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1. EXECUTIVE SUMMARY

Network Knowledge Synthesis (NKS) refers to effective use of network defense information
for cyber assessment and management. The vision of NKS is to achieve better informed situational
awareness leading to superior cyber defense. Five major components are necessary to achieve this
vision: sensor placement, data collection, data filtering, data analysis and sense making, and in-
formation sharing. By reviewing the state of the art for each of these components, we identify
high-priority, short-term research objectives for NKS components, which include: collection of
small, indicative, and symptomatic network data; connecting identities at multiple layers; ensur-
ing the authenticity of collected data; identifying the ideal semantic layer for each type of data;
developing scalable and decentralized filters; developing fast analysis algorithms that can operate
in a malicious environment; testing such algorithms in real-world networks; and sharing properly
anonymized network “knowledge” rather than raw data. These efforts will constitute the basic
blocks of an effective NKS system.
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2. INTRODUCTION

Network knowledge synthesis (NKS) is concerned with the effective use of network defense
information for cyber assessments and management. The ultimate goal of NKS is to achieve better
informed situational awareness leading to superior cyber defense. Research in this area focuses on
the application of external environmental information to internal network assessment information
with the goal of improving risk management decisions and developing enhanced shared situational
awareness capabilities.

2.1 GOALS

This report identifies the major gaps and challenges that currently exist in NKS. By analyzing
the state of the art in NKS research, we identify and prioritize the important gaps that need to
be researched in order to construct a system that effectively uses network defense information for
cyber assessments and management.

The goal of this study is to find technical gaps within research projects that can be addressed
in the short term to make effective headway in building a NKS system.

2.2 SCOPE

For this report, we focus our study on prominent cybersecurity research. To this end, we
evaluate the publications in top-tier security conferences, including IEEE Symposium on Secu-
rity and Privacy (Oakland), ACM Computer and Communications Security (CCS), Network and
Distributed Systems Security (NDSS), USENIX Security, Symposium on Research in Attacks, In-
trusions, and Defenses (RAID), and Annual Computer Security Applications Conference (ACSAC).
We have incorporated papers from other relevant conferences (including programming languages
and operating systems conferences) as necessary.

Since cybersecurity research progresses very rapidly, we focus our study on the past four
years, but include older publications if they constitute the state of the art in that area.

We identify the gaps in different components of NKS in Section 3, while excluding the areas
covered in our previous “Attack Analysis” [27], “Web Security Countermeasures” [5], and “Cyber
Defense Automation” [4] reports.

Research areas that are explicitly in-scope for this report include, but are not limited to:
situation awareness of assets and risk, data collection, sensors for collecting relevant data at the
right abstraction layers, correlation of data for improved detection, data analysis and sense making,
and information sharing. In this report, we focus on these activities as they relate to an enterprise
network.

Many of the techniques discussed in this report address NKS gaps on traditional enterprise
networks by utilizing Software-Defined Networking (SDN), which many existing networks can be
augmented to use. In SDN, packets are forwarded through the network by matching their head-



ers against a set of pattern-match rules and associated actions. A network controller (i.e., SDN
controller) on a physically separated control plane adds and removes these rules to network de-
vices in response to sensed events. For example, if a packet arrives whose header does not match
any existing rule, it can be sent to the controller for analysis. In response, the controller emits
rules to one or more switches specifying how to handle packets of that type in the future. As a
result, SDNs separate the control plane (i.e., SDN controller) from the data plane (i.e., switches).
The best-supported SDN technology is OpenFlow [15], which is now available from most COTS
networking equipment vendors (e.g., Juniper Networks, Broadcom, etc.). In many cases, existing
non-SDN switches can be converted to SDN via software patching. Note that although some of the
gaps are discussed in the context of SDN because the state of the art technique for that component
incorporates SDN, the gaps are generic, and they are equally applicable to non-SDN NKS systems.

Due to limited resources, low priority, desired sponsor focus, and treatment in previous re-
ports, we exclude these potential NKS areas from this report:

o Attack detection: activities primarily focused on detection of malicious activities (covered in
the “Attack Analysis” report [27])

e Social network research: analysis or measurements related to social network websites, e.g.,
Facebook, Twitter, etc. (low priority)

e Mobile ad-hoc networks: research focused on mobile ad-hoc networks (MANETS) and sensor
networks (low priority)

e Internet-scale measurements: analysis and statistical surveys of large parts of the Internet;
this area of research can be viewed as situation awareness of the Internet, rather than an
enterprise network (not the desired focused and limited resources)

The rest of this report is organized as follows: Section 3 provides an overview of NKS and its
components; Section 4 describes our methodology, gap selection, and gap prioritization processes;
Section 5 describes the state of the art for each of the NKS components and their high-level gaps;
Section 6 describes the overall summary and prioritization of the gaps; and Section 7 concludes the
report.



3. OVERVIEW OF NETWORK KNOWLEDGE SYNTHESIS

Proper network knowledge synthesis (NKS) is a system comprised of multiple components to
enable better situation awareness. Each component supports and contributes to network knowledge
synthesis. An NKS system begins with Sensor Placement, followed by Data Collection, Data
Filtering, Data Analysis, and finally, Information Sharing, as shown in Figure 1.
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Figure 1. Components of a Network Knowledge Synthesis System

Sensor Placement is concerned with where sensors are placed on the network such that the
correct type of data can be collected. Sensors refer to any hardware device or software code that
is responsible for collecting raw data in the network. A network tap, an end-host packet counter,
and an authentication log collection agent are all examples of sensors. Within this component, it
is important to consider how much data the sensors will collect, where the sensor is located with
respect to the data storage facility, where data analysis occurs, and how the sensor will perturb
network performance. For example, sensors that collect packet headers can be placed on switches,
routers, software-defined networking (SDN) controllers, and/or end hosts. Each of these possible
choices has its implications regarding scalability, accuracy, overhead, and difficulty to evade.

The Data Collection component concerns the type and quality of data that is collected for
network knowledge synthesis. Volume, semantic layer, and authenticity of collected data are im-
portant considerations. Other important issues related to data collection include transfer, storage,
encoding, compression, and processing.



Data Filtering is designed to reduce and/or refine the raw dataset so that it is more tractable
and useful for analysis. Though this is a frequently overlooked step, it can have an important effect
on the quality and quantity of knowledge that can be extracted. For example, if operators are
forced to sift through many false positives before identifying a true detection, the tool or sensor
will be abandoned.

Data Analysis is the largest component within NKS as it deals with making sense of the data.
Though there may only be one dataset, the types of data analysis that can be performed on the
dataset are extensive. Similarly, the number of conclusions that are drawn from data analysis is
voluminous. As such, it is important to ensure that the type of analysis performed achieves the
goal of improving situation awareness for a given threat model.

Lastly, Information Sharing focuses on dissemination of information about network status,
events, alerts, and intrusions to other organizations. Information sharing can be imperative in
ensuring that multiple organizations do not succumb to the same attacks. At the same time,
though the concept of information sharing is not novel, it is not widely practiced as there are many
challenges with respect to effective deployment.



4. METHODOLOGY

We have conducted a systematic review of the state of the art in the development of each of
the five NKS areas, covering promising research that has been done within the last four years. In
the course of our review, we have identified a number of existing gaps that remain towards achieving
network knowledge synthesis that allows for network assessment and improved risk management.

4.1 GAP DISCOVERY PROCESS

For the purposes of this study, we focus on the open literature and publicly known NKS
techniques. We reviewed papers and studies, mainly from the prominent security conferences such
as the IEEE Symposium on Security and Privacy (Oakland), Network and Distributed Systems
Security (NDSS), ACM Computers and Communications Security (CCS), USENIX Security Sym-
posium, Annual Computer Security Applications Conference (ACSAC), and the Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).

We initially surveyed the titles and abstracts for the past four years of each conference’s
proceedings. We then down-selected this large list of papers based on their relevance to NKS.
We read the papers from this refined list and extracted any relevant gaps based upon our own
experience, the context of the paper, and the stated research contribution.

4.2 GAP SELECTION PROCESS

The gap selection process was performed during team meetings and began with individual
team members independently determining if a paper was worthy of carrying forward. After gaps
from each paper were identified, a majority vote was then used to determine whether to keep each
gap.

Note that there is a significant non-uniformity in the amount of research being done on NKS
components. Some components of NKS (e.g., sensor placement) are not widely studied in the
academic community and have very few relevant papers. In these cases, the gaps which have been
identified may not have corresponding academic work. This is an indication that no current work
exists that tries to address the gap; it does not indicate that the gap itself is minor or does not
exist. Moreover, we have included all papers from the sources listed above that relate to NKS
components, so the scarcity of papers related to a specific component (e.g., sensor placement) is a
good indication of the lack of research attention to that component.

4.3 GAP TREATMENT AND CLASSIFICATION PROCESS
There are three major types of gaps in existing network knowledge synthesis systems:

e Technology Gap: an effective system does not yet exist

e Deployment Gap: systems have been proposed or implemented (open source or commercial),
but all of the existing systems have impracticalities that impede their adoption



e Practice Gap: practical and effective systems exist in the community, yet they are not adopted
widely, perhaps because of the lack of awareness or incentives

In this report, we primarily focus on deployment and technology gaps. Note, however, that the
distinction between these areas is not well-established and there are many gray areas. For example,
the amount of acceptable overhead varies from system to system, which means that a deployment
gap in one system can be interpreted as a practice gap in another. Moreover, each deployment
gap eventually points to a technology gap. For example, knowing that all existing systems have
high overhead (a deployment gap) points to the fact that faster systems have to be developed (a
technology gap).

4.4 GAP PRIORITIZATION PROCESS

To prioritize the gaps within each component, we used a subjective ranking system with two
components: likelihood and impact. Likelihood is the frequency at which this gap occurs in current
NKS systems. For example, some analysis tools utilize active techniques, but as this does not
occur often, it has a low likelihood. Impact is how severely the gap impedes NKS capabilities. For
example, the nonreduction of storage size due to filtering is not a major hindrance to NKS as one
can perform the analysis in real time if the other components of NKS are in place; as such, it has
low impact. As this was a subjective ranking, both likelihood and impact were given qualitative
values of low, medium, and high.

To generate this ranking, first, the team identified the highest priority gaps for each component
within NKS based on the number of papers highlighting the gap, whether the gap has truly been
solved, and whether current technology exists that can solve the problem. Next, individual team
members subjectively ranked each gap according to its likelihood and impact. The rankings for
each gap were consolidated to produce a final ranking for each gap, i.e., when all team members
agreed, the final ranking was recorded, but when team members disagreed, a discussion ensued until
all team members agreed on a consensus and then the final ranking was recorded. Note that our
priority ranking is a subjective computation based on the qualitative ranking of our team members.
Other researchers are likely to compute different priorities based on their scoring of the gaps.



5.1

5. GAPS AND RESEARCH DIRECTIONS
GAPS IN SENSOR PLACEMENT

5.1.1 High-Level Gaps

. Strong trade-off between how much data is collected and overhead
. Sensors require binding identities across multiple layers

. Sensors are spatially /temporally static

. Many network devices are black boxes

. Sensors require collection across multiple layers

5.1.2 Description of Gaps

. Strong trade-off between how much data is collected and overhead.

Sensors are traditionally placed on the network edge (e.g., at firewalls, gateways, or web
proxies) where traffic volume is highest, rather than distributed across the network. This
forces a tradeoff between lightweight sensing of all packets at line rate and collecting more
data per-packet versus being forced to sample from traffic and possibly missing important
events.

. Sensors require binding identities across multiple layers.

Sensors collect network identifiers like IP and MAC addresses from packet headers, while
application logs collect user names and other high-level identifiers. Without a secure binding
between these identifiers, mapping sensed network events to user or application actions is
unreliable and vulnerable to spoofing.

. Sensors are spatially/temporally static.

Sensors, once placed, are generally fixed in time, space, or both. This makes their behavior
predictable to an attacker, who can then operate outside of the sensor’s range (space) or its
sampling period (time). This gap is present in the Symbiote technique [10].

. Many network devices are black boxes.

Network routers, switches, and middleboxes usually run proprietary, closed-source firmware
whose features and capabilities are only partly documented. This makes it difficult to insert
new sensors into these devices, and makes the limitations of any provided sensors difficult to
understand. This gap is present in the Symbiote technique [10].



5. Sensors require collection across multiple layers.

Effective collection of NKS data should also happen across multiple software stack layers
including the network, hardware, operating system, and applications. For example, to an-
swer the typical query of “who connected to this service?”, it is not enough just to collect
network packets. One, in addition, has to collect server logs, login names from the operating
system, and application logs. Current NKS sensors are often limited to network collection
only.

There is little state of the art work on sensor-placement in the academic community. Below,
we cover the only relevant technique to appear in top-tier conferences. It is addresses gap 1 but
suffers from gaps 3 and 4.

5.1.3 Technique: Symbiotes

Description of Technique

Embedded devices such as routers, switches, and firewalls form a communication substrate for
the Internet. These devices connect servers and hosts over the Internet. However, current defen-
sive measures only protect hosts or servers while leaving the communication substrate prone to
exploitation.

The authors present a technique that automatically hardens switches, routers, and firewalls
by injecting a software construct known as a Symbiote [10] into the unused address space portion of
the host program executing in legacy embedded devices. The Symbiote effectively turns embedded
devices into sensors that detect unauthorized modifications of static areas within the host program’s
address space. The Symbiote has five fundamental security properties:

1. has full visibility into the code and execution state of the host program
2. can passively monitor or actively react to events observed at runtime
3. executes alongside the host program

4. is an autonomous entity, which has been hardened to defend against removal or unauthorized
modification once it is injected into the address space of the host program

5. is differentiable because Symbiotes are randomized and mutated each time they are created,
thereby ensuring that no two instantiations of the same Symbiote are the same; randomizing
and mutating the Symbiote renders attacks that rely on predictability of code structures in
the Symbiote ineffective.

To demonstrate the efficacy of their approach, the authors use Cisco firmware and hardware
as the platform by injecting a Symbiote into a Cisco router. In addition to the Symbiote-protected
router, the authors also build a monitoring station and a capture and analysis system that automat-
ically collects and analyzes forensics data once an alarm is triggered by the Symbiote. The authors
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show that given the right Symbiote scheduler (the scheduler impacts the resource consumption of
the Symbiote), the impact of Symbiotes on the control plane can be significantly reduced without
adversely affecting the detection latency of the Symbiotes. The authors show that the Symbiote is
able to detect unauthorized modifications of memory in 450 ms.

Technique-Specific Gaps

Although the Symbiote approach is interesting, it has its gaps. The Symbiotes cannot detect
attacks that do not modify static memory regions in the host program’s address space. Because
of this, an attacker can disable a Symbiote before actually executing their payload. The authors
used a Cisco router as an example, but it still remains to be seen how effective their technique is on
other embedded devices. The efficiency and effectiveness of the Symbiote is based on the Symbiote
scheduler and determining a priori the right scheduler to use is still unknown. Also, it is difficult
to determine how scalable, i.e., in terms of CPU usage and detection latencies, the technique is in
an enterprise network with many routers and switches.
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5.2 GAPS IN DATA COLLECTION

10.

5.2.1 High-Level Gaps

. Collection at line speed is very hard

. Assumes a benign environment

. Collection occurs at the wrong semantic level

. Analysis does not happen at collection location, resulting in transfer overhead
. Unscalable to store collected data

. Efficient techniques depend on type of data collected

Data must be collected to find interesting events, but one must know what data to collect to
find events —a Catch-22

. In-band collection perturbs the network

. Requires manual effort to specify what data to collect

Cannot work on encoded/compressed data

5.2.2 Description of Gaps

. Collection at line speed is very hard.

Routers, switches, and middleboxes must parse packet headers in order to route traffic, which
incurs end-to-end latency costs. These costs (or costs for dedicated hardware to mitigate the
gap) are substantially increased if the device must also duplicate the header or even the entire
packet, which is often an order of magnitude larger than the header. This gap is present in
Netsight [17], OFRewind [33], and Peek-a-Boo [14].

. Assumes a benign environment.

Data collection systems assume that all data is a genuine reflection of network conditions.
In many cases, however, an attacker can falsify or corrupt data to reflect a poisoned view of
network state (e.g., ARP posioning or DHCP spoofing). Additionally, the collection system
itself might be targeted by exploits if it parses any of the collected data. This gap is present
in NetAssay [12], Netsight [17], OFRewind [33], and Peek-a-Boo [14].

. Collection occurs at the wrong semantic level.

Network data collection generally is focused on packets headers and payloads, but analysis
focuses on application-layer events like logins, database accesses, etc. Mapping the low-level
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data (packets sent from A to B) to high-level events (a user has logged in) can be very difficult.
This gap is present in Netsight [17], OFRewind [33], SE-Floodlight [29], and Peek-a-Boo [14].

. Analysis does not happen at collection location, resulting in transfer overhead.

Data collection occurs either in-network on switches, routers, and taps, or on end-hosts.
Moving this data to a central storage and analysis server uses the same network that is be-
ing monitored, which makes scalability very difficult. For example, if all network traffic is
captured then network bandwidth usage will double. This gap is present in NetAssay [12],
Netsight [17], OFRewind [33], and NetStore [16].

. Unscalable to store collected data.

Modern networks have bandwidths measured in gigabits or tens of gigabits per second. Thus,
storing even one day of network traffic can easily require tens of terabytes of storage. This
gap is present in OFRewind [33] and NetStore [16].

. Efficient techniques depend on type of data collected.

Data can be collected efficiently if its structure is known and uninteresting portions can
be identified and ignored. This varies by the type of data being, e.g., IP Addresses may only
have certain subnets of interest, TCP ports may only be worth collecting if the port is not
ephemeral, etc. If the kind of data to be collected changes over time, substantial control
overhead may be required to change which efficient data collection schemes are in place. This
gap is present in SE-Floodlight [29], Observing Unobservable Network Communications [18],
Peek-a-Boo [14], and NetStore [16].

. Data must be collected to find interesting events, but one must know what data to collect to
find events —a Catch-22.

Since it is often impossible or unscalable to collect all network data, operators can collect
only an ‘interesting’ subset that contains relevant events. However, this requires a priori
knowledge of future events, which is only available for predictable events and not attacks
or anomalies. This gap is present in NetAssay [12], Netsight [17], OFRewind [33], and Net-
Store [16].

. In-band collection perturbs the network.

Collecting network data often uses the same computation and storage resources that are
used for packet forwarding. This can lead to increased latencies and lowered bandwidth,
especially if collected data is also transferred over the network being monitored. Moreover,
this collection changes the properties of the network (e.g., bandwidth usage, open ports, valid
data streams, etc.) being monitored. This gap is present in Netsight [17] and OFRewind [33].

. Requires manual effort to specify what data to collect.
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In order to determine if a packet is worth logging, data collection systems require opera-
tors to define selection criteria. These are often in the form of low-level regular expressions
or wildcarded statements that are difficult to write correctly and even more difficult to debug
or verify. This gap is present in NetAssay [12], Netsight [17], and OFRewind [33].

10. Cannot work on encoded/compressed data.

To remain scalable, data collection systems cannot collect all network traffic. Instead, they
must rely on a set of selection criteria to identify packets of interest. If the data in these
packets is compressed, encrypted, or encoded, however, the system cannot recognize fea-
tures of interest and will discard the packet rather than collecting it. This gap is present in
NetAssay [12], OFRewind [33], and NetStore [16].

The following techniques represent cutting-edge academic research on data collection for net-
work knowledge synthesis. While all of the gaps described above are present in at least one tech-
nique, gaps 2, 3, 4, 6, and 7 are present in every technique that develops a general collection
framework for network data. Furthermore, gaps 10, 1, 2 ,7, and 8 are not addressed by any tech-
nique.

5.2.3 Technique: NetAssay

Description of Technique

Network operators monitor network traffic using low-level features, e.g., IP addresses. These low-
level features do not allow operators to monitor based on intent, e.g., continuously monitor a user
known to show suspicious web patterns. Intentional network monitoring allows operators to monitor
traffic based upon higher-level principles such as the user, application, or device that is initiating
the traffic or where the traffic is going [12].

NetAssay is a mechanism that allows for intentional network monitoring. It does so by
allowing for dynamism and heterogeneity. With dynamism, as users, applications, and services do
not map to static entities, a binding mechanism must be used to dynamically map higher-level
abstractions to flow-space in realtime. Heterogeneity is required as the mapping between higher-
level abstractions and low-level flow-space entities depend on many data sources, e.g., DNS and
BGP [12].

NetAssay has two components: a control application and metadata engines. The control ap-
plication is written in a Pyretic-style language to augment Pyretic with NetAssay capabilities. The
metadata engines translate a NetAssay policy into a Pyretic policy and dynamically update the
policies. The metadata engines will depend on many different mappings, e.g., a high level abstrac-
tion to match specific users may require low-level entities that track multiple source IPs. The exact
low-level entities correspond to flow table entries for network switches. The control application
essentially then takes the rules created by the metadata engines and pushes them to the network
switches [12].
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Technique-Specific Gaps

NetAssay is an ongoing project; it is not yet a fully deployable tool. More specifically, in its
current form, NetAssay does not allow for operators to submit custom high-level abstractions. In
addition, NetAssay does not guarantee to be accurate with respect to only delivering information of
interest, e.g., an operator’s request to monitor one user’s streaming flows may result in extraneous
flows. Lastly, NetAssay is not completely scalable for an actual network. It is in need of clever
filtering mechanisms to ensure that policies are not recomputed each time a metadata engine is
updated. There are also scalability concerns as any given rule may yield tens or more of flow
table entries. Until these major issues are remediated, Net Assay cannot be tested for effectiveness,
validity, etc. [12].

5.2.4 Technqiue: Netsight

Description of Technique

Netsight [17] is an SDN control-plane platform for debugging and diagnosing network conditions.
It is based on recording and analyzing packet histories, which are per-packet logs of what switches
were traversed, what header fields were modified, and what actions were taken on a packet at each
switch, for all packets traversing the network. A Packet History Filter language (similar to regular
expressions) allows packet histories of interest to be easily retrieved. Netsight requires OpenFlow
or similar SDN architectures that support packet duplication, truncation, and tagging at switches.
Duplicate packets are forwarded to Netsight logging servers for storage and processing. In order
to minimize storage costs, Netsight uses aggressive differential (delta-based) compression to keep
storage overheads at 10 —30 bytes per packet and CPU overhead at 0.1us—20us per packet.
Bandwidth overhead from forwarding duplicate truncated packets is approximately 30%.

Using the Netsight platform, the authors implemented four network situational awareness
tools:

e ndb —A network debugger that can define ‘breakpoints’ as packet history filters (PHF)
matching erroneous behavior. Whenever these events occur, histories containing a trace of
the error are returned. Errors include reachability, race conditions in flow rule installation,
and incorrect packet modification.

e netwatch —A live invariant monitor that triggers alarms and provides traces whenever a
specified invariant is violated. Supported invariants include isolation, absence of forwarding
loops, waypoint routing, and max-path-length.

e netshark —A Wireshark-like path packet logger that enables filters to be set over entire packet
histories (i.e., the progress of a packet over multiple hops).

e nprof —A network profiler that identifies, for a specific link, all sources of congestion (and their
bandwidth) contributing to that link’s utilization. These can be grouped by end-host /switch,
or by packet history and header.

15



Technique-Specific Gaps

Netsight’s 30% bandwidth overhead is substantial for production enterprise and datacenter net-
works. While the authors propose two methods for mitigating this overhead, they require either
hardware modifications to switches (to perform compression at the collection point) or installation
of software on end-hosts (to distribute packet history storage). In addition to dataplane overhead,
Netsight’s impact on controller latency (e.g., when responding to Packet-In event) is not evalu-
ated. Some overhead must be present, however, as flow-mod events are intercepted and modified
by the platform. Finally, Netsight’s dataplane flow rule injector and forwarding state monitor
must be implemented on a per-controller basis, and must have permission to modify all flow rules
generated by the controller. This assigns substantial security privileges to Netsight and requires
all controller applications to forward their flow rule modification through Netsight, rather than
directly to the dataplane. Depending on how the controller and applications are implemented, this
may necessitate substantial implementation changes to existing code.

5.2.5 Technique: OFRewind

Description of Technique

OFRewind [33] is an SDN-based data collection system, implemented using OpenFlow, to record
and replay packets of interest on a network. Both data and control plane traffic is instrumented
using this system, allowing OpenFlow messages as well as dataplane control traffic (e.g., DHCP)
to be captured and replayed. OFRewind does not record all packet headers for scalability reasons,
but instead allows administrators to define match rules for packets that should be captured (such
as low-rate control data). OFRewind imposes minimal overhead on the rate at which the SDN
controller can send flows. Due to the rate at which OFRewind must itself send flow updates to
switches, however, flow rules may be dropped at switches due to queue overflow beyond the 200
rules/second boundary.

OFRewind has four modules that are added to an SDN. OFRecord acts as a proxy between
OpenFlow switches and the controller, logging OpenFlow protocol and switch state messages (e.g.,
Packet-In and Flow-Mod). OFReplay can replay either messages from switches to the controller
or vice versa, enabling either element to be emulated during testing or debugging. Datarecord
records data-plane control and data traffic that is specified by an administrator as important or
interesting. It is stored on dataplane-hosted storage servers. The recording mechanism relies on
packet duplication via flow rule actions, and thus imposes network overhead. No evaluation of
this overhead is presented. Datareplay re-injects recorded dataplane traffic in synchronization with
OFReplay to re-inject the flow rules governing the replayed traffic.

Technique-Specific Gaps

OFReplay has a limited view of the network, which is defined ahead of time by an administrator.
This makes it difficult to utilize the tool when the cause of an anomalous event is not already known
or suspected. Furthermore, OFReplay’s scalability with respect to imposed network overhead is
not evaluated, but is likely to be substantial if significant dataplane traffic is duplicated without
compression. Control-plane latency may also suffer, as OFReplay acts as a “shim” between dat-
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aplane switches and the controller. Capturing and processing control plane messages could have
significant latency and bandwidth overhead.

5.2.6 Technique: SE-Floodlight

Description of Technique

SE-Floodlight [29] is an SDN Controller built on Floodlight, a popular Java-based SDN controller
framework. It provides a secure Northbound API and a Security Enforcement Kernel that provides
authentication and access control of controller apps. Its privilege levels that a controller app can
have are APP, SEC, and ADMIN (fewest to most privileges). Controller Apps and Northbound
APT users digitally sign flow-rule or sensor-access requests. If the signature is valid, the Security
Enforcement Kernel grants or denies based on the app’s role.

In order to detect and resolve situations where a rule conflicts with the security policy, SE-
Floodlight uses an efficient formal abstraction called rule-chain conflict analysis. It detects and
denies both direct conflicts between APP and SEC flow rules (DROP vs. FORWARD) and indirect
conflicts in which a series of rules that use header rewriting combine to form a conflict. Conflicts
are always resolved to favor the most privileged app involved, if the roles are unequal.

SE-Floodlight also maintains a secure network-audit log that captures any network changes,
controller configuration changes, changes to the audit service, sensor data requests and replies, and
authentication events. All entries are timestamped and include the security credential of the causal
process. Access to the log is only available to applications with SEC or higher roles. SE-FLoodlight
can be configured to halt if the audit log becomes too full or to drop logging of selected events.

Technique-Specific Gaps

SE-Floodlight is only implemented for one version of Floodlight. Other controllers, or future
updated versions of Floodlight, may require manual updates or re-implementation. Additionally,
SE-Floodlight has its own API, which is not composable with off-the-shelf controller modules.
These would have to be modified to run on a network protected by the tool.

Scalability may become a problem in heavily dynamic networks. Since rule insertions are
cryptographically authenticated, a high rate of network reconfiguration could impose substantial
computational overhead on the controller.

Finally, SE-Floodlight provides no protection against attacks from the dataplane. In addition
to exploits arising from parsing malformed packets, dataplane attacks can also poison controller
datastructures with corrupted information about network state and configuration.

5.2.7 Technique: Observing Unobservable Network Communications

Description of Technique

This work [18] demonstrates low-cost, efficient methods to observe traffic hidden with “parrot” tools
that disguise Tor traffic as benign traffic (Skype, VoIP, and HTTP). The specific tools considered are
SkypeMorph (Skype), StegoTorus-Embed (Skype), StegoTorus-HTTP (HTTP), and CensorSpoofer
(VoIP). The paper defines three classes of attack: passive (observation), active (man-in-the-middle)
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and proactive (imitation of users by the network operator). Additionally, there are three classes
of adversary considered: Local (control of a small network or single router), State-Level Oblivious
(large-scale network access, but limited computational/storage resources), and State-Level Omni-
scient (large-scale deep packet inspection, unlimited storage/compute resources). The paper argues
that local detectors are both easier to deploy and more effective against detection of imitators than
global detectors working over aggregated data.

Skype-based parrots can be detected using several classes of attack. For passive analysis,
TCP control side channel behavior is not emulated correctly by any known imitation tool. Skype-
specific packet header and application-layer control traffic (e.g., login/logoff) can also be used to
distinguish imitators. Active disruption by dropping UDP packets, delaying TCP packets, closing
TCP channels, and blocking TCP ports will cause Skype imitators to react differently (or not at
all) than actual Skype error-handlers.

HTTP-based parrots can be detected by observing correlated traffic patterns between a host
and different web servers. In real HTTP traffic, correlation is low between different servers. In
parrots, high correlation can be observed due to splitting of a single Tor connection over several
HTTP connections. Correlation can be passively sensed over time, or actively measured by dropping
packets. Parrot HTTP servers can also be identified proactively by sending malformed HTTP
requests to the suspected server. No parrot correctly handles error conditions properly.

Finally, VoIP-based parrots can be actively identified by sending SIP invitation probes, in-
valid or malformed SIP packets, and dropping RTP packets. All of these interactions are handled
differently by imitators than by a genuine SIP client.

Technique-Specific Gaps

Many of the attacks presented in this paper involve active manipulation of network flows in real
time. This can be difficult or resource-intensive in large enterprise networks, especially when the
manipulation must be performed at or near line rate. Additionally, many other attacks are proactive
and involve probing/scanning of external servers suspected of supporting parrot systems. This may
prompt legislative or policy issues depending on the legal jurisdiction of the respective networks.

5.2.8 Technique: Peek-a-Boo, I Still See you: Why Efficient Traffic Analysis
Countermeasures Fail

Description of Technique

In this paper [14], seven traffic analysis techniques for website fingerprinting are studied with traffic
analysis countermeasures in place. Two of them can distinguish which one of 128 websites in a
closed-world environment is visited, with 80% accuracy. When the world is reduced to two websites,
accuracy rises to over 98%. This result holds for all nine countermeasures that were investigated.
The first technique, VNG++, uses a naive Bayes classifier over total session time, total bytes, and
bytes in traffic bursts. The second uses a Support Vector Machine classifier over packet lengths,
ordering of packets, and total bytes transferred.
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The countermeasures that are studied fall into two classes. Packet-length padding increases
packet lengths using either a constant amount of padding or an amount determined by the initial
packet size (e.g., linear or exponential padding). Distribution-based padding either increases or
decreases (via fragmentation) the length of a packet based on a target distribution associated with
a different website than that visited.

The authors’ results show that coarse-grained features (total time, total bandwidth, size of
bursts) are sufficient to classify websites. Fine-grained information like packet sizes and inter-arrival
times are not needed, thus their obfuscation hides nothing useful from the classifier.

Technique-Specific Gaps

The paper’s results are not very surprising. All of the countermeasures that the authors studied
rely on changing packet length, while the strongest classifiers do not even use packet length as a
feature. Additionally, closed-world analysis of 128 websites say little about real web traffic in which
a large number of sites are visited according to complex distributions. Similarly, the experiments
were carried out in a laboratory setting. Real-world conditions and noise associated with actual
Internet web browsing was not considered, nor was the vulnerability of these classifiers to such
noise.

5.2.9 Technique: NetStore

Description of Technique

The increase in the sophistication of network attacks requires that security monitoring systems
be able to store and query large amounts of network data quickly for effective network forensics.
Currently, traditional row-oriented Relational Database Management Systems (RDBMS) are used
to store data, but these systems have slow insertion and query rates. This makes RDBMS unsuitable
for storing and querying large amounts of data for network forensics. For example, when querying
an RDBMS, all the columns of a table have to be loaded into memory regardless of whether the
columns are relevant to the queries. This introduces an I/O bottleneck that causes RDBMS to
have slow query times.

The authors overcome this problem by proposing NetStore [16], a column-oriented database
system. The intuition behind NetStore is that network-flow data exhibit certain characteristics.
NetStore takes advantage of such characteristics to provide fast insertion and query rates of large
amounts of data. For example, the authors observed that forensic queries access specific predictable
attributes that are collected over longer periods of time. Given these characteristics, the authors
identify five types of queries: (1) spot queries, (2) range queries, (3) aggregation queries, (4) spot
aggregation queries, and (5) range aggregation queries. The authors optimize NetStore for the
efficient evaluation of these queries.

In building NetStore, the authors store network-flow data by columns, where each column
holds data for a single attribute of a network flow. To facilitate better compression and faster
access, NetStore sorts the first column. Column arrangement is based on how likely a column
will be accessed based on past data access query patterns. Note that columns can be accessed
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independently of each other. Columns are further partitioned into segments to allow for greater
flexibility for compression strategies and data accesses.

The authors compare NetStore to PostgreSQL and a column store database LucidDB. The
authors found that NetStore outperforms PostgreSQL significantly, i.e., the authors found that
NetStore is 10 times more efficient than PostgreSQL in terms of query speed. NetStore also per-
forms better than LucidDB when storing less than six times the data. However, LucidDB performs
better for repeated queries because it efficiently uses data stored in memory.

Technique-Specific Gaps

Although NetStore is more effective than PostgreSQL, it is not necessarily better than other
RDBMS because other RDBMS implementations may use different algorithms in their storage
and retrieval of network records. NetStore is also inflexible because it supports only a specific set
of queries, and a limited subset of SQL syntax, potentially making some analyses of the stored
network data infeasible. In addition, it is still not known whether NetStore can handle data that is
larger than what was used in the experiments. Because NetStore is optimized for network flows with
certain characteristics, it is not known how effective NetStore will be in the presence of other types
of network data. It is also not clear whether NetStore can analyze its stored data in compressed
format after reading it from disk.
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5.3 GAPS IN DATA FILTERING

5.3.1 High-Level Gaps

1. Trade-off between resources and quality of data filtering

2. Filtering relies on thresholds from ground-truth, which may be unknown

3. Advanced filtering techniques require customized infrastructure

4. Efficient filters are shallow, while interesting features require deep inspection

5. Filtering does not necessarily reduce storage size

5.3.2 Description of Gaps

1. Trade-off between resources and quality of data filtering.

Filtering separates relevant data from noise, and the results may contain false positives and
false negatives. The false positive and false negative rates depend on how detailed the classi-
fiers for relevant data are (e.g., hash functions or pattern matches). As false positive and false
negative rates decrease with more detailed classifiers, the memory and compute resources
increase. This gap is present in DCM [37], OpenSketch [36], and the Resource/Accuracy
Tradeoffs in Software-Defined Measurement [26].

2. Filtering relies on thresholds from ground-truth, which may be unknown.

Anomaly detection and other machine-learning based approaches define a threshold that
separates normal from anomalous behavior. Without the ground-truth knowledge of benign
behavior, however, setting this threshold is problematic. Being too cautious and setting a
low threshold can generate many false positives, while too high of a threshold can cause the
system to miss genuinely anomalous events. This gap is present in Kargus [20].

3. Advanced filtering techniques require customized infrastructure.

In order for filtering to efficiently scale to high line rates, dedicated infrastructure (e.g.,
firmware or switch TCAM) is necessary to make specific operations computationally inex-
pensive. Most commonly, parallelized pattern-matching and rapid hash function compu-
tation are the most critical operations for filtering. Moreover, switches are not natively
capable of any operation other than simple matching and comparison. This gap is present
in DCM [37], OpenSketch [36], and the Resource/Accuracy Tradeoffs in Software-Defined
Measurement [26].

4. Efficient filters are shallow, while interesting features require deep inspection.

Efficient filters rely on stateless, rapid analysis of packet headers. Unfortunately, interesting
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features often require state to be maintained (e.g., if a connection is outgoing or incoming)
or for the packet payload to be inspected (e.g., filtering based on website URL). This gap is
present in DCM [37], OpenSketch [36], Kargus [20], and the Resource/Accuracy Tradeoffs in
Software-Defined Measurement [26].

5. Filtering does not necessarily reduce storage size.

When there is no a priori knowledge of which data is relevant to collect, filtering data prior
to collection may result in throwing away useful information while retaining useless noise.
Even when a classifier does exist, the relevance of data may change over time and prompt
re-analysis of collected data is necessary. As a result, often the entirety of data must be
collected and stored, which reduces some of the benefits of filtering. This gap is present in
DCM [37], OpenSketch [36], Kargus [20], and the Resource/Accuracy Tradeoffs in Software-
Defined Measurement [26].

The following techniques represent current academic research on data filtering for network
knowledge synthesis. While all of these gaps are present in at least one technique, gaps 4 and 5,
are present in every technique. Furthermore, gap 2 is not addressed by any technique.

5.3.3 Technique: Distributed Collaborative Monitoring (DCM)

Description of Technique

DCM [37] uses a custom controller and firmware on SDN switches to implement scalable and
memory-efficient per-flow monitoring. Each DCM switch uses a two-stage Bloom filter to implement
monitoring rules installed on it by the controller. A Bloom filter is a space-efficient probabilistic
data structure that represents a set of items and allows rapid membership checking. DCM'’s first
filtering stage is an admission Bloom filter, which represents the set of all flows to be monitored
on that switch. If a packet header matches the filter, it is passed to a set of action Bloom filters.
Membership in any of these triggers a monitoring action unique to that filter, such as sampling or
incrementing a counter.

The DCM controller is responsible for determining, based on network topology and routing
state, which flows should be measured on each switch. It load-balances measurement tasks across
all switches in order to make maximize measurement accuracy, as Bloom filters have a false positive
rate inversely proportional to how much space they are allocated. By distributing tasks across all
switches, maximal memory may be allocated to each Bloom filter. The controller also ensures that
no flow is measured twice, which prevents oversampling and resource wastage.

Technique-Specific Gaps

DCM is intended to be used alongside SDN architectures like OpenFlow, but it is not clear how its
custom firmware and controller compose with such architectures. Additionally, composing measure-
ment and forwarding architectures requires resources (e.g., switch memory) to be split between the
two. This introduces a trade-off between measurement accuracy and packet forwarding granularity
that is not explored in the paper.
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5.3.4 Technique: OpenSketch

Technique Description

OpenSketch [36] provides line-rate streaming analytics for SDNs that supports complex statistic
collection and queries via switch-based sketches. A sketch is a compact probabilistic data structure
with tunable false positive and negative rates that is able to efficiently count the incidence of specific
events (such as the arrival of a packet that is part of a specific flow, has a certain source IP prefix,
etc.). OpenSketch’s SDN controller component provides an API for building data collection and
analysis tools. The necessary switch-level sketches (count-min, bloom filter, etc.) are automatically
derived and implemented given the user’s queries and an accuracy requirement. The controller
optimizes each sketch to use minimal memory by combining modular hashing, classification, and
counting primitives.

These three primitives are efficiently implementable in COTS switches using custom firmware.
Hashing and classification can be implemented efficiently with minimal usage of TCAM, a high-
power, high-speed, parallel form of memory that switches also use for packet routing. Counting
uses a memory-efficient dense table stored in SRAM, a lower-performance but much more available
form of memory used by switches for noncritical tasks.

Technique-Specific Gaps

OpenSketch requires custom switch firmware to implement on-switch sketches. It is unclear how
this would compose with OpenFlow architectures: at minimum, the controller would have to be
rewritten to accept the expanded set of control protocol messages. Additionally, resources at
switches (e.g., TCAM memory) must now be split between routing and measurement tasks. How
to balance these competing goals is not addressed by the paper. Control plane resources (e.g.,
bandwidth, controller processor utilization), must similarly be divided. No evaluation of this control
overhead is provided.

Additionally, OpenSketch is an inherently local solution to data analysis, in that it does not
consider the sensor placement problem. All sketches are installed on all switches. This may result
in over-sampling of flows and inefficient utilization of switch resources.

Finally, this system is based on streaming analytics using sketches. The measured data is
not stored for further analysis, and all analysis tasks must be known in advance and programmed
into the controller. Thus, forensic analysis or other attempts to query past network states is not
possible using this tool.

5.3.5 Technique: Kargus

Technique Description

High performance IDSs are needed as many networks operate at the rate of tens of billions of
bits per second. However, hardware-based approaches to high performance IDSs do not allow for
operational flexibility and are costly. Software-based techniques allow for new patterns to be added
and are less costly, but are not yet ready for high-speed networks [20].
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As such, Kargus was developed to solve that need. Kargus is a software based IDS that uti-
lizes modern hardware components to achieve the performance necessary for high-speed networks.
It does so via two techniques: (1) applying batch processing from packet reception to pattern
matching, and (2) using high process parallelism to balance the load of flow processing and pattern
matching across CPUs and GPUs (graphic processing units) [20].

Technique-Specific Gaps

Kargus’ performance is highly dependent on packet size. As packet sizes get larger, there is
a reduced benefit of batch processing and increased overhead. As packet sizes get smaller and the
attack portion increases, there is also degraded performance as more cores are needed for pattern
matching. In addition, there is a performance degradation caused by the consumption of extra
CPU cycles when attack signatures span multiple packets in the same flow. Lastly, the use of
GPUs for offloading has limitations within itself, i.e., ofloading to GPUs requires additional CPU
usage and memory resources for data preparation, copying, etc., and GPUs consume more power
than CPUs [20].

5.3.6 Technique: Resource/Accuracy Tradeoffs in Software-Defined Measure-
ment

Technique Description

This paper [26] investigates the performance of three primitives used in streaming analytics of
network traffic: hashing, counters, and arbitrary code fragments. Each of these can be implemented
in switch firmware and configured by a centralized controller, much like SDN architecture but
focused on measurement rather than packet forwarding. These primitives can be combined with
one another to build a variety of switch-based traffic sensors with a cost in switch memory, switch
processing, and communications bandwidth to the controller.

Hashing primitives use high-speed but low availability TCAM memory to extract sketches or
summaries of traffic at switches and transfer these higher-level results to the controller. They can
easily be reconfigured by the controller to change what is being measured, and can measure a wide
variety of traffic with a small number of hash functions. This makes hashing very memory-efficient
and suitable for highly variable traffic patterns. Since analysis and configuration is off-switch,
however, the timescales in which hashing-based sensors can be effectively used are on the order of
seconds due to control loop delay.

Flow counter primitives, such as those in OpenFlow, increment byte or packet counts whenever
their associated flow rule is triggered. These counters are generally limited to wildcarded packet
header matches and thus do not scale well to highly variable traffic in terms of switch-memory usage.
Analysis is additionally outsourced to the controller, which must poll the switch periodically. This
limits counters to analysis timescales of seconds and measurement of fairly stable traffic patterns.

Finally, on-switch code execution of simple programs can offload some analysis tasks to
switches and allow more advanced data collection and preprocessing. However, this utility comes
at the cost of much higher switch processing and power costs. Code execution can be used for very
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fine-grained measurement (on the order of milliseconds) of highly variable traffic due to the lack of
a control loop.

Technique-Specific Gaps

The paper provides a generic qualitative analysis of hashing, counting, and code execution. Quan-
titative analysis is limited, however, to varying implementations of the hierarchical heavy-hitters
problem over an Internet trace dataset. It is unclear if the paper’s various implementations are op-
timal, or how other analytics or sensors (e.g., Bloom filters) would perform. Furthermore, Internet
trace traffic is substantially different from traffic in datacenter and enterprise networks. Whether
the conclusions drawn by this paper extend to those environments unchanged is not addressed.

Additionally, this work only considers local sketches on a single switch. It does not address
a network of multiple switches, how sensors would be placed globally, or how their measurements
can be composed into a single view of network state.
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5.4

10.

11.

GAPS IN DATA ANALYSIS

5.4.1 High-Level Gaps

. Requires thresholds for anomaly detection, which are manual, can be evaded, and need ground

truth

. Often evaluated in a closed world with no noise
. Network conditions change faster than analysis convergence
. Complex analytics are not scalable

. Window-based analysis is limited as large windows are unscalable, but small windows are

easy to evade

. Often requires out-of-band information

Small packets and fragmentation degrade performance

. Relies on higher-level identities, e.g., user ID instead of IP address

. Assumes a benign environment and is vulnerable to poisoning

Often assumes the majority of devices are healthy

More effective techniques are active, visible to attackers, and perturb the network

5.4.2 Description of Gaps

. Requires thresholds for anomaly detection, which are manual, can be evaded, and need ground

truth.

Anomaly detection approaches define a threshold that separates normal from anomalous
behavior. Without ground-truth knowledge of benign behavior, setting this threshold is
problematic. A low threshold can generate many false positives, while a high threshold can
cause the system to miss genuinely anomalous events. Additionally, if the value is known to
an attacker, then it can be evaded either by using low-rate attacks to trigger a false negative,
or by creating distracting storms of false positives. This gap is present in Blacksheep [6],
ALERT-ID [7], Detecting Distributed Brute Forcing [21], Beehive [34], ANAX [3], and Mim-
icus [32].

. Often evaluated in a closed world with no noise.

Many analysis techniques rely on training a classifier to recognize abnormalities in data.
Unfortunately, their evaluation frequently uses a closed-world environment with no noise
or perturbations to the dataset that could be expected in a production environment. This
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makes it difficult to judge their genuine efficacy. This gap is present in Host Fingerprinting
and Tracking on the Web [35] and Mimicus [32].

. Network conditions change faster than analysis convergence.

When analysis is performed offline, or online but with a high time to convergence, the conclu-
sions drawn from that analysis may no longer hold with respect to the current network state.
This is especially difficult in highly dynamic networks with many users coming and going,
a large volume of short-duration network flows, etc. This gap is present in ALERT-ID [7],
Input Framework [1], and Distilling Critical Attack Graph Surfaces [19].

. Complex analytics are not scalable.

Complex analytics (e.g., hierarchical heavy-hitters, traffic analysis, and application-layer anal-
ysis) often require keeping substantial state, inspecting packet payloads, or using algorithms
that have resource requirements that scale super-linearly with the size of the dataset. None
of these requirements scale to large network sizes or highly dynamic traffic conditions. This
gap is present in Count Me In [2], Input Framework [1], FRESCO [30], Distilling Critical
Attack Graph Surfaces [19], Trail of Bytes [24], and Blacksheep [6].

. Window-based analysis is limited as large windows are unscalable, but small windows are
easy to evade.

Keeping a history of network state is necessary when current conditions may or may not
be anomalous given prior events. In order to scale, however, analytics cannot keep a com-
plete history of the network and must make do with a window extending some duration into
the past. Large windows require infeasible amounts of storage. Small windows, however,
allow an adversary to mount low-rate attacks where each stage arrives after the system has
‘forgotten’ the attacker’s previous actions. This gap is present in Count Me In [2], Input
Framework [1], Detecting Distributed Brute Forcing [21], and ANAX [3].

. Often requires out-of-band information.

Detection of anomalous events often relies on access to out-of-band information like blacklists
of malicious websites or hand-labeled training data. These must be manually updated, con-
figured, and maintained. The analytic is often only as good as the out-of-band information
it relies on, making evaluation difficult. This gap is present in Input Framework [1], Black-
sheep [6], Host Fingerprinting and Tracking on the Web [35], Detecting Distributed Brute
Forcing [21], ANAX [3], Trail of Bytes [24], and Mimicus [32].

. Small packets and fragmentation degrade performance.
Most analytics only inspect packet headers, not payloads. This makes networks with many
small packets much more performance-intensive to analyze than networks with fewer, higher-

volume packets. Additionally, when large packets are fragmented into a series of smaller
packets, all fragments must be stored and re-assembled before analysis is possible. This
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gap is present in Input Framework [1], Host Fingerprinting and Tracking on the Web [35],
Detecting Distributed Brute Forcing [21], and ANAX [3].

8. Relies on higher-level identities, e.g., user ID instead of IP address.

Application-layer analytics (e.g., those that parse log files from servers) have visibility into
user names and high-level identities. Mapping these to analytics that observe network traf-
fic is difficult, as IP addresses may change frequently while user identifiers are fairly static.
This gap is present in ALERT-ID [7], Beehive [34], and Distilling Critical Attack Graph
Surfaces [19].

9. Assumes a benign environment and is vulnerable to poisoning.

Despite the fact that attackers have been poisoning network control data for decades (e.g.,
ARP cache corruption or rogue DHCP servers), many analytics implicitly trust the data that
they are given. This can allow an attacker to evade detection or cause mis-attribution of the
attack to an innocent victim. This gap is present in ALERT-ID [7], Input Framework [1],
Count Me In [2], Beehive [34], ANAX [3], Trail of Bytes [24], and Mimicus [32].

10. Often assumes the majority of devices are healthy.

Analytics which compare the behavior of one entity to a group of similar entities assume
that the larger group is implicitly healthy or benign, or that at least a majority of the entities
are benign. For example, a behavioral analysis may compare an end-host’s behavior with that
of other end hosts sharing the same operating system. In cases where the group of similar
devices is of small size (e.g., machines running Linux), an attacker could potentially cause
the majority to become defective and induce the analytic to falsely flag the benign hosts as
malicious. This gap is present in Blacksheep [6] and Beehive [34].

11. More effective techniques are active, visible to attackers, and perturb the network.

An analytic technique can often be made more effective by allowing it to probe traffic of
interest and observe the behavior. However, this perturbation can also be seen by attackers
that can change their behavior and learn to evade detection. Additionally, probing may cause
benign traffic to experience delays or corruption, leading to accidental denial off service. This
gap is present in Trail of Bytes [24] and Blacksheep [6].

The following techniques represent cutting-edge academic research on data analysis for net-
work knowledge synthesis. The most common gaps are 1, 4, 6, and 9, which are present in ap-
proximately half of the techniques. Furthermore, gaps 2, 7, 9, and 10 are not addressed by any
technique.

5.4.3 Technique: Blacksheep

Description of Technique
Malicious rootkits are a type of software that is designed to modify an operating system without
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detection. Often, infections begin on a single machine and spread to a larger portion of the enter-
prise through kernel-based rootkits. Rootkits’ ability to evade detection has remained an unsolved
problem as only 7-10% of all anti-virus protections are focused on rootkits [6].

Blacksheep was created to solve this problem by detecting stealthy kernel rootkits. Blacksheep
provides an advantage over other detection techniques, as it does not rely on signatures for detection.
Instead, it leverages the fact that organizations use standard software and configuration settings for
most machines. In this way, both zero-day vulnerabilities and long-known threats can be identified
by looking for anomalies among groups of similar machines [6].

Blacksheep achieves this goal by first acquiring memory from computers with identical (or
similar) hardware and software configurations. (Memory dumps are obtained using one of four
methods: (1) software acquisition, (2) crash dumps, (3) hardware acquisition, i.e., through external
peripherals, or (4) virtual machine introspection.) Next, the memory dumps are transferred over
the network to the Blacksheep analysis server. From there, the server compares pairs of mem-
ory dumps to compute a distance metric that describes the difference between the two memory
dumps. Distance metrics are calculated for four entities: (1) high-level configuration differences
across kernel modules, (2) driver code differences, (3) kernel data differences, and (4) kernel entry
point differences. Next, all four distance metrics are normalized. The clustering engine uses the
aggregated distance metric to generate hierarchical clusters. Infections are identified based upon
cluster size, e.g., if a cluster only contains one computer, then it is infected [6].

Technique-Specific Gaps

The reliance on many machines for analysis leads to several limitations within Blacksheep. In
particular, Blacksheep assumes that the majority of machines (90%) are benign, i.e., not infected.
If the majority of machines are infected, the clustering technique will yield large clusters of infected
machines and small clusters of noninfected machines, thereby defeating its own technique. Also
related to the use of many machines is the requirement that the machines are similar across hardware
and software configurations and that the memory dumps be obtained when the machines are in a
similar state. This is a stringent requirement that may not occur frequently in enterprise systems
where users are allowed to customize their machines [6].

Blacksheep requires a viable data dump for analysis. More specifically, Blacksheep works best
when memory dumps are obtained from virtual machine introspection. The reliance on virtual
machine introspection for memory dumps is problematic if most computers within the enterprise
do not use virtual machines. Outside of memory dumps, the actual analytical approach used within
Blacksheep requires manual analysis with respect to cluster formation. Lastly, stealthy attackers
can evade Blacksheep’s techniques by modifying parts of the kernel memory that change frequently
or by tampering with the method in which memory dumps are acquired, e.g., a rootkit could use
virtual machine detection techniques to modify or terminate its behavior [6].

5.4.4 Technique: ALERT-ID

Description of Technique
Securing network infrastructure can be challenging in a large enterprise network. A common prac-
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tice in securing a network is to deploy periphery and centralized authentication and authorization
schemes. However, the switches and routers in these networks are widely dispersed and managed
by a large group of network operators. Because of the large number of operators and periphery
devices in an enterprise network, there is the potential for misconfiguration, which can render the
network ineffective against attacks.

The authors present an intrusion detection system [7] that is built on existing authentication
and authorization framework. The purpose of the system is to gather router and switch access logs
in real time so as to provide a global view of the network. To construct the anomaly detection
system, the authors analyze logs collected over six months from the Terminal Access Controller
Access-Control System Plus (TACACS+). The authors identify features based on device access
patterns such as stability of router control commands and configuration, and users’ behaviors such
as login attempts and login access patterns. A model is constructed using these features from the
six-month data from the TACACS+ logs. The model is then used to detect anomalies (deviation
from normal behavior) in real time.

The authors evaluate their system by performing experiments and determine that their sys-
tem identifies potential intrusions with an acceptable level of false positives.

Technique-Specific Gaps

Given that ALERT-ID relies on the log files of another system, it makes it system vulnerable to
logs that have been manipulated by an attacker. Without a realistic ground truth, it is difficult to
determine the efficacy of ALERT-ID. With the massive amounts of data flowing through networks,
it is difficult to determine how fast ALERT-ID is in processing large amounts of data.

5.4.5 Technique: Input Framework

Description of Technique

There are a variety of efforts dedicated to providing network-security information such as blacklisted
websites from Google’s Safebrowsing URL list and Virus Total’s hash-based malware identification.
Some organizations produce much more context-rich network-incident information such as data
from REN-ISAC’s security event system or Department of Energy’s Joint Cybersecurity Coordi-
nation Center (JC3) feeds. However, current intrusion detection systems (IDS) focus primarily on
analyzing packet information and cannot readily incorporate these external information into their
analysis. Not being able to incorporate external information into the analyses of IDS limits the
capability of an IDS.

The authors present Input Framework [1], which is able to integrate information from external
sources into the IDS decision process in real time. The Input Framework is built on the Bro IDS
platform [28]. To enable Input Framework to achieve its goal of incorporating external information
source in real time into an IDS, it must meet a number of objectives. The objectives are: (1)
it should be adaptable to different sources of information, (2) provide a simple and flexible user
interface, (3) provide asynchronous I/0O, and (4) perform operations in real time.
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The Input Framework consists of a manager that interfaces between Bro’s core and the exter-
nal information sources. When the Input Framework receives a request to open a stream, it spawns
a reader instance that connects to the corresponding information source. There are different kinds
of readers: file readers, database readers, etc. The readers forward the external information to
the manager, which passes it on to the IDS analysis engine. Note that the readers are spawned
asynchronously.

In evaluating their system, the authors deploy it at Lawrence Berkeley National Laboratory
(LBNL). LBNL prefers using SES and JC3 feeds and imports them directly into Input Framework.
The Framework was deployed for two months, during which it was able to improve the security
posture of LBNL. In terms of latency, the Input Framework does not add significant delays when
receiving external information from a source.

Technique-Specific Gaps

Although Input Framework’s capability extends beyond a normal IDS system, it still has some
gaps. The Input Framework is suppose to analyze external information in real time; however, there
is no evidence showing that it can process large amounts of data in real time. The Input Framework
can also be manipulated by an adversary that is able to poison information from external sources,
which can reduce the efficacy of an IDS. Finally, the Input Framework is susceptible to all the
limitations of traditional IDS.

5.4.6 Technique: FRESCO

Description of Technique

FRESCO [30] provides a modular security monitoring and analysis application development plat-
form for OpenFlow SDNs. Apps are written in a simple controller-agnostic scripting language
that defines five kinds of interfaces: Inputs receive values from other apps or the controller; Out-
puts transmit values to other apps or the controller; Parameters are module-specific configuration
values; Fvents register the module for triggering when that event occurs; and Actions implement
operations on flows or packets.

Individual apps can be linked together in a circuit to make larger applications, by spec-
ifying connections between input and output interfaces of different apps. FRESCO also has a
controller-specific security enforcement kernel that manages rule conflicts and controller-specific
implementation of OpenFlow events and sensors. Currently it is only written for NOX.

Example applications are provided, which include network anomaly detectors, attack detec-
tion tools, malware detectors, and a honeypot-based quarantine system. The overhead for running
FRESCO scripts (in terms of flow setup time) varies by script from 0.5 to 15 ms in several evaluated
example applications.

Technique-Specific Gaps
FRESCO may not scale to deployments with frequent network events or updates. The evaluation
section is very light, but the reported overhead of running example scripts is up to 15 ms on a
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network with only three hosts. Additionally, while FRESCQ’s scripting language is highly modular,
it may not be very readable or easy to maintain.

Finally, the FRESCO SEK is only implemented in NOX. This is a C++-based controller that
is not well-maintained and does not support modern versions of the OpenFlow specification.

5.4.7 Technique: Host Fingerprinting and Tracking on the Web

Description of Technique

This paper [35] analyzes month-long Hotmail webmail and Bing search query datasets. The authors
find that with only user-agent strings, users can be identified with 63% precision and 72% recall.
When coarse-grained 24 IP prefixes are also used, precision and recall improve to 79% and 69%,
respectively. This is comparable to the efficacy of cookies (but without the need to store state on
clients), which scored 83% precision and 68% recall.

The authors investigate the unexpectedly low efficacy of cookies in uniquely identifying users.
The primary cause is ascribed to cookie churn, which is defined as a cookie ID appearing once
in a dataset but never a subsequent time. In the Search dataset, the churn rate was 48%. By
combining cookie IDs with browser UA strings and IP prefixes, however, 88% of users who clear
cookies between sessions can still be identified.

The authors also study host mobility, which is defined as the changing of a host’s IP address
on both fine-grained (DHCP) and coarse-grained (inter-domain) scales. Hosts are identified as
having moved by having the same cookie id. By analyzing inter-domain host mobility patterns, the
authors detected (without initially looking for) cookie-forwarding attacks via anomalous incidences
of host mobility from known IP ranges to domains that are either exclusively sinks/sources (i.e.,
hosts move only into or out of the domain) or domains not associated with end-host traffic.

Technique-Specific Gaps

The paper studies certain features of end-host traffic accessible to web-servers (IP address, user
agent string, browser cookie, and user login ID), but provides minimal explanation of what other
features are available or how they might be utilized to more uniquely fingerprint end-hosts. Simi-
larly, the technique is focused only on web servers and how they can fingerprint end-hosts. Other
classes of Internet-facing servers (IRC, VoIP, DNS, etc.) are not considered.

5.4.8 Technique: Measuring the Similarity of Network Hosts

Description of Technique

This paper [9] presents a technique to unify disparate types of network data into a single space
to facilitate comparison of hosts via a distance metric. The technique proceeds as follows: First,
it creates a database of all network data where columns denote measured values and are tagged
as either numeric or categorical. Second, it gives numeric spaces (i.e., those whose semantics of
similarity map to distance on the real number line) a simple linear difference metric. Third, it gives
categorical spaces a hierarchy-based distance metric, where distance is based on the level of two
points’ common ancestor. Fourth, it combines all metric spaces into one via a custom product and
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normalization function. Standard techniques for renormalization either destroy semantic content or
over /under value spaces due to differences in measurement scale. This hybrid piecewise approach
maps all spaces sharing the same units of measure (such as seconds, minutes, hours, and days)
to constant ranges on the [0,1] interval such that the normalized differences represent the relative
severity /amplitude of each unit.

Finally, to compare temporal distances, hosts are represented as the time series of their events.
To make the technique tractable, an adapted heuristic version of Dynamic Time Warping (a well-
known technique in the speech recognition community) is applied prior to time-series analysis. The
technique uses dynamic programming and an adapted version of the Sako-Chiba heuristic (which
evaluates only matrix cells close to the diagonal) to run time warping in linear time, compared to
the naive algorithm, which requires quadratic time.

Technique-Specific Gaps
The technique’s accuracy is only compared to the L1 distance metric. No discussion of other, more
domain-specific metrics is provided. This makes it difficult to truly judge its efficacy.

Additionally, while host classification is cited as a use case, the authors neglect to discuss
classic, well-known techniques to fingerprint host operating systems and applications based on
network traffic and probe responses (such as nmap scans).

Finally, the example metrics defined in the paper are very simple (e.g., port distance metrics
based on whether two ports are well-known, registered, or ephemeral). While the authors allude
to more complex metrics, it is not clear how metric complexity impacts performance or how some
metrics would even be constructed using their hierarchical approach (e.g., port relationships that
are application-specific).

5.4.9 Technique: Count Me In

Description of Technique

Researchers rely on statistical properties of network data for traffic profiling and control. The
statistical measurement of these properties are used to provide insight into network monitoring
and security issues. However, current techniques do not provide flexibility in the computation of
different kinds of network-data statistics.

The authors present a novel framework [2] for computing different kinds of summary statis-
tics in real-time, independent of the underlying data that is potentially collected from multiple
monitoring points. The objectives of the summary statistics framework are: (1) provide a simple
and flexible user interface, (2) be data agnostic, i.e., operate on different kinds of features, (3) be
extensible, i.e., support different statistical computations, (4) process and compute statistics in real
time, and (5) scale to large networks.

The framework works by processing network-traffic data in real time. As the framework
continuously receives the data, a reducer aggregates the results. In general, reducers compute
statistical measures on the data that they process. Some of the statistical measures that are
amenable to real-time computation are summation, average, deviation, variance, minimum, and
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maximum. The framework also supports the distributed computation of the statistical measures
when data is received from multiple network sources.

The authors implement their framework on the Bro network monitoring platform [28]. The
authors test their summary statistics framework by developing a script for detecting address and
port scans, brute-force login detection, SQL injection detection, and trace-route detection. They
compare their framework to the Bro platform and demonstrate that their framework has a mean
memory overhead of 6.7%.

Technique-Specific Gaps

Currently, the framework is able to compute simple statistical measures in real time. However,
it is not known how the framework handles more complex measures in real time. The statistical
measures computed by the framework are also susceptible to noise in the network data, especially
in the distributed setting. It is not clear how the authors address the problem of noise in the data.
Also, it is not clear how the technique will scale to large amounts of data. Although having a
memory overhead of 6.7% may be acceptable in the experimental setting, the memory overhead
can be significant in the presence of complex statistical measures and large data.

5.4.10 Technique: Detecting Distributed Brute Forcing

Description of Technique

With respect to brute-forcing attacks, adversaries can distribute their efforts across multiple sources
to evade detection. This is particularly successful as most detection mechanisms set thresholds
assuming that only individual machines participate in brute-force activity [21].

A solution to the problem of distributed brute-force attacks relies on detection through the
analysis of aggregated activity. More specifically, the distribution of login failure rates occurring
across the site is examined. Based upon operator-defined parameters that describe the desired
false alarm rate and detection characteristics, change point detection is used to identify significant
changes in the distribution. Next, the relevant attack epoch is defined. Each remote host that is
present during the attack epoch is classified as either legitimate, e.g., an actual user who failed to
log in, single brute force, or distributed brute force based upon the host’s past history and com-
monalities with respect to servers and usernames [21].

Technique-Specific Gaps

Detecting brute-force activity is a novel concept, but its current implementation has a few limi-
tations. The differentiation between legitimate, single brute force, and distributed brute force is
done manually. In addition, the performance of the system was calculated based upon limited to
no ground truth data. In essence, the effectiveness of the system is still unknown. Lastly, many
assumptions were made concerning the definition of a brute-force attack that do not always hold
true:

e More than 20 failed login attempts indicates a brute forcer; this allows for brute forces that
probe at low rates to be missed
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e If 19 unsuccessful attempts are followed by a successful attempt, then the activity is classified
as legitimate; this allows for successful brute forcers to be misclassified as legitimate [21]

5.4.11 Technique: Beehive

Technique Description

As attacks on computer networks increase, organizations are deploying more security technologies
from different vendors to mitigate these attacks. These security technologies generate large amounts
(e.g., terabytes) of situational-awareness data about the state of the network, which are stored in
log files in different formats. However, due to the large size and different log formats, the analysis
of the data becomes intractable.

The authors present an automated approach to analyzing the log files, called Beehive [34].
The threat model for Beehive is to detect network hosts that are infected and host-based user
activities that violate enterprise policies. To build Beehive, the authors had to address the following
challenges: (1) how to analyze large log files; (2) how to identify meaningful security incidents from
large log files given that there is a significant semantic gap between the logs collected and what
security analysts require to identify suspicious host behavior; and (3) how to address the lack of
ground truth for evaluating Beehive.

Before Beehive begins its behavioral analysis, it first preprocesses the log data. There are four
steps in the preprocessing phase: (1) timestamp normalization, (2) IP address-to-host mapping,
(3) static IP address detection, and (4) identification of dedicated hosts. After preprocessing the
data, Beehive performs feature extraction. There are four classes of features extracted by Beehive:
destination, host, enterprise policy, and traffic-based features. Beehive performs clustering using
the features as there is no ground truth data. Top outliers that occur after clustering are reported
to the security analyst.

Beehive was able to detect network infections that violated malware or security policies. These
violations were not detected by antivirus software or by their enterprise security operations cen-
ter. Out of 784 incidents generated over a two-week period, 1.02% of the incidents were identified
by state-of-the-art security tools, whereas Beehive was able to detect and categorize the various
violations: malware-related (25.25%), business policy violations (39.41%), and unrecognized, but
automated, software and services (35.33%).

Technique-Specific Gaps

The dependence on clustering because of the lack of ground-truth data can slow the process of
automatically identifying suspicious incidents. There is the potential for a high number of false
positives, which can overwhelm security analysts and cause them to stop using Beehive. Because of
the lack of ground-truth data, it is not clear whether the features employed by Beehive are adequate
to detect real malicious incidents.
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5.4.12 Technique: Trail of Bytes

Technique Description

Current mechanisms for forensic analysis either rely on code that is resident in kernel space or make
changes to application binary interfaces. Unfortunately, these methods are subject to tampering,
e.g., attackers can inject code into the kernel space, thereby changing log integrity. Virtualization
provides an alternative to this situation as code and applications can be sandboxed [24].

A particular example of a technique that leverages virtualization for forensic analysis is the
Trail of Bytes technique. It begins by monitoring specific virtual machine blocks that are on a
watchlist to see if they are accessed by syscalls. Once a block on the watchlist is accessed, a times-
tamp is recorded and a signature for the code page is created and stored. The physical page where
the blocks are paged-in is also monitored. The parameters of the syscalls are parsed if they are file
system objects, memory resident objects, shared memory objects, or network objects. To infer data
movement, the source and destination of the parameters is also examined. After all reads/writes
to the blocks are completed, an entry to the audit log is added [24].

Technique-Specific Gaps

The Trail of Bytes technique suffers from a few limitations. For one, the technique is only for virtual
machines, and as such, it is prone to hypervisor-detection attacks. On top of hypervisor-detection
attacks, this technique can be evaded by attackers through resource exhaustion attacks. This
technique also extends the trusted code base, e.g., if the security of the hypervisor is compromised,
so is the security of the system. Lastly, it only monitors and logs events from blocks on a watchlist;
it does not examine blocks that are not on the watchlist, nor does it prevent attacks [24].

5.4.13 Technique: NetPlumber

Technique Description

NetPlumber [22] is a data analysis tool for real-time time checking of network policies (i.e., proper-
ties that should always hold) on SDNs. Example policies include the absence of forwarding loops,
waypointing (traffic from A to B should always pass through C), or time-gating (web traffic is
allowed only during business hours). Every time a new OpenFlow rule would be installed, or an
existing rule changed, the system first checks to ensure that doing so would not lead to violation
of any invariants.

In order to perform policy checking in real time and avoid network slowdowns, NetPlumber
uses an augmented version of Header Space Analysis (HSA) [23]. HSA uses a generic, geometric
interpretation of packet headers to compute reachability sets: the set of all packet headers that can
be sent from each end host to each end host. NetPlumber extends this with an incremental update
mechanism based on packet header equivalence sets. Using this incremental technique, HSA checks
can be performed in near real time.

NetPlumber is evaluated on large-scale networks, including the Stanford University network
(mid-size enterprise) and Google WAN, one of the largest SDNs known to be deployed. Even at
the largest scales, all-pairs reachability policies can be checked in 0.1 to 10ms. The complexity
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of policy-checking in general is linear in network size and the number of policies. A distributed
variant is also provided and that can reduce this complexity by parallelizing many of the checks.

Technique-Specific Gaps

NetPlumber’s policy language does not allow arbitrary policies. It is based on regular expressions
and logical operations, with constraints defined over either packet headers or paths taken through
the network. Thus, complex policies that cannot be expressed as a regular expression cannot be
checked in NetPlumber. Examples of such unsupported policies are those that are self-referential,
stateful, or rely on evaluation of arbitrary code fragments.

5.4.14 Technique: Distilling Critical Attack Graph Surfaces

Technique Description

Generating attack graphs for enterprise networks can result in large complex graphs that are difficult
to analyze by system administrators without the right visualization. Also, computing quantitative
risk assessments over the large graph can result in substantial performance penalties. However,
computing risk assessments may not require the whole graph, but rather a critical-attack-graph
surface, where a critical attack graph is a subgraph of the entire attack graph that contains the
most critical security problems in a system.

The authors present an attack-graph-distillation approach [19] that enables the user to control
the amount of information presented to them in an attack graph. For example, the user can choose
to view only the critical attack paths that an attacker can use to compromise a given host based
on some severity metric.

To generate critical attack graphs, the authors first transform the full attack graph into a
CNF Boolean formula ¢. Transforming the attack graph into a Boolean formula enables more
flexible analysis because a system administrator can augment the Boolean formula, ¢, with their
own constraint-based logic requirements. The authors use CVSS access complexity metrics to derive
the attacker’s cost metric for literals in the resulting Boolean formula. The resulting constrained
and cost-related formula becomes the initial SAT problem, which is input into a MinCostSAT
solver. The goal of the MinCostSAT solver is to answer the question “What is the next critical
attack path?” on each iteration. For each iteration of the SAT problem, a solution resulting in a
realistic attack graph path is generated or counter-example constraints are generated, which are
then generalized into lemmas that are used to augment ¢. The Boolean Satisfiability problem (SAT)
is incrementally updated with lemmas learned from the previous iteration. SAT refinement using
the CounterExample-Guided Abstraction and Refinement (CEGAR) approach removes spurious
paths from the SAT. For example, a solution may result in cycles, unrealistic paths, or zero-cost
nodes present in the attack paths. These issues are handled by a solution refiner and verifier.
The critical attack graph resulting from the final solution to the SAT problem consists of only the
literals that are True.

The authors evaluate their technique in the context of an enterprise network with thousands
of nodes. The authors show that to distill a critical attack graph with about 1000 real attack paths
from 40000 and 20000 CNF clauses, their technique took 5500 and 3000 seconds, respectively. They

37



also showed that their technique is accurate in capturing critical security problems with just 15%
of the original attack graph as the critical attack graph.

Technique-Specific Gaps
Although their technique is effective in generating critical attack graphs, it is not known how many
constraints are present in a real enterprise network. Also, it is not clear

e how accurate and consistent the CVSS complexity metrics are when assigned to the literals
in the Boolean formula

e how the technique can handle dynamically changing networks

e whether critical attack graphs are contained in 15% of an entire attack graph in a real enter-
prise network.

5.4.15 Technique: ANAX

Technique Description

The Domain Name System (DNS) is an important component of the Internet backbone. It enables
mapping between domain names to IP addresses and other records essential for email, web services,
and other network protocols. However, DNS is susceptible to poisoning attacks. A poisoning attack
allows an adversary to corrupt DNS records thereby enabling the adversary to manipulate resolution
caches. For example, through DNS cache poisoning, an attacker will be able to assign wrong IP
addresses to domain names. Approaches such as DNSSEC and DNSCurve have been proposed,
but adoption has been slow because of the infrastructure changes that need to be made. Intrusion
Detection Systems (IDS) are also not capable of detecting such poisoning attacks.

The authors present a DNS protection system called Anax [3] that is able to detect Kaminsky-
style DNS cache poisoning. The intuition behind Anax is that DNS records generally direct users
to a known and usually stable set of NS records. Poisonings redirect users to new and different
IP addresses often set up for short periods of time. Anax also relies on the fact that poisoned
open-recursive DNS (ORDNS) will report cached resource records that are abnormal in terms of
zone and the TP address space.

Anax’s detection has three discrete phases: preparation, measurement, and analysis. In the
preparation phase, Anax collects IP addresses of ORDNS around the world, determines which
domains are susceptible to poisoning attacks, and probes the ORDNS to detect poisoning. In the
measurement phase, Anax’s scanning engine conducts a number of DNS queries and records the
matching answers. It stores the raw DNS traffic in an indexed database. In the analysis phase,
Anax checks the stored resource records and determines whether the recorded resource is legitimate
using a trained machine-learning classifier.

The authors conducted experiments showing that Anax was effective in detecting Kaminsky-
style attacks and produced a false positive rate of 0.6% and a true positive rate of 91.9%.
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Technique-Specific Gaps

Anax requires manual labeling of network data to build the machine-learning classifiers, which can
be tedious and time-consuming. There is also an opportunity to mislabel the data. Anax maintains
a whitelist of benign DNS records. However, maintaining a whitelist can be tedious and prone to
errors. Anax uses passive DNS data when computing statistical features, which makes it sensitive
to the relative DNS window and how the passive data are aggregated. The use of past CDN IP
address space for poisoning could also be a significant evasion threat for Anax if the passive DNS
window is more than a few weeks old.

5.4.16 Technique: Mimicus

Technique Description

For malware analysis, machine learning tools allow for automatic attribution. Machine learning can
also be used to detect security violations, e.g., drive-by-downloads. When testing these machine
learning approaches, it is often the assumption that the adversary has no knowledge of the anal-
ysis approach. At the same time, most publications demonstrating the ineffectiveness of machine
learning techniques assume that the adversary has full knowledge of the analysis approach. What
is needed is an evaluation of machine learning tools that is more representative of attacks in the
wild, i.e., adversaries who have limited knowledge of the analysis approach [32].

Mimicus is an evasion framework that was designed to test the effectiveness of a real, deployed
system—PDFRATE-that was designed to classify PDF files as benign or malicious. As PDFRATE is
a research system with documented methodological and technical details, an adversary can gather
sufficient information to evade PDFRATE’s detection capabilities. Mimicus tested the effectivenss
of PDFRATE by varying how much knowledge an adversary has according to three components:
feature set, training dataset, and the classification algorithm [32].

Technique-Specific Gaps

Through Mimicus, many limitations of PDFRATE were found. First, if there is any knowledge
regarding the feature set that PDFRATE uses, then PDFRATE’s score drops from 100% to 40%,
thereby allowing more adversaries to go undetected. If adversaries have knowledge of the training
dataset or the classification algorithm, the score drops to 28%. PDFRATE runs regular expressions
on raw bytes to extract features. This technique was chosen based on its speed, not its quality,
thereby allowing adversaries to hide features in encoded or compressed files. PDFRATE is trained on
a static dataset, with no retraining. If adversaries employ a technique that is newer, and hence not
represented in the training dataset, then they will have successfully evaded PDFRATE. Lastly, the
semantic gap between how PDFRATE parses files compared to how PDF readers parse files allows
for an attacker to inject arbitrary content into the PDF, thereby poisoning feature extraction that
is dependent upon regular expressions [32].
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5.5 GAPS IN INFORMATION SHARING

5.5.1 High-Level Gaps

1. Anonymizing data is hard as structure must be preserved and identifying information removed
2. Attack campaigns have different manifestations in different environments

3. Open-source data is over-represented due to availability

4. Real-time sharing is very resource-intensive

5. Biased towards security-conscious organizations

5.5.2 Description of Gaps

1. Anonymizing data is hard as structure must be preserved and identifying information re-
moved.

Complete anonymization of data while retaining the ability to truthfully answer queries is a
major open problem. Any structure (e.g. IP subnets, operating systems, etc.) that is pre-
served could be used in conjunction with an auxiliary dataset to de-anonymize the original
data. This gap is present in Differentially-Private Network Trace Analysis [25] and Provable
De-Anonymization of Large Datasets with Sparse Dimensions [11].

2. Attack campaigns have different manifestations in different environments.

Attacker methodologies are influenced by the context in which an attack is launched. While
one organization may suffer service outage as a result of an attack, another might experience
anomalous login attempts as a result of the same attack. The artifacts and observable effects
of an attack depend on the environment in which they manifest themselves and can vary
from enterprise to enterprise. Thus, sharing the artifacts and observable effects may not be
informative. Effective information sharing frameworks should share “knowledge” rather than
raw data indicating artifacts.

3. Open-source data is over-represented due to availability.

Due to their sensitive nature, very few public datasets exist that contain network traces
or server logs during an attack. Those few that are available thus become over-represented
and appear indicative of the larger space of attacks. This can lead to conclusions that ap-
pear generalizable but which, for example, actually only work in campus networks and not
enterprise environments. This gap is present in Firmware Image Analysis [8].

4. Real-time sharing is very resource-intensive.

In general, sharing copious amounts of sensitive information is difficult. This is exacerbated
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when real-time sharing of data with a third party is needed, such as during attack reme-
diation, cleaning, and recovery. For example, cryptographic anonymization techniques are
often computationally intensive and require substantial resources from all involved parties.
This gap is present in Differentially-Private Network Trace Analysis [25] and Policy-Enhanced
Private Set Intersection [31].

5. Biased towards security-conscious organizations.

Due to the nature of information on cyberattacks, most organizations which produce or
consume these datasets are more security-conscious than average. This may make conclu-
sions less generalizable. Additionally, information sharing techniques may require a high level
of technical proficiency that, while not uncommon in the cybersecurity space, is nonetheless
rare overall. This gap is present in Differentially-Private Network Trace Analysis [25] and
Policy-Enhanced Private Set Intersection [31].

The following techniques represent cutting-edge academic research on information sharing
both in general, and for network knowledge synthesis. Gap 2 is neither present in nor addressed
by any of these techniques, potentially due to lack of available public datasets for study. Gaps 3
and 5 are also not addressed in academic research.

5.5.3 Technique: Firmware Image Analysis

Description of Technique

Embedded systems are present in most devices of an electronic nature, e.g., wireless routers, com-
puters, printers, etc. On each of these embedded devices is special software, known as firmware.
Firmware is similar to traditional software in that it can contain bugs and vulnerabilities. Current
efforts to analyze firmware images rely on manual analysis of a small subset of devices, thereby
yielding non generalizable results [8].

A solution to this problem relies on collecting data from many firmware images and run-
ning automated analysis. More specifically, firmware images are obtained from web crawlers and
a web interface where security researchers can submit their own firmware images for analysis, e.g.,
firmware images that need to be manually extracted from a device. Next, the firmware image is un-
zipped and statically analyzed. During the analysis phase, brute forcing is used to extract password
hashes. The firmware images are then correlated based upon four dimensions: shared credentials,
shared self-signed certificates, common keywords, and fuzzy hashes. Lastly, the firmware dataset is
enhanced by performing online scans and lookup queries, e.g., to find the severity of a vulnerability
that is present on multiple devices. This last step can also include finding other firmware images
that contain that vulnerability, which leads to sharing of information [8].

Technique-Specific Gaps

While ambitious, the current effort’s attempt at analyzing embedded firmware images needs to be
optimized. Given that a very small percentage of embedded images is actually obtained from the
web interface, the analysis tends to rely on images taken from web crawlers. As such, the analysis
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is biased towards open-source data that can be obtained from well-organized vendors, e.g., vendors
that properly label their firmware images. In addition, of the firmware images that were collected
from web crawlers, only 34% actually contained valid firmware images. This figure (34%) is an
estimate as to the robustness of the data collection procedure as manual analysis is required to
determine if valid firmware files are obtained from the web crawler. Lastly, the tool used to unpack
the firmware images was successful across approximately 82% of the dataset, thereby leaving 18%
of files unpacked and, subsequently not analyzed [8].
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5.5.4 Technique: Differentially-Private Network Trace Analysis

Description of Technique

Several approaches have been developed to enable organizations to share data without privacy
concerns. The most common way of sharing data between different organizations is to sanitize and
anonymize the data. However, sanitization and anonymization may result in a dataset that is not
useful because it is missing important information. Also, it has been shown that data anonymization
is vulnerable to attacks. To overcome these privacy issues, differential privacy [13] was developed.
Informally, the goal of differential privacy is to ensure that the presence or absence of records is not
inferable from the output of an analysis. One of the advantages of differential privacy is that the
strength, €, of the privacy can be specified. As e decreases, differential privacy becomes stronger.

The authors propose to apply differential privacy to network trace analysis. To do this, the
authors base their technique [25] on the Privacy Integrated Queries (PINQ) platform. PINQ is a
privacy-analysis platform that, in lieu of providing direct access to the underlying data, provides an
abstraction over the data. This abstraction supports SQL-like queries, which an analyst specifies
in a declarative language. PINQ supports two main types of operations: aggregations and transfor-
mations. Aggregation operations return aggregate values such as Count or Sum. Transformation
operations return results that can be further analyzed, for example, results returned by a Join
operation.

To test the efficacy of their approach, the authors test their approach with three datasets:
Hotspot, IspTraffic, and IPscatter. The authors also use three privacy strength (€) levels: 0.1,
1.0, and 10.0. The authors perform three analyses on the datasets: packet-level, flow-level, and
graph-level. Under packet-level analyses, the authors found that their approach was effective in
measuring distributions of packet sizes and ports. For example, for an e-level of 0.1, the root mean
squared error (RMSE) for packet size and ports is 0.01% and 0.07%, respectively. The authors’
approach performed poorly for a more complex analysis such as worm fingerprinting, which is also
a packet-level analysis. For example, for a total of 29 payloads, the authors’ approach missed 74%,
17%, and 0% at e-levels of 0.1, 01.0, and 10.0, respectively. Under flow-level analyses, the authors’
technique had a false-positive rate of 90% at e-level of 0.1 for detecting “stepping stones.” Also,
under graph-level analyses, the authors’ technique had an RMSE of 0.17% and 50% at e-level of
0.1 for anomaly detection and passive network discovery, respectively. Taken together, it can be
inferred that as the privacy level becomes stronger (¢€), the effectiveness of the approach decreases.

Technique-Specific Gaps

Although the results shown by the authors are promising, there are still significant gaps. One of
the gaps is whether accurate complex analyses can be performed at higher privacy levels (€). The
authors acknowledge that it is not straightforward to implement some of the differentially private
algorithms. The differentially private algorithms work on at-rest data. It is not clear whether
differentially private algorithms can be built that work on network data in real time. It is also not
clear how efficient the algorithms are in processing large amounts of network data.

43



5.5.5 Technique: Policy-Enhanced Private Set Intersection

Description of Technique

Private Set Intersection (PSI) is a cryptographic protocol that allows two parties, each having a
set of elements (e.g., database records) to determine what subset they have in common without
revealing those not in the subset. Policy-Enhanced Private Set Intersection (PPSI) [31] extends
this functionality with support for policies over each element that must also be satisfied for that
element to be used in the computation. These can be simple symmetric authorization policies, in
which the the two parties comparing elements must have authorization from the element owner
(e.g., patient consent for sharing a medical record). PPSI also supports more expressive policies,
however. Asymmetric policies may have differing authorization requirements on either side (e.g.
the IT head of each organization must authorize sharing of a record). Elements may be extended
with attributes (such as classification rating) and policies can be defined over these governing
when those elements can be shared. Elements may also be grouped into bundles, such that the
bundle is listed in the intersection only if all of its elements are shared by both parties. Finally,
disjunctions of authorizations are supported. These enable policies that are satisfied if any one of
several authorizations is present.

PPSI has an additional nm computational overhead beyond the complexity of PSI itself, where
n is the maximum number of elements per user and m is the maximum number of authorities per
element. In empirical evaluation, this additional overhead added approximately one millisecond
per additional authority, with a maximum set size of 2000 elements.

Technique-Specific Gaps

PPSI may not scale well to large datasets or numbers of authorities when more expressive policies
are heavily used. No empirical results for extended policies are presented, but theoretical results
increase complexity by one or more extra terms (e.g., O(nmk) overhead).

5.5.6 Technique: Provable De-Anonymization of Large Datasets with Sparse
Dimensions

Description of Technique

This technique provides an algorithm for de-anonymizing records in a large dataset, given noisy
auxiliary information from another dataset [11]. Specifically, the paper considers an anonymized
database where each record was arbitrarily perturbed, but no row or column was actually removed
from the original dataset. Perturbed auxiliary information about a target record (the record to
be de-anonymized) is also assumed to be available. The adversary’s goal is to identify which of
the anonymized records corresponds to the target record. The technique uses a weighted scoring
algorithm to quantify the similarity of each record with shared attributes in the auxiliary data.

The authors mathematically prove bounds on two kinds of attack: Isolation and Information
Amplification attacks. Isolation Attacks uniquely identify the target record. These are possible
when the highest-scoring record in the anonymized dataset differs from the second highest by a
certain threshold, the value of which is determined by how noisy the data is and how unique the
target record is compared to others. Information Amplification Attacks do not uniquely identify the
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target record, but allow the adversary to obtain more information about the target. This attack
relies on the assumption that if multiple people agree on some rare attributes, they are likely to
agree on others. This is similar to the assumptions made by recommendation systems like those
used by Netflix and Amazon. By finding records that agree with known attributes of the target
(taken from the auxiliary data), the technique can infer other attributes of the target record that
are present in the anonymized data. Mathematical bounds on the effectiveness of the attack and
quality of the learned information are provided, and depend on the degree of similarity between
the target record and those used to “recommend” values of unknown attributes.

The authors empirically evaluate their attacks on an anonymized Netflix database. They
find that for all but very high levels of perturbation, the large majority (60%-90%) of records are
vulnerable to both isolation and information amplification attacks. Note that the attacks are not
actually carried out. Instead, the authors verify that the records are sufficiently distinct from one
another that de-anonymization is guaranteed to be possible given their theoretical bounds.

Technique-Specific Gaps

The technique relies on similarity metrics between attributes. This is not a problem for numeric
data (e.g., ratings), but may be challenging for categorical data like IP addresses, hostnames, and
port numbers. Another technique addressed in this paper (Measuring the Similarity of Network
Hosts) attempts to mitigate this problem.
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6. SUMMARY OF RESEARCH DIRECTIONS AND PRIORITIZATION

A gap summary is provided in Table 1. Based on evaluating the state of the art in NKS
systems and the priority of the gaps, we recommend the following research directions in the short-
term. These directions focus on the highest priority gaps, which have a high likelihood of occurrence
in modern NKS systems, and significantly impede our existing capabilities in this area (denoted by
“H” in both the “Likelihood” and “Impact” columns in Table 1).

In the area of sensor placement, research should focus on sensors that collect a small, but
indicative sample of network data. Since collection of all relevant data imposes high overhead that
impedes effective collection and storage of such data, it is imperative that research is performed on
data that provides symptomatic information about the network status and risk. Moreover, research
should focus on connecting and binding identities across multiple layers for a more informed and
actionable NKS. This should include, among other things, network identity (e.g., IP/port address),
host identity (e.g., host name), application name, user identity (e.g., username), and user role.

In the area of data collection, short-term research should focus on minimizing the amount
of data collected and on distributed systems for collection and storage of data. This can mitigate
the existing trade-off between collecting meaningful data and the overhead imposed. In addition,
research should focus on ensuring the authenticity of collected data or collecting indicative data
that cannot easily be poisoned or tampered in a malicious environment. This possibility is ignored
in many NKS systems, thus they can be ineffective in a malicious environment. Finally, the ideal
semantic layer for each type of NKS data should be identified such that collection occurs within
that layer. For example, identifying malware signatures is an uphill battle with respect to network
packets because of the semantic gap (i.e., packets have to be reassembled and decoded). As a result,
data collection about malware signatures should happen at the host layer, not the network layer.
Although the ideal semantic layer is easy to reason about in many cases, it is ignored in numerous
NKS systems.

In the area of data filtering, although high priority gaps do not exist, research can improve
the efficiency of filtering by developing distributed, low resource filters. It is important to note that
data filters compete for and consume the same resources (e.g., CPU cycles and memory) that are
also used for data collection and, in many cases, analysis. As a result, any new research into data
filters should be cognizant of this trade-off and attempt to develop decentralized, scalable filters.

Perhaps the most important component of an NKS system is the data analysis and sense-
making component. Research in this area should focus on multiple directions. First, new algorithms
that can resist evasion and can operate in a malicious environment with poisoned data should be
designed and built. Second, data analysis and sense making algorithms must be tested in real-world
networks with background traffic and activities in order to assess their real effectiveness. Evalua-
tions performed in a closed, research-like environments should be viewed with proper skepticism.
Third, research should focus on the development of fast data analytics that can be performed at
line speed or those that have short time lags. Moreover, such analytics should be tweaked and
adjusted based on the target network to ensure that the speed of natural changes in the enterprise
network is much lower than the speed of data analysis and sense making.
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Finally, in the area of information sharing, research should focus on proper data anonymiza-
tion for specific NKS applications. Although, data anonymization is a difficult problem to solve,
for specific NKS goals (e.g., sharing information about possible exfiltration activities), targeted
algorithms can be designed that can anonymize sensitive data while preserving enough important
information. Lastly, it is important to research systems that can share information about the nature
of threat, rather than its artifacts and side effects. Since these artifacts can be different depending
on how the attack manifests itself in a specific environment, sharing them can can be misleading
to the peer organization. Thus, it is important to share “knowledge” or “intelligence” rather than
raw data.

We believe that these research directions provide important short-term steps for improving
NKS capabilities, network situational awareness, and information sharing.
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TABLE 1

Table of NKS Components’ Gap Prioritization

Gap

Likeli-
hood

Impact

Sensor
Placement

Strong trade-off between how much data is collected and overhead

Sensors require binding identities across multiple layers

Sensors are spatially/temporally static

Many network devices are black boxes

Sensors require collection across multiple layers

Data Collection

Collection at line speed is very hard

Assumes a benign environment

Collection occurs at the wrong semantic level
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Analysis does not happen at collection location, resulting in trans-
fer overhead

ms]fus{Jus|fas] Reqlice Jus|fas] fas

t

Unscalable to store collected data

Efficient techniques depend on type of data collected

Data must be collected to find interesting events, but one must
know what data to collect to find events — a Catch-22

= ==

zizlz zZiozizlooze e

In-band collection perturbs the network

Requires manual effort to specify what data to collect

Cannot work on encoded/compressed data

Data Filtering

Trade-off between resources and quality of data filtering

Filtering relies on thresholds from ground-truth, which may be
unknown

o T = = T

Z 2| | e

Advanced filtering techniques require customized infrastructure

Efficient filters are shallow, while interesting features require deep
inspection

2| =

Filtering does not necessarily reduce storage size

Data Analysis and Sense-Making

—_

Requires thresholds for anomaly detection, which are manual, can
be evaded, and need ground truth

T2 =R

Often evaluated in a closed world with no noise

Network conditions change faster than analysis convergence

Complex analytics are not scalable

(G2 TSN GV )

Window-based analysis is limited as large windows are unscalable,
but small windows are easy to evade

Often requires out-of-band information

Small packets and fragmentation degrade performance

Relies on higher-level identities, e.g., user ID instead of IP address

O 0| | S

Assumes a benign environment and is vulnerable to poisoning

Often assumes the majority of devices are healthy
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11 | More effective techniques are active, visible to attackers, and per- L L
turb the network
1 Anonymizing data is hard as structure must be preserved and H H
5 identifying information removed
b= %D 2 Attack campaigns have different manifestations in different envi- H H
£ E ronments
% n 3 Open-source data is over-represented due to availability H M
— 4 Real-time sharing is very resource-intensive M H
5 Biased towards security-conscious organizations M M
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7. CONCLUSION

In this report, we have identified the major gaps in building a network knowledge synthesis
(NKS) system. The vision of an NKS system is to achieve effective situation awareness of the
network for improved network defense and timely information sharing with peer organizations. Such
a system will include five major components: Sensor Placement, Data Collection, Data Filtering,
Data Analysis and Sense-Making, and Information Sharing. We identified the high priority gaps
in building an NKS system by reviewing the state-of-the-art techniques proposed or built in this
domain, extracting their implicit or explicit gaps and weaknesses, and ranking those gaps based on
their likelihood and impact in modern enterprise networks. We believe that by focusing the short-
term research on the high priority gaps, the community can make major headway in achieving the
vision of effective situational awareness and information sharing.
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