
 
 
 

 ARL-TR-8018 ● MAY 2017 
 
 
 

 US Army Research Laboratory 

 
 
Accelerating Calculations of Reaction 
Dissipative Particle Dynamics in LAMMPS 
 
by Christopher P Stone, Timothy I Mattox, James P Larentzos, 
and John K Brennan 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8018 ● MAY 2017 

 
 US Army Research Laboratory 

 
 
Accelerating Calculations of Reaction 
Dissipative Particle Dynamics in LAMMPS 
 
by Christopher P Stone 
Computational Science and Engineering, LLC, DOD HPCMP PETTT, 
APG, MD 
 
Timothy I Mattox 
Engility Corporation, DOD HPCMP PETTT, APG, MD 
 
James P Larentzos and John K Brennan 
Weapons and Materials Research Directorate, ARL 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

May 2017  
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

September 2015–December 2016 
4. TITLE AND SUBTITLE 

Accelerating Calculations of Reaction Dissipative Particle Dynamics in 
LAMMPS 

5a. CONTRACT NUMBER 

PP-CCM-KY07-005 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Christopher P Stone, Timothy I Mattox, James P Larentzos, and  
John K Brennan 

5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory  
Weapons and Materials Research Directorate 
Energetic Materials Science Branch (ATTN: RDRL-WML-B) 
Aberdeen Proving Ground, MD 21005  

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-8018 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

High Performance Computing Modernization Program (HPCMP) 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
 
14. ABSTRACT 

Reaction Dissipative Particle Dynamics (DPD-RX) is a promising coarse-graining (CG) method for modeling energetic 
materials at the mesoscale. The LAMMPS DPD-RX multiscale-modeling software combines stochastic particle dynamics with 
intra-particle chemical kinetics. The chemical kinetics model requires the solution of a system of ordinary differential equations 
(ODEs) within each CG particle at each time step. The ODE solutions are computationally intensive and exceed 99% of the run 
time for some cases. Several acceleration methods were tested for the chemical kinetics DPD-RX component including different 
ODE solver methods (implicit vs. explicit), parallel programming paradigms (MPI vs. OpenMP vs. GPU), and matrix storage 
representations (dense vs. sparse). For a small, reduced-order reaction mechanism, the best acceleration was 6.1 times. For a 
larger, more chemically detailed mechanism, the best acceleration exceeded 60 times the baseline performance. This level of 
acceleration enables the use of higher fidelity reaction mechanisms, which have a broader modeling applicability. 

15. SUBJECT TERMS 

DPD, LAMMPS, hybrid/heterogeneous/accelerated algorithms, numerical methods, linear and nonlinear systems, 
computational materials science and engineering, multiscale modeling, GPU, ODE solvers, dissipative particle dynamics, 
coarse-graining 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

34 

19a. NAME OF RESPONSIBLE PERSON 

James P Larentzos 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

410-306-0809 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited.  
iii 

Contents 

List of Figures iv 

Acknowledgments vi 

1. Introduction 1 

2. Methodology 3 

2.1 System Hardware used for Benchmarks 3 

2.2 DPD-RX Benchmark Scenario 3 

2.3 Two Reaction Mechanisms 4 

2.4 Baseline LAMMPS DPD-RX Software 4 

3. Analysis 5 

3.1 Performance and Strong Scaling of Baseline DPD-RX 5 

3.2 Cost and Weak Scaling of Baseline DPD-RX 6 

3.3 Percentages and Load Imbalance of Baseline DPD-RX 6 

4. Results 8 

4.1 Impact of Solvers and Parallelism 9 

4.2 Impact of Sparse-Matrix Formulation 12 

4.3 Impact across All Optimizations 16 

5. Conclusions 20 

6. References 23 

List of Symbols, Abbreviations, and Acronyms 25 

Distribution List 26



 

Approved for public release; distribution is unlimited.  
iv 

List of Figures 

Fig. 1 Baseline DPD-RX total simulation time on Thunder for 100-DPD time 
steps using MPI and the CVODE implicit solver with an analytical 
Jacobian with a dense stoichiometric matrix for the 9S4R and 
45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and  
8-M particles ......................................................................................... 5 

Fig. 2 “Cost” of baseline DPD-RX on Thunder where cost is computed as 
CPU cores multiplied by total time in milliseconds for 100-DPD time 
steps. Runs used MPI and the CVODE implicit solver with an 
analytical Jacobian with a dense stoichiometric matrix for the 9S4R 
and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, 
and 8-M particles. ................................................................................. 6 

Fig. 3 Maximum and average run-time percentage of 9S4R mechanism 
across all MPI processes in the baseline DPD-RX relative to the total 
run time ................................................................................................. 7 

Fig. 4 Maximum and average run-time percentage of 45S201R mechanism 
across all MPI processes in the baseline DPD-RX relative to the total 
run time ................................................................................................. 7 

Fig. 5 Comparison of the average reaction run times using various ODE 
solver methods and compute devices for the 128-k particle case with 
the a) 9S4R and b) 45S201R reaction mechanisms. Three ODE solver 
algorithms are compared: CVODE with an analytical Jacobian 
(CVAN), CVODE with a finite-difference Jacobian (CVDQ), and the 
explicit RKF45 solver. Three implementations of each of those 
algorithms are compared: the original MPI-only implementation (MPI) 
running on 14 cores (i.e., one CPU), an OpenMP implementation 
(OMP) using dynamic load-balancing on 14 cores, and a CUDA 
implementation (GPU) offloaded onto a Kepler K40m GPU. For MPI, 
the hashed bars show the average MPI process run times and the solid 
bars show the maximum MPI process run time over all 14 MPI 
processes. ............................................................................................ 10 

Fig. 6 Comparison of 128-k particle reaction solution times of the CVODE 
solver with an analytical Jacobian (CVAN) using different matrix 
storage formats while implementing the a) 9S4R and b) 45S201R 
reaction mechanisms. .......................................................................... 14 

Fig. 7 Comparison of 128-k particle reaction solution times of the RKF45 
ODE solver using different matrix storage formats while implementing 
the a) 9S4R and b) 45S201R reaction mechanisms. ........................... 15 

  



 

Approved for public release; distribution is unlimited.  
v 

Fig. 8 Throughput (particles integrated per device millisecond) of the 
reaction kinetics integration run time as a function of workload 
intensity with the 9S4R mechanism with the 16-k, 128-k, 1-M, and  
8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, 
or RKF45; and dense or sparse stoichiometric matrix. Parallelism 
paradigms are delineated by colors, solvers by symbols, and matrix 
format by line structure. ...................................................................... 17 

Fig. 9 Throughput (particles integrated per device millisecond) of the 
reaction kinetics integration run time as a function of workload 
intensity with the 45S201R mechanism with the 16-k, 128-k, 1-M, and 
8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, 
or RKF45; and dense, sparse, or Sp-PowI stoichiometric matrix. 
Parallelism paradigms are delineated by colors, solvers by symbols, 
and matrix format by line structure. .................................................... 19 

 



 

Approved for public release; distribution is unlimited.  
vi 

Acknowledgments 

The authors acknowledge the contribution of Dr Martin Lísal (Hála Laboratory of 
Thermodynamics, Institute of Chemical Process Fundamentals of the Advanced 
Scientific Computing Research and Department of Physics, JE Purkinje University, 
Ústí nad Labem, Czech Republic) for his contribution to the Reaction Dissipative 
Particle Dynamics software. 

This study was supported by the US Department of Defense High Performance 
Computing Modernization Program User Productivity Enhancement, Technology 
Transfer, and Training (PETTT) activity (General Services Administration 
Contract No. GS04T09DBC0017 through Engility Corporation).



 

Approved for public release; distribution is unlimited.  
1 

1. Introduction 

Dissipative Particle Dynamics (DPD) is a well-established coarse-graining (CG) 
technique for simulating materials at the micro- and mesoscale. A novel extension 
of this simulation capability is a unique mesoscale description of chemical 
reactivity that occurs within the local volume of the CG particles.1 In particular, the 
extension of Reaction DPD (DPD-RX) into LAMMPS2 is a critical advance in 
capability for modeling the multiscale nature of the energy release and propagation 
mechanisms in advanced energetic materials (EM).3 Decomposition and energy 
release of EMs occurs at the molecular scale, yet the explosive response manifests 
at the macroscale. The microstructural heterogeneities that dictate the response of 
composite EMs to various stimuli require multiscale modeling at length and time 
scales that are far beyond those amenable to both quantum mechanical and 
atomistic simulation approaches. 

Despite the tremendous gain in modeling capability enabled by our prior work,3 the 
time-to-solution of DPD-RX simulations must be further reduced to capture the 
complete chemically reacting response of EMs. DPD simulations of EMs are 
computationally taxing and routinely require tracking O(107-8) CG particles to 
examine microstructural heterogeneities. Thus, the primary goal of this study is to 
investigate methods to optimize and accelerate the calculations of the DPD-RX 
software to better utilize high performance computing (HPC) resources and exploit 
emerging, heterogeneous architectures (e.g., co-processors and graphics processing 
units [GPUs]), while enabling EM simulations at previously inaccessible scales. 

A principle feature of DPD-RX is its ability to model chemical reactions within 
each CG particle. The change in composition due to chemical reactions is described 
by a system of ordinary differential equations (ODEs) that are evaluated at each 
DPD time step. These ODE systems are local to each particle and can be solved 
using a variety of ODE solver methods. The ODE system for each particle is written 
as 

 𝑑𝑑𝑦𝑦𝑘𝑘
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝐶𝐶𝐶𝐶 ∑ 𝜈𝜈𝑘𝑘𝑘𝑘 [𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑏𝑏]𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖  , (1) 

where 𝑦𝑦𝑘𝑘 is the number of moles of the kth species within the CG particle, 𝜈𝜈𝑘𝑘𝑘𝑘 is the 
net stoichiometric coefficient, and [𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑏𝑏]𝑖𝑖 is the rate-of-progress of the ith 
reaction of NR total reactions, and 𝑉𝑉𝐶𝐶𝐶𝐶 is the volume of the CG particle. The current 
implementation uses only irreversible reactions and the forward rate-of-progress 
for reaction j is written as 

 𝑟𝑟𝑗𝑗
𝑓𝑓 = 𝑘𝑘𝑗𝑗

𝑓𝑓 ∏ � 𝑦𝑦𝑖𝑖
𝑉𝑉𝐶𝐶𝐶𝐶

�
𝜐𝜐′𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖  (2) 
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 𝑘𝑘𝑗𝑗
𝑓𝑓 =  𝐴𝐴𝑗𝑗 exp �−

𝐸𝐸𝑗𝑗
𝑘𝑘𝐵𝐵𝜃𝜃

�  , (3) 

where 𝜐𝜐′𝑖𝑖𝑖𝑖 is the reactant stoichiometric coefficient; 𝑘𝑘𝑗𝑗
𝑓𝑓 is the forward Arrhenius 

rate with activation energy 𝐸𝐸𝑗𝑗 and pre-exponential 𝐴𝐴𝑗𝑗; 𝑘𝑘𝐵𝐵 is the Boltzmann constant; 
and 𝜃𝜃 is the internal temperature of the particle. 

The right-hand-side (RHS) of Eq. 1 is a nonlinear function of the chemical 
composition (with NS species) and internal temperature. Nonlinear ODEs are often 
categorized as “stiff” and are usually solved using implicit or semi-implicit 
methods. Implicit methods are generally more efficient (e.g., they require fewer 
integrator steps) than explicit solvers for stiff systems since the explicit step size 
(h) is limited by stability, not by the desired accuracy.4 However, implicit solvers 
are more expensive per step, so moderately stiff ODE systems may be solved faster 
with explicit schemes under certain conditions. 

The ODE systems of each of the CG particles are independent and can be solved 
concurrently using various data and thread parallel processing techniques. Recent 
studies5–11 related to atmospheric chemistry and combustion modeling have 
investigated solving concurrent ODE systems on GPUs or similar many-core 
devices. GPUs are throughput-oriented devices designed to operate on tens of 
thousands of threads concurrently. In the majority of the cited studies, a single GPU 
thread is used to solve each individual ODE system. That is, thousands of 
independent ODE systems are solved concurrently. 

In this study, we employ 2 ODE solvers—CVODE* and RKF45—which we 
previously developed for NVIDIA Compute Unified Device Architecture (CUDA) 
GPUs.9 The CPU versions of both algorithms implemented by us are also used for 
comparison. CVODE is a widely used multistep, variable-order (up to fifth-order), 
implicit ODE solver based on a backwards differentiation formula (BDF).12 RKF45 
is an explicit, single-step, fourth-order adaptive Runge-Kutta-Fehlberg (RKF) 
method with a fifth-order error estimator.13 

CUDA GPUs rely upon the single-instruction, multiple-thread (SIMT) parallel 
processing paradigm. In SIMT, optimal efficiency is achieved when each thread 
within the same “warp” (i.e., a team of 32 threads) executes the same instruction. 
In the context of parallel ODE solvers, this is achieved if each thread follows the 
same control flow through the solver logic. When ODE systems require different 
numbers of integrator steps or nonlinear iterations (e.g., different initial conditions), 
the warp’s sibling threads will diverge (i.e., follow different code paths) and the 
throughput of the GPU will degrade. In previous work,9 we demonstrated that 
single-step, explicit ODE solvers such as RKF45 have lower divergence on mildly 
                                                 
*CVODE stands for C Variable Order Differential Equation.  
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stiff ODEs and can be faster than implicit methods such as CVODE when executed 
on a GPU. Niemeyer and Sung11 showed similar behavior with a Runge-Kutta-
Chebyshev solver for moderately stiff combustion kinetics. 

In the next section we present details of the baseline LAMMPS DPD-RX software, 
the benchmark design, and the methods for measuring the computational 
performance. This is followed by an analysis of the baseline performance and 
identification of performance-limiting aspects of the application. In the results 
section, we present several techniques aimed at improving the performance of the 
DPD-RX software. These include using different ODE solver algorithms, 
offloading the reaction kinetics to GPUs and investigating different matrix 
representations for the stoichiometric matrices in Eqs. 1 and 2. Finally, we 
summarize the optimization methods and analyze how these performance 
improvements will impact the scientific productivity of the LAMMPS DPD-RX 
software. 

2. Methodology 

2.1 System Hardware used for Benchmarks 

All of the benchmarks presented here were run on the Thunder system located at 
the US Air Force Research Laboratory’s Department of Defense Supercomputing 
Resource Center. Thunder is an SGI ICE X* system with 356 accelerator nodes and 
3,216 CPU-only nodes. Half of the accelerator nodes (178) have 2 NVIDIA Kepler 
K40m GPUs and the remaining 178 accelerator nodes have 2 Intel Xeon Phi 7120P 
co-processors. All accelerator nodes have 2 Intel E5-2697v3 (Haswell) CPUs with 
14 cores per CPU. All compute nodes use a dedicated (NUMAlink v5) 
communications network for message passing interface (MPI) messages. For 
uniformity, all of the benchmarks reported here were run on accelerator nodes even 
when not offloading the computations to the GPUs. Also, for all MPI-only 
benchmarks, except serial cases, a multiple of 14 MPI processes were used so that 
all 14 cores within each CPU were fully utilized. 

2.2 DPD-RX Benchmark Scenario 

A prototypical DPD-RX benchmark scenario was created that can be scaled from a 
single-core simulation to a very-large simulation requiring thousands of cores and 
hundreds of GPU accelerators. An ideal DPD fluid is modeled, where the 
conservative forces between particles are neglected and the dynamics are governed 

                                                 
*SGI is a corporate name standing for Silicon Graphics Inc. ICE is a product line; X is a series. 
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purely by the dissipative and random forces. The simulation sizes studied are 
16,000; 128,000; 1,024,000; and 8,192,000 particles, respectively (i.e., increasing 
by a factor of 8). All benchmarks initialize half of the particles with high 
temperature (3,500 K) and the other half as low temperature (1,500 K). All particles 
are initially pure reactant (RDX, detailed as follows). The simulation is run for 100 
DPD time steps at 1.0 fs per time step. Complete simulations typically require a 
few nanoseconds to a microsecond of simulated time, thus requiring several orders 
of magnitude more time steps; however, the salient performance features of the  
DPD-RX algorithm can be assessed with this shorter benchmark. 

2.3 Two Reaction Mechanisms 

To make practical use of DPD-RX simulations, a proper balance of overall run time 
versus fidelity of the reaction kinetics must be found. We use 2 reaction 
mechanisms to study this tradeoff: a small, reduced-order reaction mechanism with 
9 chemical species and 4 reactions (9S4R) and a larger mechanism with 45 species 
and 201 reactions (45S201R). 

The 9S4R mechanism models the thermal decomposition of crystalline 
cyclotrimethylenetrinitramine, a model explosive commonly referred to as RDX, 
with 4 global, irreversible reactions.3 The 45S201R mechanism is based on a 
detailed RDX decomposition reaction mechanism14 containing 228 reactions with 
45 intermediate and product species. A simplified version of this mechanism was 
created that excludes third-body fall-off reactions, which are not currently 
supported within the DPD-RX software. The focus of this study is to gauge the 
performance impact of large and complex mechanisms of comparable size to the 
complete RDX14 mechanism on the DPD-RX software. Therefore, the 45S201R 
mechanism, even incomplete, is representative of higher fidelity reaction 
mechanisms and is suitable for gauging the performance levels that would be 
needed for the practical use of such detailed chemical kinetics in DPD-RX 
simulations. 

2.4 Baseline LAMMPS DPD-RX Software 

The baseline DPD-RX method was implemented within the LAMMPS software 
package (the “15 May 2015” version), which uses a distributed memory parallel 
model with MPI. Particles are partitioned using a spatial partitioning scheme to 
balance the number of particles per MPI process. The CVODE implicit ODE 
solver12 was used to integrate Eq. 1. The stiff BDF method was used with equal 
(scalar) absolute and relative tolerances (10-8). The Jacobian of Eq. 1 was derived 
and used by CVODE to solve the nonlinear BDF equations with Newton iterations. 
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Finally, the initial step size (ho) was automatically selected using the default 
algorithm within CVODE. A dense matrix representation was used for the 
stoichiometric matrices in Eqs. 1 and 2. 

3. Analysis 

3.1 Performance and Strong Scaling of Baseline DPD-RX 

The performance on Thunder of the baseline DPD-RX software is shown in Fig. 1. 
It shows the total wall-clock time for executing 100-DPD time steps with the 9S4R 
and 45S201R reaction mechanisms in systems with 16,000–8,192,000 particles on 
1–3,584 CPU cores. Dotted lines denote runs with the 9S4R mechanism; solid lines 
are for the 45S201R mechanism. As can be seen in Fig. 1, the execution time for 
the 45S201R mechanism is approximately 100 times longer than for the 9S4R 
mechanism regardless of the number of particles in the system. As the benchmarks 
are run on larger numbers of MPI processes for a given number of particles, the 
simpler 9S4R mechanism does not strong-scale as well as the 45S201R mechanism. 
This effect of Amdahl’s law can be seen in Fig. 1 as the dotted lines diverge upward 
from the lower-right-end of each of the solid lines. 

 

Fig. 1 Baseline DPD-RX total simulation time on Thunder for 100-DPD time steps using 
MPI and the CVODE implicit solver with an analytical Jacobian with a dense stoichiometric 
matrix for the 9S4R and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and  
8-M particles 
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3.2 Cost and Weak Scaling of Baseline DPD-RX 

To efficiently use compute resources for typical production runs of the baseline 
DPD-RX software with the 9S4R mechanism, the workload intensity (WI) is 
generally kept between 2,000 and 10,000 particles per CPU core. As shown by the 
rising dotted lines going toward the left in Fig. 2, the computational cost-per-
particle is significantly higher when there are too few particles per core for the 
9S4R mechanism. Above 10,000 particles per CPU core, the efficiency of the 
baseline DPD-RX with the 9S4R mechanism levels out. Because of the higher 
absolute cost of the 45S201R mechanism, WIs under 300 particles-per-CPU-core 
are still efficient. The 4 serial runs, circled in Fig. 2, are outliers in efficiency simply 
because they forgo any MPI communication costs, as well as any parallel load 
imbalance costs. 

 

Fig. 2 “Cost” of baseline DPD-RX on Thunder where cost is computed as CPU cores 
multiplied by total time in milliseconds for 100-DPD time steps. Runs used MPI and the 
CVODE implicit solver with an analytical Jacobian with a dense stoichiometric matrix for the 
9S4R and 45S201R reaction mechanisms for systems of 16-k, 128-k, 1-M, and 8-M particles. 

3.3 Percentages and Load Imbalance of Baseline DPD-RX 

Solving the reaction kinetics mechanism for ideal DPD fluids was measured as the 
costliest individual component of the DPD-RX software. For the 9S4R reaction 
mechanism, the reaction component is approximately 70% of the run time as shown 
in Fig. 3, while it is more than 99% with the 45S201R mechanism as shown in  
Fig. 4. 
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Fig. 3 Maximum and average run-time percentage of 9S4R mechanism across all MPI 
processes in the baseline DPD-RX relative to the total run time 

 

Fig. 4 Maximum and average run-time percentage of 45S201R mechanism across all MPI 
processes in the baseline DPD-RX relative to the total run time 

Both the average and maximum reaction run times over all of the MPI processes 
are shown in Figs. 3 and 4 to highlight the load imbalance from the ODE solvers. 
Each ODE system is unique and independent of all other particles. Certain particles 
will require more ODE integrator steps, which will generally take longer to solve. 
This can lead to a nonuniform workload since the LAMMPS partitioning algorithm 
assumes a uniform cost-per-particle. 
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In the current benchmark simulation, the hot half of the domain will react more 
quickly and generally requires more time to solve per particle. This means that 
roughly half of the MPI processes will have higher reaction run times, while the 
remaining processes must wait to exchange neighboring particle information. The 
load imbalances do not appear to grow significantly since the parallel efficiencies 
are relatively flat for practical workloads if we ignore the unique serial cases. 

Because of the extremely high cost of solving the reaction ODE systems and since 
the reaction component does not involve communication, the remainder of this 
discussion focuses upon single-device optimization (i.e., a single multicore CPU or 
many-core GPU accelerator). Any single-device performance improvement will 
have a direct impact on large-scale parallel simulations with many compute nodes. 
The impact of nonuniform workloads will only be examined within the context of 
a single compute device. Distributed, multidevice load-balancing will be addressed 
in future studies. 

4. Results 

In this section, we examine several strategies for improving the performance of the 
reaction kinetics component of the DPD-RX software within a single compute 
device. The run times using these optimization strategies are compared to the 
baseline DPD-RX run times presented in the previous section. 

The 128-k particle case running on a single multicore CPU or a single GPU was 
selected as the primary benchmark for this optimization study. Thus, for both the 
MPI-only and the OpenMP implementations, the 14 cores of a single CPU are used 
for computing the reaction kinetics. Similarly, for the CUDA implementation, a 
single-Kepler GPU is used for computing the reaction kinetics. Running the 128-k 
particle case on only a single compute device permits the evaluation of various 
optimization methods for the kinetics integration as well as to assess the impact of 
load-balancing methods within a single device using a multithreaded approach. 
This study can then be used as a guide for future dynamic load-balancing methods 
across distributed MPI processes. The workload intensity of the 128-k particle case 
is 9.1-k particles per CPU core, which is also representative of standard practice for 
DPD-RX simulations. 

Although LAMMPS itself has support for OpenMP and CUDA parallelism for 
particle–particle interactions, for this study those non-RX computations were 
limited to MPI-only parallelism to simplify the experiment. Thus, unless stated 
otherwise, the timing measurements presented in this section include only the 
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reaction kinetics wall-clock time, and exclude the rest of the LAMMPS execution 
time. 

As noted, the baseline DPD-RX algorithm used the implicit CVODE stiff ODE 
solver with an analytical Jacobian matrix function of Eq. 1. The CVODE has the 
capability of estimating the system Jacobian using finite-difference quotients. This 
strategy requires NS RHS function evaluations (i.e., the number of chemical 
constituents in the current context). In general, an analytical Jacobian is more 
efficient since the NS RHS evaluations can be expensive and repetitive. However, 
the finite-difference Jacobian is considered since the RHS function is less complex 
and may offer more optimization opportunities (e.g., concurrently evaluating the 
NS RHS functions) than the analytical Jacobian. In the rest of this report, the 
CVODE with analytical Jacobian (CVAN) and CVODE with difference quotient 
(CVDQ) notations indicate a CVODE solver with an analytical and finite-
difference Jacobian, respectively. 

We have also used the RKF45 ODE solver introduced previously. The local error 
tolerances and ho estimation algorithm are the same as were used for CVODE 
previously.9 This ensures that the integrated solutions produced by the different 
ODE solver methods are equivalent (to within the specified tolerance) and that their 
run times can be consistently and directly compared. 

Three parallel processing methods were implemented for these 3 ODE solver 
strategies: the baseline MPI-only approach, a multithreaded approach using 
OpenMP with dynamic scheduling, and an accelerator approach whereby the ODE 
solvers are offloaded to a CUDA GPU. The OpenMP method was designed to 
handle the nonuniform workload by using dynamic scheduling. This approach is 
suitable for nonuniform workloads but is only applicable to shared-memory 
platforms (e.g., a multicore CPU). The GPU offloading approach uses CUDA 
versions of the CVODE and RKF45 solvers we previously developed and 
validated.9 All GPU benchmarks reported in the following use 128 threads per 
CUDA thread-block and the run times include all data transfer costs. 

4.1 Impact of Solvers and Parallelism 

The run time of the reaction component of the DPD-RX algorithm using the 3 ODE 
solvers and the 3 parallel implementations are shown in Fig. 5 for the 9S4R and 
45S201R reaction mechanisms. 
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Fig. 5 Comparison of the average reaction run times using various ODE solver methods 
and compute devices for the 128-k particle case with the a) 9S4R and b) 45S201R reaction 
mechanisms. Three ODE solver algorithms are compared: CVODE with an analytical 
Jacobian (CVAN), CVODE with a finite-difference Jacobian (CVDQ), and the explicit RKF45 
solver. Three implementations of each of those algorithms are compared: the original MPI-
only implementation (MPI) running on 14 cores (i.e., one CPU), an OpenMP implementation 
(OMP) using dynamic load-balancing on 14 cores, and a CUDA implementation (GPU) 
offloaded onto a Kepler K40m GPU. For MPI, the hashed bars show the average MPI process 
run times and the solid bars show the maximum MPI process run time over all 14 MPI 
processes. 

Both the average and maximum MPI process run times across all 14 processes are 
show in Fig. 5. This demonstrates the wide variation possible due to the nonuniform 
workload using the MPI-only paradigm. The maximum run time is what all MPI 
processes ultimately experience due to the bulk-synchronous nature of LAMMPS. 
The average run time is representative of the performance that could be achieved 
using a load-balancing technique that spans MPI processes. 

The OpenMP case uses dynamic loop scheduling to balance the nonuniform 
workload across the OpenMP threads (and CPU cores). A “chunk-size” of 5 
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particles per thread was found to be the most efficient, on average, for OpenMP 
dynamic scheduling of the DPD-RX component. For the 9S4R reaction mechanism, 
the OpenMP run time is higher than the average MPI run time for the CVAN and 
CVDQ solvers but is 21% less than the maximum MPI run time. This demonstrates 
the benefit of adaptive load-balancing for the nonuniform workload.  

For the larger 45S201R reaction mechanism, the average MPI and OpenMP 
reaction times are statistically equal but the OpenMP is 35% faster than the slowest 
MPI processes. Since the reaction component dominates the total cost for the 
45S201R reaction mechanism (>99%), OpenMP improves the total run time by 
32% (not shown). This again demonstrates the benefits of adaptive load-balancing 
for the nonuniform workload as well as the dominant cost of the DPD-RX 
component for larger, detailed mechanisms. 

Compared to CVAN with MPI, the average CVDQ method with MPI is 4% slower 
with the 9S4R reaction mechanism but is 193% slower with the 45S201R 
mechanism. This is due to the higher cost of the finite-difference Jacobian when 
scaled to larger mechanisms. There are several operations within the RHS function 
that are unnecessarily repeated with the NS RHS function evaluations in the CVDQ 
method. The analytical Jacobian is more expensive than a single-RHS function 
evaluation; however, the absolute cost is significantly less than the 45 RHS 
functions needed with the 45S201R mechanism using the finite-different 
approximation in CVDQ. 

The CVDQ method, while slower, does exhibit less variability than the CVAN 
method. The difference in variability (i.e., the % difference between the maximum 
and the mean) of the CVAN and CVDQ methods is small for the 9S4R mechanism, 
54% and 45%, respectively. The variability for CVAN is similarly high (52%) for 
the 45S201R mechanism, yet is only 3% for CVDQ. The absolute variability is also 
significantly less with the CVDQ method on the larger mechanism. We observed 
that the number of Jacobian evaluations required by the CVDQ solver was constant 
(1 Jacobian per integrated CG particle) for all time steps and for both 9S4R and 
45S201R mechanisms. However, the number of Jacobians used by CVAN varied 
and required over 2 Jacobians per particle at times. This variation could be caused 
by numerical differences (e.g., condition number) in the 2 Jacobian matrix 
representations, which could cause subtle differences in the ODE integration 
trajectories. 

The RKF45 method with MPI also exhibits much lower variability across the MPI 
processes and is 33% faster than the baseline CVAN implicit solver for the 9S4R 
mechanism. For the 45S201R mechanism, however, the average RKF45 run time 
is 41% slower than the average CVAN run time but the maximum run times are 
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statistically equal. The ODE systems in the DPD-RX simulations are generally 
considered stiff; however, the nonstiff solver appears quite capable of handling the 
specified tolerances efficiently. The small DPD time step may suppress the stiffness 
by restricting longer time-scale differences, a primary cause of ODE stiffness. That 
is, time scales are limited to 1 fs or less. 

The different ODE solvers all require approximately the same number of integrator 
steps. The RKF45 solver always requires 6 RHS function evaluations per 
integration step while the CVODE solver may need only one per integration step. 
On average, the RKF45 solver required 3 times as many total RHS function 
evaluations than the CVAN solver. The higher cost of the RHS function with the 
45S201R mechanism leads to higher overall cost for the RKF45 solver compared 
to the CVAN solver. This higher cost is most clearly seen in Fig. 5b when looking 
at the dynamically load-balanced OMP (green) case. 

The run times using the GPU version of the CVODE and RKF45 solvers are also 
shown in Fig. 5. The CVAN solver is accelerated by 32% over the OpenMP CVAN 
run time with the 9S4R mechanism. The OpenMP run time is used as a reference 
here since it is dynamically load-balanced and is more likely a truer estimate of the 
total single-device run time. The CVDQ is accelerated by 47% while RKF45 is 
accelerated by 60% over the OpenMP run time. The acceleration with the 45S201R 
mechanism is more substantial with the CVDQ and RKF45 solvers, achieving 75% 
and 78% improvement, respectively. The CVAN solver, however, is only improved 
by 30%. The CPU-GPU data transfer costs for the 9S4R mechanism account for 
13% of the run time with the RKF45 solver. The transfer costs become negligible 
with the large 45S201R mechanism due to the higher integration cost. 

The lower acceleration with the CVAN solver on the GPU can be attributed to the 
higher level of variability observed. As noted, divergence within a GPU warp 
decreases the efficiency. The higher level of variability observed with the CVAN 
solver indicates a higher level of divergence when compared to the other 2 solver 
methods. This explains the high-GPU acceleration for the RKF45 solver with both 
the 9S4R and 45S201R mechanisms and for the CVDQ solver with the 45S201R 
mechanism. For the RKF45 solver in particular, there is little opportunity for 
divergence owing to the simplicity of the RKF45 scheme. The only source of 
divergence is in the total number of ODE integration steps-per-particle and there 
was little observed variation in this metric. 

4.2 Impact of Sparse-Matrix Formulation 

The baseline implementation of the stoichiometric matrix (ν) in Eqs. 1 and 2 used 
a dense matrix format with NS rows and NR columns. The net species production 
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rate in Eq. 1 and the reaction rates in Eq. 2 were evaluated assuming a dense 
stoichiometric matrix. The net species reaction rates in Eq. 1 can be written as a 
matrix-vector product of stoichiometric matrix and the rate-of-progress vector. This 
is suitable for the 9S4R reaction mechanism since there are few zero elements in ν. 
There, the relative number of zero elements in the matrix (i.e., the sparsity) is 44%. 
The cost of including the zero elements in the matrix-vector products was assumed 
negligible due to the small matrix size. This design, however, is not suitable for 
reaction mechanisms with larger numbers of chemical species and reactions such 
as in the 45S201R mechanism. The sparsity for the 45S201R mechanism is 91% 
and zero elements will constitute the vast majority of the matrix-vector products in 
Eqs. 1 and 2. A sparse matrix formulation was implemented following the ELLpack 
format,15 which has been shown to be efficient on throughput-oriented devices such 
as GPUs. This format is also suitable since the number of nonzero elements per row 
(i.e., the number of species per reaction) is small and does not vary significantly. 

An additional optimization was investigated regarding the stoichiometric matrix. 
The majority of stoichiometric terms in the 45S201R reaction mechanisms are 
small, integral values (i.e., positive integers less than 3). The standard C/C++ 
exponentiation function (i.e., pow(x,y) evaluates xy) uses floating-point values for 
both the base and exponent. This generality adds significant cost for small, integer 
exponents. We have added a test to determine if all of the stoichiometric terms in a 
given reaction are integral. If so, we use a specialized function (powi) designed for 
small, positive integer exponents. Otherwise, the standard pow function is used. 

Sparse versions of the RHS and analytical Jacobian functions were implemented 
for both the host CPU and GPU. The run times using the original dense baseline 
matrix format (Dense), sparse format (Sparse), and sparse format plus the integral 
exponentiation function (Sp-PowI) with the CVAN solver on the 128-k particle case 
with the 9S4R and 45S201R reaction mechanisms are shown in Fig. 6. In Fig. 6, 
the average MPI process run times are shown by the hashed bar and the maximum 
MPI process run times by the solid bar. GPU is the run time (including data transfer) 
using the Kepler K40m GPU; and OMP is the OpenMP thread parallel model with 
dynamic load-balancing using all 14 cores on 1 Thunder CPU. Specific data is 
shown in the figure for small values. With the 9S4R mechanism, there is a small 
but noticeable (22%) improvement in the average MPI process run time for the 
reaction component using the sparse format. The variation between the MPI 
processes is proportionally reduced. The OpenMP implementation is similarly 
improved by 25%. The MPI run times are unaffected by the powi function and the 
OpenMP throughput is worsened. This result is expected since none of the 9S4R 
reactions qualify for the powi function; therefore, this method only adds conditional 
testing overhead. 
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Fig. 6 Comparison of 128-k particle reaction solution times of the CVODE solver with an 
analytical Jacobian (CVAN) using different matrix storage formats while implementing the  
a) 9S4R and b) 45S201R reaction mechanisms. 

Unlike the 9S4R reaction mechanism, the 45S201R reaction mechanism with the 
sparse version of the CVAN solver is significantly improved (Fig. 6b). The average 
MPI run time is reduced by 90% using the sparse format. (Again, the variations are 
proportionally similar). The powi function improves the average MPI process run 
time by an additional 39%. The OpenMP reaction run time is statistically the same 
as the average MPI process run times and the net performance improvement is 
identical. 

The GPU run times are also improved but to a lesser extent than the CPU run times. 
The sparse format improves the GPU throughput by 61% but the powi function only 
adds an additional 2% to the performance. The lower improvement for the GPU run 
times is typical of bandwidth-limited conditions. That is, the powi function reduces 
the floating-point intensity but the limiting factor is the memory throughput. 

The results for the same sparsity study using the explicit RKF45 solver are shown 
in Fig. 7 using the same notations as in Fig. 6. For the 9S4R mechanism, the sparse 
format improves the average MPI process and OpenMP run times by 43% and 39%, 
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respectively, and the GPU run time by 15%. These improvements are greater than 
observed with the CVAN solver. The sparse implementation of the analytical 
Jacobian function requires a matrix–matrix product, which is less efficient in terms 
of data parallelism (i.e., vectorization) than the RHS function implementation. 
Furthermore, the Jacobian matrix itself is dense and must be factorized as part of 
the nonlinear Newton iteration within CVODE. These dense matrix operations are 
unaffected by the sparse-stoichiometric-matrix optimizations. The RKF45 solver, 
which uses only sparse-matrix-vector products in the RHS function, benefits 
proportionally more since the dominant cost of the explicit method is the RHS 
function itself. 

 

Fig. 7 Comparison of 128-k particle reaction solution times of the RKF45 ODE solver using 
different matrix storage formats while implementing the a) 9S4R and b) 45S201R reaction 
mechanisms 

The sparse RKF45 solver has significantly higher performance than the dense 
method on the 45S201R reaction mechanism. The average MPI process and 
OpenMP run times are both reduced by 93% and the GPU reaction run time is 
reduced by 83.5%. The performance improvements match close to the sparsity 
pattern on the latency-oriented platform (i.e., the CPU). On these devices, 
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performance is improved most effectively by reducing the number of operations 
(e.g., floating-point multiplication). This is especially relevant here since the 
individual ODE systems are small enough to fit within the L1 data cache on the 
CPU cores (i.e., memory bandwidth should not be a limiting factor). This effect is 
seen again with regards to the powi optimization: the integer exponent function 
improves the CPU run times by an additional 76%. With the powi optimization the 
GPU run time is also improved (by 30%) but this is less significant than on the CPU 
cores. Again, this indicates that the GPU is limited by bandwidth, not floating-point 
throughput. 

4.3 Impact across All Optimizations 

The impact of the various optimizations detailed in the previous sections can vary 
for different simulation parameters. To fairly compare them, we will use a 
normalized measure of performance of the reaction kinetics measured via a 
parameter sweep consisting of over 1,000 unique benchmark runs. The normalized 
performance measure is the throughput of particles integrated per device 
millisecond, where each device is either a single CPU or GPU. 

Figure 8 shows the throughput of the 9S4R mechanism on 18 different 
combinations of solvers (CVAN, CVDQ, and RKF45), stoichiometric matrix 
(dense and sparse), and parallelism paradigms (MPI, OpenMP, and GPU) run with 
23 different combinations of particle and device counts. The horizontal axis is 
organized from left-to-right with generally increasing WI, starting at 4,000 
particles-per-device, and ending at 1,024,00 particles-per-device. For the CPU 
devices, that range corresponds to 285–73,142 particles-per-core; thus, we are 
exploring both below and above the typical WI of 2,000–10,000 particles-per-core 
as previously discussed. 
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Fig. 8 Throughput (particles integrated per device millisecond) of the reaction kinetics integration run time as a function of workload intensity with 
the 9S4R mechanism with the 16-k, 128-k, 1-M, and 8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, or RKF45; and dense or sparse 
stoichiometric matrix. Parallelism paradigms are delineated by colors, solvers by symbols, and matrix format by line structure. 



 

Approved for public release; distribution is unlimited.  
18 

As can be seen by the dashed lines in Fig. 8, the sparse matrix representation gives 
a significant performance boost across all of the 9S4R scenarios. Similarly, the 
GPU runs (orange) show improvement for all 9S4R scenarios with at least 8,000 
particles-per-device, though the GPU performance does not saturate until 32,000–
64,000 particles-per-device for the 9S4R mechanism. The increased load imbalance 
observed with the CVAN and CVDQ solvers can be clearly seen by the dramatic 
performance spikes for single-device runs for both the GPU (orange) and OpenMP 
(green) paradigms. For the OpenMP runs, this spike can be attributed to the 
dynamic load-balancing that is easy to realize within a single OpenMP context. For 
the single GPU runs, this performance spike can also be attributed to a dynamic 
load-balancing effect for the 9S4R mechanism. 

Figure 9 shows the throughput of the 45S201R mechanism on a similar 
combination of solvers, matrix formats, and parallelism paradigms run with the 
same 23 combinations of particle and device counts. The dynamically load-
balanced performance spikes for single device runs can also be seen in Fig. 9 for 
the 45S201R mechanism, but they are not as dramatic an improvement for the GPU 
as they are for the OpenMP runs. This can be explained by considering the 
granularity of the scheduling schemes on the GPU and OpenMP. On the GPU, 
thread blocks are dynamically scheduled to available streaming multiprocessors. 
We are using 128 threads per-thread-block for all GPU benchmarks, which equates 
to a scheduling granularity of 128 ODE systems. The OpenMP dynamic scheduler 
uses only 5 ODE systems-per-thread. The finer granularity appears better suited to 
handle the variation between the ODE system-integration costs in the 45S201R 
mechanism. 
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Fig. 9 Throughput (particles integrated per device millisecond) of the reaction kinetics integration run time as a function of workload intensity with 
the 45S201R mechanism with the 16-k, 128-k, 1-M, and 8-M particle simulations using MPI, OMP, or GPU; CVAN, CVDQ, or RKF45; and dense, sparse, 
or Sp-PowI stoichiometric matrix. Parallelism paradigms are delineated by colors, solvers by symbols, and matrix format by line structure. 
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As can be seen by the dashed lines in Fig. 9, the sparse stoichiometric matrix also 
gives a significant performance boost across all of the 45S201R scenarios. 
However, the Sp-PowI (dotted lines) and RKF45 (X symbols) yield the best 
performance regardless of the parallelism paradigm for the 45S201R mechanism. 
The most striking observation from Fig. 9 is that the RKF45 solver with Sp-PowI 
and OpenMP is the fastest approach in all of the 45S201R scenarios we tested. 

5. Conclusions 

We have presented results from an optimization effort to improve the throughput 
of LAMMPS DPD-RX simulations of energetic materials. The reaction kinetics 
component was shown to be the limiting factor in a scaling study of the DPD-RX 
software. For the 9S4R reaction mechanism, the reaction component accounted for 
70% or more for typical DPD-RX simulation WIs (i.e., 2,000–10,000 particles-per-
CPU-core). For the 45S201R reaction mechanism, the reactions accounted for more 
than 99% of the run time in our baseline benchmark. Because of this high cost, we 
investigated several strategies to improve the performance of this specific 
component alone. The performance improvement strategies focused upon single-
device optimizations as the costly reaction components do not involve 
communication and any single-device optimizations are applicable across any 
number of devices. 

Load imbalances were identified as a performance limitation in MPI-only parallel 
environments. The load imbalances were caused by the variable workloads of the 
reaction systems. The benchmarked version of LAMMPS distributes particles 
evenly across the available MPI processes assuming uniform cost-per-particle. We 
tested OpenMP as a way to dynamically load-balance the ODE integrations within 
a single multicore CPU. The average run time of the reaction component with only 
MPI parallelism was faster than or equal to the OpenMP run time; however, the 
OpenMP was faster than the slowest MPI process, which is the limiting factor in 
the bulk synchronous LAMMPS framework. This dynamic load-balancing 
technique was limited to a single CPU device but demonstrates the improved 
parallel efficiency that could be attained with an effective distributed memory load-
balancing strategy. Strategies for improving distributed load-balance shall be 
investigated in future studies. Methods such as those demonstrated by Nakashima 
et al.16 should be applicable for the particle-based LAMMPS framework. 
Furthermore, weighted dynamic load-balancing capabilities17 were recently added 
to LAMMPS and will be investigated. 

We investigated different methods for integrating the system of stiff ordinary 
differential equations that arise from the reaction mechanism. The baseline 



 

Approved for public release; distribution is unlimited.  
21 

integration method used the implicit CVODE BDF solver with an analytical 
Jacobian matrix function (CVAN). We also evaluated the CVODE solver using a 
Jacobian matrix automatically computed using finite-differences (CVDQ). The 
CVDQ method was found to be equally performant for the 9S4R reaction 
mechanism but was significantly slower for the 45S201R mechanism due to the 
high cost of estimating the Jacobian matrix. We also investigated the explicit 
RKF45 ODE solver. 

The performance of the different ODE solvers was dependent upon the reaction 
mechanism size and the computational device. In addition to the OpenMP method 
with dynamic scheduling, GPU (CUDA) implementations of the CVODE and 
RKF45 solvers were investigated. 

We found that for the 9S4R reaction mechanism, the RKF45 solver was more 
efficient than the CVAN and CVDQ solvers on both CPU and GPU platforms. The 
acceleration on the GPU was significantly higher with the RKF45 solver due to 
lower control flow divergence compared to the complex BDF schemes. This result 
was consistent with prior studies by Stone and Davis and Niemeyer and Sung.9,11 
For the 45S201R mechanism, the baseline (i.e., dense stoichiometric matrix) 
CVAN solver using OpenMP was faster than the RKF45 solver using OpenMP. 
The 45S201R mechanism has many more reactions and intermediate species. 
Under the benchmark scenario, this may lead to a higher level of stiffness. The GPU 
RKF45 solver with the 45S201R reaction mechanism was 4.6 times faster than the 
dynamically load-balanced OpenMP version and was shown to be the fastest 
combination of solver and device for this mechanism and matrix structure. 

The stoichiometric matrix storage structure was then investigated. A sparse storage 
format was implemented and exponentiation with integer stoichiometric 
coefficients was optimized. The latter was only applicable for the 45S201R reaction 
mechanism since the 9S4R mechanism has only nonintegral stoichiometric 
coefficients, a common difference between detailed and reduced-order 
mechanisms. 

We observed a small but measurable performance improvement using the sparse 
matrix format with the 9S4R mechanism on the host CPU (i.e., MPI and OpenMP) 
with all ODE solver methods. The throughput was improved significantly more 
with the 45S201R mechanism due to the much higher matrix sparsity. The 
performance improvement with RKF45 was higher than the CVAN solver on the 
CPU since the matrix format and exponentiation optimizations were limited to the 
RHS function and a portion of the analytical Jacobian function. Other dense matrix 
operations in CVODE (e.g., factorization) were unaffected. 
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The sparse stoichiometric matrix optimizations had no impact on the GPU 
throughput with any ODE solver using the small 9S4R reaction mechanism. The 
GPU performance was increased with the larger 45S201R mechanism but to a 
lesser extent than that observed on the host CPU. The optimizations, particularly 
the powi optimization, reduced the floating-point intensity of the computations 
more than the bandwidth and this will have a greater impact on latency-optimized 
CPUs. 

Overall, the reaction kinetics component with the reduced-order 9S4R reaction 
mechanism was accelerated 6.1 times over the baseline performance (MPI CVAN 
with dense format) using the best performing method (GPU RKF45 with sparse 
format) for the 128-k particle single-device runs. This performance improvement 
is significant and will have a direct impact on current DPD-RX simulations by 
permitting a reduction in run time or a proportional increase in the number of CG 
particles. 

For the more chemically detailed 45S201R mechanism, the best method (OMP 
RKF45 on the host CPU using the Sp-PowI method) exceeded 60 times the 128-k 
particle single-device baseline performance. This level of acceleration indicates 
that the use of detailed reaction mechanisms—which have a broader modeling 
applicability and improved fidelity—are possible and attainable within the DPD-
RX software. Moreover, these optimization efforts provide sufficient flexibility to 
optimally treat a given set of reaction equations, regardless of size, type, or stiffness 
and addresses a key simulation challenge for modeling the multiscale nature of the 
energy release and propagation mechanisms in advanced energetic materials. 

Many of the optimizations presented in this report were incorporated into the 
USER-DPD package of the “28 Jun 2016” LAMMPS release. As a result of this 
work, the DPD-RX software enables efficient use of HPC resources to perform 
previously impractical micro- and mesoscale particle-based simulations. This 
allows new problems to be addressed and previously inaccessible phenomena to be 
studied within a simulation. 
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List of Symbols, Abbreviations, and Acronyms 

BDF  backwards differentiation formula 

CG  coarse-graining 

CUDA  Compute Unified Design Architecture 

CVAN  CVODE with analytical Jacobian 

CVDQ  CVODE with difference quotient 

CVODE C Variable Order Differential Equation 

DPD  Dissipative Particle Dynamics 

DPD-RX Reaction Dissipative Particle Dynamics 

EM  energetic materials 

fs  femtosecond 

GPU  graphics processing unit 

HPC  high-performance computing 

MPI  message passing interface 

ODE  ordinary differential equations 

RDX  crystalline cyclotrimethylenetrinitramine 

RHS  right-hand-side 

RKF  Runge-Kutta-Fehlberg 

SIMT  single-instruction, multiple-thread 

WI  workload intensity 
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