software with the 9S4R mechanism, the workload intensity (WI) is
generally kept between 2,000 and 10,000 particles per CPU core. As shown by the
rising dotted lines going toward the left in Fig. 2, the computational cost-per-
particle is significantly higher when there are too few particles per core for the
9S4R mechanism. Above 10,000 particles per CPU core, the efficiency of the
baseline DPD-RX with the 9S4R mechanism levels out. Because of the higher
absolute cost of the 45S201R mechanism, WIs under 300 particles-per-CPU-core
are still efficient. The 4 serial runs, circled in Fig. 2, are outliers in efficiency simply
because they forgo any MPI communication costs, as well as any parallel load
imbalance costs.

Fig. 2 “Cost” of baseline DPD-RX on Thunder where cost is computed as CPU cores
multiplied by total time in milliseconds for 100-DPD time steps. Runs used MPI and the
CVODE implicit solver with an analytical Jacobian with a dense stoichiometric matrix for the
9S4R and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and 8-M particles.

3.3 Percentages and Load Imbalance of Baseline DPD-RX

Solving the reaction kinetics mechanism for ideal DPD fluids was measured as the
costliest individual component of the DPD-RX software. For the 9S4R reaction
mechanism, the reaction component is approximately 70% of the run time as shown
in Fig. 3, while it is more than 99% with the 45S201R mechanism as shown in
Fig. 4.

Approved for public release; distribution is unlimited.
7

Fig. 3 Maximum and average run-time percentage of 9S4R mechanism across all MPI
processes in the baseline DPD-RX relative to the total run time

Fig. 4 Maximum and average run-time percentage of 45S201R mechanism across all MPI
processes in the baseline DPD-RX relative to the total run time

Both the average and maximum reaction run times over all of the MPI processes
are shown in Figs. 3 and 4 to highlight the load imbalance from the ODE solvers.
Each ODE system is unique and independent of all other particles. Certain particles
will require more ODE integrator steps, which will generally take longer to solve.
This can lead to a nonuniform workload since the LAMMPS partitioning algorithm
assumes a uniform cost-per-particle.

Approved for public release; distribution is unlimited.
8

In the current benchmark simulation, the hot half of the domain will react more
quickly and generally requires more time to solve per particle. This means that
roughly half of the MPI processes will have higher reaction run times, while the
remaining processes must wait to exchange neighboring particle information. The
load imbalances do not appear to grow significantly since the parallel efficiencies
are relatively flat for practical workloads if we ignore the unique serial cases.

Because of the extremely high cost of solving the reaction ODE systems and since
the reaction component does not involve communication, the remainder of this
discussion focuses upon single-device optimization (i.e., a single multicore CPU or
many-core GPU accelerator). Any single-device performance improvement will
have a direct impact on large-scale parallel simulations with many compute nodes.
The impact of nonuniform workloads will only be examined within the context of
a single compute device. Distributed, multidevice load-balancing will be addressed
in future studies.

4. Results

In this section, we examine several strategies for improving the performance of the
reaction kinetics component of the DPD-RX software within a single compute
device. The run times using these optimization strategies are compared to the
baseline DPD-RX run times presented in the previous section.

The 128-k particle case running on a single multicore CPU or a single GPU was
selected as the primary benchmark for this optimization study. Thus, for both the
MPI-only and the OpenMP implementations, the 14 cores of a single CPU are used
for computing the reaction kinetics. Similarly, for the CUDA implementation, a
single-Kepler GPU is used for computing the reaction kinetics. Running the 128-k
particle case on only a single compute device permits the evaluation of various
optimization methods for the kinetics integration as well as to assess the impact of
load-balancing methods within a single device using a multithreaded approach.
This study can then be used as a guide for future dynamic load-balancing methods
across distributed MPI processes. The workload intensity of the 128-k particle case
is 9.1-k particles per CPU core, which is also representative of standard practice for
DPD-RX simulations.

Although LAMMPS itself has support for OpenMP and CUDA parallelism for
particle–particle interactions, for this study those non-RX computations were
limited to MPI-only parallelism to simplify the experiment. Thus, unless stated
otherwise, the timing measurements presented in this section include only the

Approved for public release; distribution is unlimited.
9

reaction kinetics wall-clock time, and exclude the rest of the LAMMPS execution
time.

As noted, the baseline DPD-RX algorithm used the implicit CVODE stiff ODE
solver with an analytical Jacobian matrix function of Eq. 1. The CVODE has the
capability of estimating the system Jacobian using finite-difference quotients. This
strategy requires NS RHS function evaluations (i.e., the number of chemical
constituents in the current context). In general, an analytical Jacobian is more
efficient since the NS RHS evaluations can be expensive and repetitive. However,
the finite-difference Jacobian is considered since the RHS function is less complex
and may offer more optimization opportunities (e.g., concurrently evaluating the
NS RHS functions) than the analytical Jacobian. In the rest of this report, the
CVODE with analytical Jacobian (CVAN) and CVODE with difference quotient
(CVDQ) notations indicate a CVODE solver with an analytical and finite-
difference Jacobian, respectively.

We have also used the RKF45 ODE solver introduced previously. The local error
tolerances and ho estimation algorithm are the same as were used for CVODE
previously.9 This ensures that the integrated solutions produced by the different
ODE solver methods are equivalent (to within the specified tolerance) and that their
run times can be consistently and directly compared.

Three parallel processing methods were implemented for these 3 ODE solver
strategies: the baseline MPI-only approach, a multithreaded approach using
OpenMP with dynamic scheduling, and an accelerator approach whereby the ODE
solvers are offloaded to a CUDA GPU. The OpenMP method was designed to
handle the nonuniform workload by using dynamic scheduling. This approach is
suitable for nonuniform workloads but is only applicable to shared-memory
platforms (e.g., a multicore CPU). The GPU offloading approach uses CUDA
versions of the CVODE and RKF45 solvers we previously developed and
validated.9 All GPU benchmarks reported in the following use 128 threads per
CUDA thread-block and the run times include all data transfer costs.

4.1 Impact of Solvers and Parallelism

The run time of the reaction component of the DPD-RX algorithm using the 3 ODE
solvers and the 3 parallel implementations are shown in Fig. 5 for the 9S4R and
45S201R reaction mechanisms.

Approved for public release; distribution is unlimited.
10

Fig. 5 Comparison of the average reaction run times using various ODE solver methods
and compute devices for the 128-k particle case with the a) 9S4R and b) 45S201R reaction
mechanisms. Three ODE solver algorithms are compared: CVODE with an analytical
Jacobian (CVAN), CVODE with a finite-difference Jacobian (CVDQ), and the explicit RKF45
solver. Three implementations of each of those algorithms are compared: the original MPI-
only implementation (MPI) running on 14 cores (i.e., one CPU), an OpenMP implementation
(OMP) using dynamic load-balancing on 14 cores, and a CUDA implementation (GPU)
offloaded onto a Kepler K40m GPU. For MPI, the hashed bars show the average MPI process
run times and the solid bars show the maximum MPI process run time over all 14 MPI
processes.

Both the average and maximum MPI process run times across all 14 processes are
show in Fig. 5. This demonstrates the wide variation possible due to the nonuniform
workload using the MPI-only paradigm. The maximum run time is what all MPI
processes ultimately experience due to the bulk-synchronous nature of LAMMPS.
The average run time is representative of the performance that could be achieved
using a load-balancing technique that spans MPI processes.

The OpenMP case uses dynamic loop scheduling to balance the nonuniform
workload across the OpenMP threads (and CPU cores). A “chunk-size” of 5

Approved for public release; distribution is unlimited.
11

particles per thread was found to be the most efficient, on average, for OpenMP
dynamic scheduling of the DPD-RX component. For the 9S4R reaction mechanism,
the OpenMP run time is higher than the average MPI run time for the CVAN and
CVDQ solvers but is 21% less than the maximum MPI run time. This demonstrates
the benefit of adaptive load-balancing for the nonuniform workload.

For the larger 45S201R reaction mechanism, the average MPI and OpenMP
reaction times are statistically equal but the OpenMP is 35% faster than the slowest
MPI processes. Since the reaction component dominates the total cost for the
45S201R reaction mechanism (>99%), OpenMP improves the total run time by
32% (not shown). This again demonstrates the benefits of adaptive load-balancing
for the nonuniform workload as well as the dominant cost of the DPD-RX
component for larger, detailed mechanisms.

Compared to CVAN with MPI, the average CVDQ method with MPI is 4% slower
with the 9S4R reaction mechanism but is 193% slower with the 45S201R
mechanism. This is due to the higher cost of the finite-difference Jacobian when
scaled to larger mechanisms. There are several operations within the RHS function
that are unnecessarily repeated with the NS RHS function evaluations in the CVDQ
method. The analytical Jacobian is more expensive than a single-RHS function
evaluation; however, the absolute cost is significantly less than the 45 RHS
functions needed with the 45S201R mechanism using the finite-different
approximation in CVDQ.

The CVDQ method, while slower, does exhibit less variability than the CVAN
method. The difference in variability (i.e., the % difference between the maximum
and the mean) of the CVAN and CVDQ methods is small for the 9S4R mechanism,
54% and 45%, respectively. The variability for CVAN is similarly high (52%) for
the 45S201R mechanism, yet is only 3% for CVDQ. The absolute variability is also
significantly less with the CVDQ method on the larger mechanism. We observed
that the number of Jacobian evaluations required by the CVDQ solver was constant
(1 Jacobian per integrated CG particle) for all time steps and for both 9S4R and
45S201R mechanisms. However, the number of Jacobians used by CVAN varied
and required over 2 Jacobians per particle at times. This variation could be caused
by numerical differences (e.g., condition number) in the 2 Jacobian matrix
representations, which could cause subtle differences in the ODE integration
trajectories.

The RKF45 method with MPI also exhibits much lower variability across the MPI
processes and is 33% faster than the baseline CVAN implicit solver for the 9S4R
mechanism. For the 45S201R mechanism, however, the average RKF45 run time
is 41% slower than the average CVAN run time but the maximum run times are

Approved for public release; distribution is unlimited.
12

statistically equal. The ODE systems in the DPD-RX simulations are generally
considered stiff; however, the nonstiff solver appears quite capable of handling the
specified tolerances efficiently. The small DPD time step may suppress the stiffness
by restricting longer time-scale differences, a primary cause of ODE stiffness. That
is, time scales are limited to 1 fs or less.

The different ODE solvers all require approximately the same number of integrator
steps. The RKF45 solver always requires 6 RHS function evaluations per
integration step while the CVODE solver may need only one per integration step.
On average, the RKF45 solver required 3 times as many total RHS function
evaluations than the CVAN solver. The higher cost of the RHS function with the
45S201R mechanism leads to higher overall cost for the RKF45 solver compared
to the CVAN solver. This higher cost is most clearly seen in Fig. 5b when looking
at the dynamically load-balanced OMP (green) case.

The run times using the GPU version of the CVODE and RKF45 solvers are also
shown in Fig. 5. The CVAN solver is accelerated by 32% over the OpenMP CVAN
run time with the 9S4R mechanism. The OpenMP run time is used as a reference
here since it is dynamically load-balanced and is more likely a truer estimate of the
total single-device run time. The CVDQ is accelerated by 47% while RKF45 is
accelerated by 60% over the OpenMP run time. The acceleration with the 45S201R
mechanism is more substantial with the CVDQ and RKF45 solvers, achieving 75%
and 78% improvement, respectively. The CVAN solver, however, is only improved
by 30%. The CPU-GPU data transfer costs for the 9S4R mechanism account for
13% of the run time with the RKF45 solver. The transfer costs become negligible
with the large 45S201R mechanism due to the higher integration cost.

The lower acceleration with the CVAN solver on the GPU can be attributed to the
higher level of variability observed. As noted, divergence within a GPU warp
decreases the efficiency. The higher level of variability observed with the CVAN
solver indicates a higher level of divergence when compared to the other 2 solver
methods. This explains the high-GPU acceleration for the RKF45 solver with both
the 9S4R and 45S201R mechanisms and for the CVDQ solver with the 45S201R
mechanism. For the RKF45 solver in particular, there is little opportunity for
divergence owing to the simplicity of the RKF45 scheme. The only source of
divergence is in the total number of ODE integration steps-per-particle and there
was little observed variation in this metric.

4.2 Impact of Sparse-Matrix Formulation

The baseline implementation of the stoichiometric matrix (ν) in Eqs. 1 and 2 used
a dense matrix format with NS rows and NR columns. The net species production

Approved for public release; distribution is unlimited.
13

rate in Eq. 1 and the reaction rates in Eq. 2 were evaluated assuming a dense
stoichiometric matrix. The net species reaction rates in Eq. 1 can be written as a
matrix-vector product of stoichiometric matrix and the rate-of-progress vector. This
is suitable for the 9S4R reaction mechanism since there are few zero elements in ν.
There, the relative number of zero elements in the matrix (i.e., the sparsity) is 44%.
The cost of including the zero elements in the matrix-vector products was assumed
negligible due to the small matrix size. This design, however, is not suitable for
reaction mechanisms with larger numbers of chemical species and reactions such
as in the 45S201R mechanism. The sparsity for the 45S201R mechanism is 91%
and zero elements will constitute the vast majority of the matrix-vector products in
Eqs. 1 and 2. A sparse matrix formulation was implemented following the ELLpack
format,15 which has been shown to be efficient on throughput-oriented devices such
as GPUs. This format is also suitable since the number of nonzero elements per row
(i.e., the number of species per reaction) is small and does not vary significantly.

An additional optimization was investigated regarding the stoichiometric matrix.
The majority of stoichiometric terms in the 45S201R reaction mechanisms are
small, integral values (i.e., positive integers less than 3). The standard C/C++
exponentiation function (i.e., pow(x,y) evaluates xy) uses floating-point values for
both the base and exponent. This generality adds significant cost for small, integer
exponents. We have added a test to determine if all of the stoichiometric terms in a
given reaction are integral. If so, we use a specialized function (powi) designed for
small, positive integer exponents. Otherwise, the standard pow function is used.

Sparse versions of the RHS and analytical Jacobian functions were implemented
for both the host CPU and GPU. The run times using the original dense baseline
matrix format (Dense), sparse format (Sparse), and sparse format plus the integral
exponentiation function (Sp-PowI) with the CVAN solver on the 128-k particle case
with the 9S4R and 45S201R reaction mechanisms are shown in Fig. 6. In Fig. 6,
the average MPI process run times are shown by the hashed bar and the maximum
MPI process run times by the solid bar. GPU is the run time (including data transfer)
using the Kepler K40m GPU; and OMP is the OpenMP thread parallel model with
dynamic load-balancing using all 14 cores on 1 Thunder CPU. Specific data is
shown in the figure for small values. With the 9S4R mechanism, there is a small
but noticeable (22%) improvement in the average MPI process run time for the
reaction component using the sparse format. The variation between the MPI
processes is proportionally reduced. The OpenMP implementation is similarly
improved by 25%. The MPI run times are unaffected by the powi function and the
OpenMP throughput is worsened. This result is expected since none of the 9S4R
reactions qualify for the powi function; therefore, this method only adds conditional
testing overhead.

Approved for public release; distribution is unlimited.
14

Fig. 6 Comparison of 128-k particle reaction solution times of the CVODE solver with an
analytical Jacobian (CVAN) using different matrix storage formats while implementing the
a) 9S4R and b) 45S201R reaction mechanisms.

Unlike the 9S4R reaction mechanism, the 45S201R reaction mechanism with the
sparse version of the CVAN solver is significantly improved (Fig. 6b). The average
MPI run time is reduced by 90% using the sparse format. (Again, the variations are
proportionally similar). The powi function improves the average MPI process run
time by an additional 39%. The OpenMP reaction run time is statistically the same
as the average MPI process run times and the net performance improvement is
identical.

The GPU run times are also improved but to a lesser extent than the CPU run times.
The sparse format improves the GPU throughput by 61% but the powi function only
adds an additional 2% to the performance. The lower improvement for the GPU run
times is typical of bandwidth-limited conditions. That is, the powi function reduces
the floating-point intensity but the limiting factor is the memory throughput.

The results for the same sparsity study using the explicit RKF45 solver are shown
in Fig. 7 using the same notations as in Fig. 6. For the 9S4R mechanism, the sparse
format improves the average MPI process and OpenMP run times by 43% and 39%,

Approved for public release; distribution is unlimited.
15

respectively, and the GPU run time by 15%. These improvements are greater than
observed with the CVAN solver. The sparse implementation of the analytical
Jacobian function requires a matrix–matrix product, which is less efficient in terms
of data parallelism (i.e., vectorization) than the RHS function implementation.
Furthermore, the Jacobian matrix itself is dense and must be factorized as part of
the nonlinear Newton iteration within CVODE. These dense matrix operations are
unaffected by the sparse-stoichiometric-matrix optimizations. The RKF45 solver,
which uses only sparse-matrix-vector products in the RHS function, benefits
proportionally more since the dominant cost of the explicit method is the RHS
function itself.

Fig. 7 Comparison of 128-k particle reaction solution times of the RKF45 ODE solver using
different matrix storage formats while implementing the a) 9S4R and b) 45S201R reaction
mechanisms

The sparse RKF45 solver has significantly higher performance than the dense
method on the 45S201R reaction mechanism. The average MPI process and
OpenMP run times are both reduced by 93% and the GPU reaction run time is
reduced by 83.5%. The performance improvements match close to the sparsity
pattern on the latency-oriented platform (i.e., the CPU). On these devices,

Approved for public release; distribution is unlimited.
16

performance is improved most effectively by reducing the number of operations
(e.g., floating-point multiplication). This is especially relevant here since the
individual ODE systems are small enough to fit within the L1 data cache on the
CPU cores (i.e., memory bandwidth should not be a limiting factor). This effect is
seen again with regards to the powi optimization: the integer exponent function
improves the CPU run times by an additional 76%. With the powi optimization the
GPU run time is also improved (by 30%) but this is less significant than on the CPU
cores. Again, this indicates that the GPU is limited by bandwidth, not floating-point
throughput.

4.3 Impact across All Optimizations

The impact of the various optimizations detailed in the previous sections can vary
for different simulation parameters. To fairly compare them, we will use a
normalized measure of performance of the reaction kinetics measured via a
parameter sweep consisting of over 1,000 unique benchmark runs. The normalized
performance measure is the throughput of particles integrated per device
millisecond, where each device is either a single CPU or GPU.

Figure 8 shows the throughput of the 9S4R mechanism on 18 different
combinations of solvers (CVAN, CVDQ, and RKF45), stoichiometric matrix
(dense and sparse), and parallelism paradigms (MPI, OpenMP, and GPU) run with
23 different combinations of particle and device counts. The horizontal axis is
organized from left-to-right with generally increasing WI, starting at 4,000
particles-per-device, and ending at 1,024,00 particles-per-device. For the CPU
devices, that range corresponds to 285–73,142 particles-per-core; thus, we are
exploring both below and above the typical WI of 2,000–10,000 particles-per-core
as previously discussed.

 Approved for public release; distribution is unlim
ited. 17

Fig. 8 Throughput (particles integrated per device millisecond) of the reaction kinetics integration run time as a function of workload intensity with
the 9S4R mechanism with the 16-k, 128-k, 1-M, and 8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, or RKF45; and dense or sparse
stoichiometric matrix. Parallelism paradigms are delineated by colors, solvers by symbols, and matrix format by line structure.

Approved for public release; distribution is unlimited.
18

As can be seen by the dashed lines in Fig. 8, the sparse matrix representation gives
a significant performance boost across all of the 9S4R scenarios. Similarly, the
GPU runs (orange) show improvement for all 9S4R scenarios with at least 8,000
particles-per-device, though the GPU performance does not saturate until 32,000–
64,000 particles-per-device for the 9S4R mechanism. The increased load imbalance
observed with the CVAN and CVDQ solvers can be clearly seen by the dramatic
performance spikes for single-device runs for both the GPU (orange) and OpenMP
(green) paradigms. For the OpenMP runs, this spike can be attributed to the
dynamic load-balancing that is easy to realize within a single OpenMP context. For
the single GPU runs, this performance spike can also be attributed to a dynamic
load-balancing effect for the 9S4R mechanism.

Figure 9 shows the throughput of the 45S201R mechanism on a similar
combination of solvers, matrix formats, and parallelism paradigms run with the
same 23 combinations of particle and device counts. The dynamically load-
balanced performance spikes for single device runs can also be seen in Fig. 9 for
the 45S201R mechanism, but they are not as dramatic an improvement for the GPU
as they are for the OpenMP runs. This can be explained by considering the
granularity of the scheduling schemes on the GPU and OpenMP. On the GPU,
thread blocks are dynamically scheduled to available streaming multiprocessors.
We are using 128 threads per-thread-block for all GPU benchmarks, which equates
to a scheduling granularity of 128 ODE systems. The OpenMP dynamic scheduler
uses only 5 ODE systems-per-thread. The finer granularity appears better suited to
handle the variation between the ODE system-integration costs in the 45S201R
mechanism.

 Approved for public release; distribution is unlim
ited.

19

Fig. 9 Throughput (particles integrated per device millisecond) of the reaction kinetics integration run time as a function of workload intensity with
the 45S201R mechanism with the 16-k, 128-k, 1-M, and 8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, or RKF45; and dense, sparse,
or Sp-PowI stoichiometric matrix. Parallelism paradigms are delineated by colors, solvers by symbols, and matrix format by line structure.

Approved for public release; distribution is unlimited.
20

As can be seen by the dashed lines in Fig. 9, the sparse stoichiometric matrix also
gives a significant performance boost across all of the 45S201R scenarios.
However, the Sp-PowI (dotted lines) and RKF45 (X symbols) yield the best
performance regardless of the parallelism paradigm for the 45S201R mechanism.
The most striking observation from Fig. 9 is that the RKF45 solver with Sp-PowI
and OpenMP is the fastest approach in all of the 45S201R scenarios we tested.

5. Conclusions

We have presented results from an optimization effort to improve the throughput
of LAMMPS DPD-RX simulations of energetic materials. The reaction kinetics
component was shown to be the limiting factor in a scaling study of the DPD-RX
software. For the 9S4R reaction mechanism, the reaction component accounted for
70% or more for typical DPD-RX simulation WIs (i.e., 2,000–10,000 particles-per-
CPU-core). For the 45S201R reaction mechanism, the reactions accounted for more
than 99% of the run time in our baseline benchmark. Because of this high cost, we
investigated several strategies to improve the performance of this specific
component alone. The performance improvement strategies focused upon single-
device optimizations as the costly reaction components do not involve
communication and any single-device optimizations are applicable across any
number of devices.

Load imbalances were identified as a performance limitation in MPI-only parallel
environments. The load imbalances were caused by the variable workloads of the
reaction systems. The benchmarked version of LAMMPS distributes particles
evenly across the available MPI processes assuming uniform cost-per-particle. We
tested OpenMP as a way to dynamically load-balance the ODE integrations within
a single multicore CPU. The average run time of the reaction component with only
MPI parallelism was faster than or equal to the OpenMP run time; however, the
OpenMP was faster than the slowest MPI process, which is the limiting factor in
the bulk synchronous LAMMPS framework. This dynamic load-balancing
technique was limited to a single CPU device but demonstrates the improved
parallel efficiency that could be attained with an effective distributed memory load-
balancing strategy. Strategies for improving distributed load-balance shall be
investigated in future studies. Methods such as those demonstrated by Nakashima
et al.16 should be applicable for the particle-based LAMMPS framework.
Furthermore, weighted dynamic load-balancing capabilities17 were recently added
to LAMMPS and will be investigated.

We investigated different methods for integrating the system of stiff ordinary
differential equations that arise from the reaction mechanism. The baseline

Approved for public release; distribution is unlimited.
21

integration method used the implicit CVODE BDF solver with an analytical
Jacobian matrix function (CVAN). We also evaluated the CVODE solver using a
Jacobian matrix automatically computed using finite-differences (CVDQ). The
CVDQ method was found to be equally performant for the 9S4R reaction
mechanism but was significantly slower for the 45S201R mechanism due to the
high cost of estimating the Jacobian matrix. We also investigated the explicit
RKF45 ODE solver.

The performance of the different ODE solvers was dependent upon the reaction
mechanism size and the computational device. In addition to the OpenMP method
with dynamic scheduling, GPU (CUDA) implementations of the CVODE and
RKF45 solvers were investigated.

We found that for the 9S4R reaction mechanism, the RKF45 solver was more
efficient than the CVAN and CVDQ solvers on both CPU and GPU platforms. The
acceleration on the GPU was significantly higher with the RKF45 solver due to
lower control flow divergence compared to the complex BDF schemes. This result
was consistent with prior studies by Stone and Davis and Niemeyer and Sung.9,11
For the 45S201R mechanism, the baseline (i.e., dense stoichiometric matrix)
CVAN solver using OpenMP was faster than the RKF45 solver using OpenMP.
The 45S201R mechanism has many more reactions and intermediate species.
Under the benchmark scenario, this may lead to a higher level of stiffness. The GPU
RKF45 solver with the 45S201R reaction mechanism was 4.6 times faster than the
dynamically load-balanced OpenMP version and was shown to be the fastest
combination of solver and device for this mechanism and matrix structure.

The stoichiometric matrix storage structure was then investigated. A sparse storage
format was implemented and exponentiation with integer stoichiometric
coefficients was optimized. The latter was only applicable for the 45S201R reaction
mechanism since the 9S4R mechanism has only nonintegral stoichiometric
coefficients, a common difference between detailed and reduced-order
mechanisms.

We observed a small but measurable performance improvement using the sparse
matrix format with the 9S4R mechanism on the host CPU (i.e., MPI and OpenMP)
with all ODE solver methods. The throughput was improved significantly more
with the 45S201R mechanism due to the much higher matrix sparsity. The
performance improvement with RKF45 was higher than the CVAN solver on the
CPU since the matrix format and exponentiation optimizations were limited to the
RHS function and a portion of the analytical Jacobian function. Other dense matrix
operations in CVODE (e.g., factorization) were unaffected.

Approved for public release; distribution is unlimited.
22

The sparse stoichiometric matrix optimizations had no impact on the GPU
throughput with any ODE solver using the small 9S4R reaction mechanism. The
GPU performance was increased with the larger 45S201R mechanism but to a
lesser extent than that observed on the host CPU. The optimizations, particularly
the powi optimization, reduced the floating-point intensity of the computations
more than the bandwidth and this will have a greater impact on latency-optimized
CPUs.

Overall, the reaction kinetics component with the reduced-order 9S4R reaction
mechanism was accelerated 6.1 times over the baseline performance (MPI CVAN
with dense format) using the best performing method (GPU RKF45 with sparse
format) for the 128-k particle single-device runs. This performance improvement
is significant and will have a direct impact on current DPD-RX simulations by
permitting a reduction in run time or a proportional increase in the number of CG
particles.

For the more chemically detailed 45S201R mechanism, the best method (OMP
RKF45 on the host CPU using the Sp-PowI method) exceeded 60 times the 128-k
particle single-device baseline performance. This level of acceleration indicates
that the use of detailed reaction mechanisms—which have a broader modeling
applicability and improved fidelity—are possible and attainable within the DPD-
RX software. Moreover, these optimization efforts provide sufficient flexibility to
optimally treat a given set of reaction equations, regardless of size, type, or stiffness
and addresses a key simulation challenge for modeling the multiscale nature of the
energy release and propagation mechanisms in advanced energetic materials.

Many of the optimizations presented in this report were incorporated into the
USER-DPD package of the “28 Jun 2016” LAMMPS release. As a result of this
work, the DPD-RX software enables efficient use of HPC resources to perform
previously impractical micro- and mesoscale particle-based simulations. This
allows new problems to be addressed and previously inaccessible phenomena to be
studied within a simulation.

Approved for public release; distribution is unlimited.
23

6. References

1. Maillet JB, Soulard L, Stoltz G. A reduced model for shock and detonation
waves. II. The reactive case. Europhysics Letters. 2007;78(6).

2. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J of
Computational Phys. 1995;117(1):1–19.

3. Brennan JK, Lisal M, Moore JD, Izvekov S, Schweigert IV, Larentzos JP.
Coarse-grain model simulations of nonequilibrium dynamics in heterogeneous
materials. J of Phys Chem Letters. 2014;5(12):2144–2149.

4. Hairer E, Wanner G. Solving ordinary differential equations II: stiff and
differential-algebraic problems. Springer Series in Comp Math. 1996.

5. Linford JC, Michalakes J, Vachharajani M, Sandu A. Multi-core acceleration
of chemical kinetics for simulation and prediction. SC09; Portland, OR. 2009.

6. Shi Y, Green WH, Wong H, Oluwole OO. Redesigning combustion modeling
algorithms for the graphics processing unit (GPU): chemical kinetic rate
evaluation and ordinary differential equation integration. Combustion and
Flame. 2011;58(1).

7. Murray L. GPU acceleration of Runge-Kutta integrators. IEEE Transactions
on Parallel and Distributed Systems. 2012;23(1).

8. Shi Y, Green WH, Wong H, Oluwole OO. Accelerating multi-dimensional
combustion simulations using hybrid CPU-based implicit/GPU-based explicit
ODE integration. Combustion and Flame. 2012;59:2388–2397.

9. Stone CP, Davis RL. Techniques for solving stiff chemical kinetics on
graphical processing units. J of Propulsion and Power. 2013;67:764–773.

10. Niemeyer KE, Sung KE. Recent progress and challenges in exploiting graphics
processors in computational fluid dynamics. J of Supercomputer.
2014;67:528–564.

11. Niemeyer KE, Sung CJ. Accelerating moderately stiff chemical kinetics in
reactive-flow simulations using GPUs. J of Computational Phys.
2014;256:854–871.

12. Hindmarsh AC, Brown PN, Grant KE, Serban R, Shumaker DE, Woodward
CS. SUNDIALS: suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software. 2005;31(3):363–396.

Approved for public release; distribution is unlimited.
24

13. Fehlberg E. Low-order classical Runge–Kutta formulas with stepsize control
and their application to some heat transfer problems. Marshall (AL): George
C Marshall Space Flight Center; 1969 July. Report No.: NASA TR-R-315,
2969.

14. Prasad K, Yetter RA, Smooke MD. An Eigenvalue method for computing the
burning rates of RDX propellants. Combustion Sci and Tech. 1997;124
(1–6):35–82.

15. Bell N, Garland M. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC09); 2009;
Portland, OR.

16. Nakashima H, Miyake Y, Usui H, Omura Y. OhHelp: a scalable domain-
decomposing dynamic load balancing for particle-in-cell simulations.
International Conference on Supercomputer; 2009.

17. LAMMPS. 2016 Sep 27 Patch. http://lammps.sandia.gov/bug.html.

Approved for public release; distribution is unlimited.
25

List of Symbols, Abbreviations, and Acronyms

BDF backwards differentiation formula

CG coarse-graining

CUDA Compute Unified Design Architecture

CVAN CVODE with analytical Jacobian

CVDQ CVODE with difference quotient

CVODE C Variable Order Differential Equation

DPD Dissipative Particle Dynamics

DPD-RX Reaction Dissipative Particle Dynamics

EM energetic materials

fs femtosecond

GPU graphics processing unit

HPC high-performance computing

MPI message passing interface

ODE ordinary differential equations

RDX crystalline cyclotrimethylenetrinitramine

RHS right-hand-side

RKF Runge-Kutta-Fehlberg

SIMT single-instruction, multiple-thread

WI workload intensity

Approved for public release; distribution is unlimited.
26

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 BROWN DEER TECHNOLOGY
 (PDF) D RICHIE

 1 GENERAL ELECTRIC
 (PDF) M MASQUELET

 6 ENGILITY CORP
 (PDF) J GRANICKI
 G KEDZIORA
 M LASINSKI
 J LILL
 G STATHOPOULOS
 H THORNBURG

 1 HÁLA LAB OF
 (PDF) THERMODYNAMICS
 INSTITUTE OF CHEM PROC
 FUND OF THE ADV SCI COMP
 RSCH AND DEPT OF PHY
 JE PUKINJE UNIV
 M LÍSAL

 2 HPCMP
 (PDF) F HILL
 R HEDGEPETH

 1 OAK RIDGE NAT LAB
 (PDF) R SANKARAN

 1 OREGON STATE UNIV
 (PDF) K NIEMEYER

 3 SANDIA NAT LAB
 (PDF) S J PLIMPTON
 A P THOMPSON
 S MOORE

 1 US NAVAL RSRCH LAB
 (PDF) I SCHWEIGERT

 13 US ARMY RSRCH LAB
 (PDF) RDRL CIH C
 J KNAP
 K LEITER
 RDRL WML
 N J TRIVEDI
 RDRL WML B
 J K BRENNAN
 E F C BYRD
 J P LARENTZOS
 B RICE
 RDRL WML D
 C C CHEN
 M J MCQUAID
 M J NUSCA
 J VEALS
 RDRL WMP C
 R BECKER
 RDRL WMM G
 J ANDZELM

	List of Figures
	Acknowledgments
	1. Introduction
	2. Methodology
	2.1 System Hardware used for Benchmarks
	2.2 DPD-RX Benchmark Scenario
	2.3 Two Reaction Mechanisms
	2.4 Baseline LAMMPS DPD-RX Software

	3. Analysis
	3.1 Performance and Strong Scaling of Baseline DPD-RX
	3.2 Cost and Weak Scaling of Baseline DPD-RX
	3.3 Percentages and Load Imbalance of Baseline DPD-RX

	4. Results
	4.1 Impact of Solvers and Parallelism
	4.2 Impact of Sparse-Matrix Formulation
	4.3 Impact across All Optimizations

	5. Conclusions
	6. References
	List of Symbols, Abbreviations, and Acronyms

