## **DNA Camouflage**

## Supplementary Information

Bijan Zakeri<sup>1,2</sup>\*, Timothy K. Lu<sup>1,2</sup>\*, Peter A. Carr<sup>2,3</sup>\*

<sup>1</sup>Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, USA

<sup>2</sup>MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA <sup>3</sup>MIT Lincoln Laboratory, 244 Wood Street, Lexington MA 02420, USA

Distribution A: Public Release

\*Correspondence to Bijan Zakeri (bijan.zakeri@oxfordalumni.org), Timothy K. Lu (timlu@mit.edu), and Peter A. Carr (carr@ll.mit.edu).



**Supplementary Figure 1** DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[ $\alpha$ ] was randomly shuffled between  $\alpha$  and  $\beta$  states within a cellular population. (b) Quality score (QS) values of sequencing reactions of DSD-2[ $\alpha$ ] maintained in the absence and presence of Cre. (c) Contiguous read length (CRL) scores of sequencing reactions of DSD-2[ $\alpha$ ] maintained in the absence and presence of Cre. All experiments were performed in triplicate, error bars represent  $\pm 1$  standard deviation, and all sequencing reactions and QS/CRL measurements were performed by GENEWIZ Inc. under blind experimental conditions. QS scores below 24 and CRL scores below 500 indicate problems with sequencing results.



**Supplementary Figure 2** DNA shuffling does not comprise sequencing outside of DSDs. (a) Sequencing of 1 kb downstream of DSD-2[ $\alpha$ ] produces high quality sequencing reads that align with the template in the absence and presence of Cre. (b) Quality score (QS) and (c) Contiguous read length (CRL) scores of sequencing reactions shown in **a**. All experiments were performed in triplicate, error bars represent  $\pm 1$  standard deviation, and all sequencing reactions and QS/CRL measurements were performed by GENEWIZ Inc. under blind experimental conditions. QS scores below 24 and CRL scores below 500 indicate problems with sequencing results.



**Supplementary Figure 3** DNA camouflage with a switchable 2-state device. (a) Quality score (QS) and (b) Contiguous read length (CRL) scores of sequencing reactions of DSD-2[ $\alpha$ ] maintained in the absence and presence of Cre<sup>ts</sup>. (c) The plasmid encoding Cre<sup>ts</sup> can be cured out of cells by growing cells at 42°C. All experiments were performed in triplicate, error bars represent ± 1 standard deviation, and all sequencing reactions and QS/CRL measurements were performed by GENEWIZ Inc. under blind experimental conditions. QS scores below 24 and CRL scores below 500 indicate problems with sequencing results.



**Supplementary Figure 4** DNA camouflage with the 4-state device. (a) In the presence of Cre and Flp, DSD-4[ $\alpha$ ] was randomly shuffled between  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta$  states within a cellular population. (b) Quality score (QS) values of sequencing reactions of DSD-4[ $\alpha$ ] maintained in the absence and presence of Cre and Flp. (c) Contiguous read length (CRL) scores of sequencing reactions of DSD-4[ $\alpha$ ] maintained in the absence and presence of Cre and Flp. (c) Contiguous read length (CRL) scores of sequencing reactions of DSD-4[ $\alpha$ ] maintained in the absence and presence of Cre and Flp. All experiments were performed in triplicate, error bars represent  $\pm 1$  standard deviation, and all sequencing reactions and QS/CRL measurements were performed by GENEWIZ Inc. under blind experimental conditions. QS scores below 24 and CRL scores below 500 indicate problems with sequencing results.



**Supplementary Figure 5** Shuffling of DSD-2[ $\alpha$ ]<sup>p15A</sup> leads to data excision. (**a**) When DSD-2[ $\alpha$ ] is placed on a multi-copy plasmid containing a p15A origin (DSD-2[ $\alpha$ ]<sup>p15A</sup>), data is maintained in the absence of Cre but excised in the presence of Cre. (**b**) Quality score (QS) and (**c**) Contiguous read length (CRL) scores for sequence reactions shown in **a**. All experiments were performed in triplicate, error bars represent ± 1 standard deviation, and all sequencing reactions and QS/CRL measurements were performed by GENEWIZ Inc. under blind experimental conditions. QS scores below 24 and CRL scores below 500 indicate problems with sequencing results.



**Supplementary Figure 6** Next-generation sequencing (NGS) of 2-state and 4-state devices. (a) Samples 1 and 3: DSD-2[ $\alpha/\beta$ ] and DSD4-[ $\alpha/\beta/\gamma/\delta$ ] were each separately prepared, purified, and mixed at equal concentration in dH<sub>2</sub>O. Sample 2 and 4: DSD-2[ $\alpha$ ] and DSD-4[ $\alpha$ ] were shuffled with Cre and Cre-Flp recombinases respectively, and then purified, and stored in in dH<sub>2</sub>O. (b) Samples from (a) run on an agarose gel to demonstrate the purity.



**Supplementary Figure 7** NGS identified sequences for Sample 1. Sequences identified by the outside party for Sample 1 (**Supplementary Table 4**) aligned against (**a**) DSD- $2[\alpha]$  and (**b**) DSD- $2[\beta]$  templates. Gray bars represent areas of perfect sequence alignment and red bars represent areas of sequence misalignment.



**Supplementary Figure 8** NGS identified sequences for Sample 3. Sequences identified by the outside party for Sample 3 (**Supplementary Table 4**) aligned against (**a**) DSD-4[ $\alpha$ ], (**b**) DSD-4[ $\beta$ ], (**c**) DSD4-[ $\gamma$ ], and (**d**) DSD4-[ $\delta$ ] templates. Gray bars represent areas of perfect sequence alignment and red bars represent areas of sequence misalignment.



Supplementary Figure 9 Schematic of the addiction module.



**Supplementary Figure 10** pBZ51 and pBZ52 are stably maintained in *E. coli*. Cells transformed with pBZ51 (selected on Kan), pBZ52 (selected on Kan), and pBZ51 + pBZ52 (selected on Amp) were grown overnight, and plasmid DNA was extracted and run on a 1% agarose gel. Cells co-transformed with pBZ51 and pBZ52 were able to stably maintain both plasmids under Amp selection.

| Sample          | 1         | 2         | 3         | 4         |
|-----------------|-----------|-----------|-----------|-----------|
| Total Sequences | 2,035,696 | 2,827,422 | 3,762,818 | 2,665,635 |
| % GC            | 48        | 49        | 47        | 46        |

**Supplementary Table 1** NGS analysis of samples 1-4. Over 2 million ~300 bp reads were produced from NGS sequencing of samples 1-4 (**Supplementary Fig. 6**), with GC contents similar to expected values. DSD-2[ $\alpha/\beta$ ]: 9,549 bp/47.8% GC, Cre: 4,452 bp/49.8% GC, DSD4-[ $\alpha/\beta/\gamma/\delta$ ]: 8,204 bp/46.8% GC, Cre-Flp: 5,769 bp/46.9% GC.

| Sample                     | 1         | 2       | 3         | 4       |
|----------------------------|-----------|---------|-----------|---------|
| Sequence size              | 4,484,782 | 109,143 | 4,575,261 | 238,314 |
| Number of scaffolds        | 711       | 248     | 500       | 536     |
| % GC                       | 50.7      | 49.3    | 50.7      | 50.1    |
| Shortest contig size       | 301       | 300     | 306       | 300     |
| Median sequence size       | 3,897     | 360     | 3,943     | 390     |
| Mean sequence size         | 6,307.7   | 440.1   | 9,150.5   | 444.6   |
| Longest contig size        | 51,023    | 5,385   | 93,737    | 5,397   |
| Number of subsystems       | 564       | 2       | 576       | 2       |
| Number of coding sequences | 4,300     | 64      | 4,410     | 190     |
| Number of RNAs             | 34        | 0       | 30        | 0       |

**Supplementary Table 2** Assembly of NGS reads from samples 1-4. Here, the statistics of the assembled scaffolds from are shown.

| Sample | Total<br>Scaffolds | Aligned<br>Scaffolds | %<br>Aligned | Identified Vectors                                                                                                                                         |
|--------|--------------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 711                | 12                   | 1.7          | <ul> <li>pBluescriptR (Amp<sup>R</sup>)</li> <li>pDONR221 (Kan<sup>R</sup>)</li> <li>pOTB7 (Cam<sup>R</sup>)</li> </ul>                                    |
| 2      | 248                | 3                    | 1.2          | <ul> <li>pBluescriptR (Amp<sup>R</sup>)</li> <li>pDONR221 (Kan<sup>R</sup>)</li> <li>pOTB7 (Cam<sup>R</sup>)</li> </ul>                                    |
| 3      | 500                | 10                   | 2.0          | <ul> <li>pBluescriptR (Amp<sup>R</sup>)</li> <li>pDONR221 (Kan<sup>R</sup>)</li> <li>pOTB7 (Cam<sup>R</sup>)</li> </ul>                                    |
| 4      | 536                | 6                    | 1.1          | <ul> <li>pBluescriptR (Amp<sup>R</sup>)</li> <li>pDONR221 (Kan<sup>R</sup>)</li> <li>pOTB7 (Cam<sup>R</sup>)</li> <li>pK7-GFP (Amp<sup>R</sup>)</li> </ul> |

**Supplementary Table 3** Identification of annotated and assembled samples 1-4. Since there was no prior information provided regarding samples 1-4, the assembled scaffolds (**Supplementary Table 2**) were blasted against a plasmid database (http://plasmid.med.harvard.edu/) by the outside party. Identified hits were based on >90% sequence identity and a minimum of 100 bp alignment length.

| Sample | Sequence<br>Number            | Identified Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1      | 1                             | $\label{eq:transformation} TTCATCCATGCCATGTAACCCAGCAGGCCATGTGGCCATGTGGTCTCTTTTCGTTGGGATCTTTCGAAAGGGCCATGTGGGACAGGTATTTGGTGGATGTGTGCGGATGTTCGGAGGTATTTGGTGGGACAGGTATGTGTGCTGCTAGTTTGGTGGCAAGGGCCATCGCCAATTGGGGACAGGTATGTGGTGGCAGATGTGGCAGGAGTGTGGCCATGGCAGTGGCAGTGCGCAGGGCGTGCTGGTATAACATTGGGTGGCAGAAGTCATCCATTCTTTGATAACTCATACCCTTTGAAAAGTCGATCTTTGTATAACAGGGGGAGGCGCCTTGGAAGATGGCACTAGCATGAGACATGAGACATGAGACAGGAAAGGTGCAGGAAGGCATGGAAAGTGTGCCGTCGGAGGAGACACCGAAGGAAG$ |  |  |
|        | 2                             | ATAACTTCGTATAATGTATGCTATACGAAGTTATGCAGTTTCATTGATGCTCGATGAGTTTTTCTAAGAATTAATT                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|        | 3                             | ATAACTTCGTATAATGTATGCTATACGAAGTTATGCAGTTTCATTGATGCTCGATGAGTTTTTCTAAGAATTAATT                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|        | 4                             | ATAACTTCCTATAATGTATGCTATACGAAGTTATGCTAGCTA                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 2      | no insert sequence identified |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 2      | 1                             | $\label{eq:transformation} TTCATCCATGCATGCAGCAGCTGTTACAAACTCAAGAAGGACCATGTGGTCTCTCTTTTCGTTGGGATCTTTCGAAAGGGCAGGCCATGTGGGACAGGTATTTGGTGCGAGATGTGTGTG$                                                                                                                                                                                                                                                                                                                   |  |  |
| 3      | 2                             | TTCATCCATGCCATGTCTAATCCCAGCAGCTGTTACAAACTCAAGAAGGACCATGTGGTCTCTTTTCGTTGGGATCTTTCGAAAGG<br>GCAGATTGTGTGGGACAGGTAATGGTTGCTGCTGGTAAAAGGACAGGGCCATCGCCAATTGGAGGATTTTGTTGCTGCATGTGTGTG                                                                                                                                                                                                                                                                                      |  |  |
| 4      |                               | no insert sequence identified                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

**Supplementary Table 4** Identified sequences by the outside party following NGS analysis and sequence assembly. These sequences were assembled once the sequence of the backbone vectors were provided to the outside party.

| Construct         | Plasmid<br>Name | Plasmid<br>Backbone                                       | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Legend                                              |
|-------------------|-----------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Cre               | pBZ14           | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCA<br>CATCAGCAGGACCGCACTGACCACTTTAAGAAGGAGATATACCATGGCCAATT<br>TACTGACCGTACACCAAAATTTGCCTGCATTACCGGTCGATGCAACGAGGTGA<br>TGAGGTTCGCAAGAACCTGATGGACATGTTCACGGGTCGTGGCAGGGCGTTTCT<br>GAGCATACCTGGAAAATGCTTCTGTCCGTTTGCCGGGCGTCGTGGGCGGCATGGT<br>GCAAGTTGAATAACCGGAAATGGTTTCCCGCAGAAAACTATCCAGGAA<br>TTATCTTCTATATCTTCAGGCGCGCGGCTGGCGGCGCAGGCAACCAAG<br>TTATCTTCTATATCTTCAGGCGCGCGGCTGGCGGCAGCAAAAACCATC<br>GATGCCGGCTAAACATGCTTCATCGTCGGTCCGGGCTGCCAGCAACGAA<br>TTTGGCCAGCTTAACATGCTTCATGCGGCGGCTCCGAAAAAACGATC<br>GATGCCGGTGAACGTGCAAAACAGGCTCTAGCGTACGAAACAAGAAAACGTT<br>GATGCCGGTGAACGTGCACAAACAGGCTCTAGCGTACGAAACGAACG | P <sub>LtetO-1</sub><br>Cre<br>Terminator<br>Spacer |
| Cre <sup>ts</sup> | pBZ20           | pKD46<br>(origin and<br>Amp <sup>R</sup><br>only)         | TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCA<br>CATCAGCAGGACGCACTGACCACTTTAAGAAGGAGATATACCATGGCCAATT<br>TACTGACCGTACACCAAAATTTGCCTGCATTACCGGTCGATGCCAAGGAGTGA<br>TGAGGTTCGCAAGAACCTGATGGACATGGTCACGAGCGGTGGTCGCAGGAACCTGATGGACAGCGAGCTGCTGCGGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                  | PLtetO-1<br>Cre<br>Terminator<br>Spacer             |
| Cre-Flp           | pBZ17           | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCA<br>CATCAGCAGGACCCACTGACCACTTTAAGAAGGAGATATACCATGGCCAATT<br>TACTGACCGTACACCAAAATTTGCCTGCATTACCGGTCGATGCAACGAGGTGA<br>TGAGGTTCGCAAGAACTGGTGGACATGTTCGGGGGTCGTGGCGGGGGTTTCT<br>GAGCATACCTGGAAAATGCTTCTGTCCGTTTGCCGGGCGGCGTGGGGGCAGTGATAACAAGCGGGACTGGATGAATAACCGGGAAGATGGTTTCCCGGGCGGCGTGGGAGTAAAAACTATCCAGGCAAC<br>TTATCTTCTATATCTTCAGGGCGCGGCTGGCGGCGGCCAGGAACGATGCATCCAGGCAAC<br>ATTTGGGCCAGCTAAACATGCTTCATCGGCGGCGTCCGGGCGTCCAGCAACGAAC<br>TGACAGCAATGCTGTTTACCGGCGGCGGCTGGCAGTAAAAACTATCCAGGCAA<br>GACAGCATGCTGTTCACTGGTTATGCGGGGGCGGCCAGCAACGAACG                                                                  | PLtetO-1<br>Cre<br>Flp<br>Terminator<br>Spacer      |

|                          |       |                                                                | AAGCAGATAAGGGAAATAGCCACAGTAAAAAAATGCTTAAAGCACTTCTAAGT<br>GAGGGTGAAAGCATCTGGGAGATCACTGAGAAAATACTAAATTCGTTTGAGT<br>ATACCTCGAGATTTACAAAAACAAAAACTTTATACCAATTCCTTTCGTTGAGT<br>ATACCTCGAGATTACAAAAACAAAAACTTTATACCAATTCCTTTCCTTGCTAGCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
|--------------------------|-------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| DSD-2[α]                 | pBZ22 | pBAC-<br>LacZ<br>(F'/oriV<br>origins and<br>Cam <sup>R</sup> ) | ATAACTTCGTATAATGTATGCTATACGAAGTTATGCAGTTTCATTIGATGCTCG<br>ATGAGTTTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAG<br>AAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTA<br>GGTATCTGGCACTACGTTCAGGTAACCTGAAGCTCGAAGCGTACCCGACG<br>TCTCTAGGGCGGCGGATTTGTCTAACTGAAGCTCGAAGCCGTCACCGACAACAA<br>CAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCGTTCACCGACAACAA<br>CAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTCGTTTTATTGATG<br>CCTCTAGGCACGCGCACCTGGTGGCGCCCCTTATTTGTATAGTTCATCCATGC<br>CTCTGGTAATCCCAGCAGCTGTTACAAACTCAAGAAGGACCATGTGGTCTCT<br>TCTGGTAAAAGGACAGGGCCATCGCCCATTGTGTGGGACAGGTAATAGGTTC<br>TCGGTGTAAAAGGACAGGGCCATCGCCCATTGGAGGTATTTTGTTGAAGTTAACTTT<br>GATTCCATTCTTTTGTTGTCTGCCATGATGTATACATTGGTGAGTTATAGTT<br>GTATTCCAATTTGTTGTCCACCAGGGTATCACCTTCAAACCTAAGAGTACACTTT<br>GATTCCCATTCTTTTAACAAGGGTATCACCTTCAAACTTGAGGTATAACTTT<br>GATTCCCATTCTTTTGAAAAAGGTATCACCTTCAACATTGGTGAGTTATAGTT<br>GGCATGGCACCCTTCAACGCACCTTCAAACTTGACATAACCTTTC<br>GGGCATGGCACCCTTCAACGTGTGTTCCATCGGCATGGCCATGGT<br>CTTGTAGTTCCCGGCATCCTTCTAAGGTGTGACAACGCTGTG<br>CTTGTAGTTCCCGTCACCTTCTAACATGGCCATGGCACTGGCA<br>CAAAGCACTTGAACACCATAACCCAAAGTGTGGCCAAGGCTAGGCCATGGCAAC<br>CAGGTAGTTTTCCAGCAGTGTGACAACAGTGTTGGCCATGGCAATGTG<br>CATCACCTTCACCCCTCTCCACTGACGAAAGTTTTCCGCCATGGCAATGTG<br>CATCACCTTCACCCCTCTCCACTGACGAAAATTTAAGGGTAAGTTTTCCCGCTTGCACGCAAC<br>CATGACAGAATCGGCACACTCCAGTGGAAAGTTTTCCCCTTTAACATCACCCA<br>CATGACAAAACAGAATTGGGTCAGTGCGCCCTGCGAAGGAACCAAT<br>CATGACTAACCCTCTCCACTGCAAGGGCCCCCGCGCAGGAAACCAATTGCACCCACA<br>CATGACAAAACCCCACAATTACAATTGCATTCCGCTCACCACAGGCTCCTGAGGACCAAT<br>CATGACAAGAACCCCCACATGCAACGCTACCACAGGCTCCTGAGGACTAACATTAACCCCCCGCTTATAAAACCCCTTGCACGCAC                                                                                                 | loxP<br>Data         |
| DSD-2[α] <sup>p15A</sup> | pBZ19 | p15A<br>(origin and<br>Cam <sup>R</sup><br>only)               | ATAACTTCGTATAATGTATGCTATACGAAGTTATGCAGTTTCATTTGATGTCCG<br>ATGAGTTTTTCTAAGAATTAGTCGTGCAGCGGATACATATTTGAATGTATTTAG<br>AAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTA<br>GGTATCTGGCACTACGTTCAGGTAACCTGAAGCTCGAATCCAGTGACCCACG<br>TCTCTAGGCGCGCGATTGTCCAGGTAACCTGAAGCTCGATCCAGTACTCGACG<br>CCTCTAGCGCGCGCATTGTCCAGGTACCCGAGGCGTCACCGACAACAA<br>CAGATAAAACGAAAGGCCCAGTCTTCGACGAGGCGCTTTCGTTTATTGGATG<br>CCTCTAGCGCGCGCATCTGGTGGCGCGCCCTTTTGTTAGTTCATCCATGC<br>CATGTGTAATCCCAGCAGCTGTTCACAACAAGAAGGACCATGTGGTCT<br>CTTGTTGGGAACGCCTCCTCCATGTGCAAGCTGGAGTAATGGTTG<br>TCTGGTAAAAGGACAGGCCATCGCCAATTGGAGGTATTTGTTGATAATGGTC<br>TGCTAGTGAACGCCTCCCATCTCCAATGTGTGTGCTAATTTGTGAAGTAACTTT<br>GATTCCAATTTGTTGTCCAACGTGCATGTGTTCAATTGTGGAGCTAATGGTTG<br>TTTGCAAGTTGTCCAAGGGTATCACCTTCAAACTTGAGCTAAACCTTT<br>AACTCGATTCTATTAACAAGGGTATCACCTTCAAACTTGGCCATGGGATATAGTT<br>CTTGTAGCGCACCCATTAGCGCAAAGTAGTGGTATACCTTTC<br>GGGCATGGCACTCTTGAAAAAGTCATGCTGTCACAAACCTTGACCACGGTAT<br>CTTGTAGTCCCGTCTTTGAAAAATTAGTTCTTTCTCTGTACACTAACCTTC<br>GGGCATGGCACTCTTGAAAAAGTCATGCTGTAACATTGGGCCATGGGACCACTC<br>CAAAGCATTGAACACCATAACCGAAAGTAGTGGACAAGTGTTGGCCATGGAAC<br>AGGTAGTTTCCAGCCTTCCAACTAACGTAAAGTTTCCGTATGTTG<br>CATCACCTTCACCCTCCCACTGACGAAAGTAGTGGCCATGGGCATCCG<br>CAAAGCATTGAACACCATAACCGAAAGTAGTGGACAAGTGTTGGCCATGGAAC<br>AGGTAGTTTCCAGCCTTCCCACTGACGAAAAATTTGTGCCCCATTGACACCACA<br>TCTAATTCAACACGAATGGAACAACTCCCAGTGAAGTTCTCCCCTTTACG<br>CATGGATTATCCTCCTTCTAAAAGTGATCAGGTCACCAGGCTCTCGGGACTAGT<br>ATCTTGTTATCCGCCCACAATGAAATTGTTACCGCCTGCCAGAGTTAATCCCGCT<br>CATGAATTACACACACATACTCACATGAACCCCACATTGTACCGCT<br>CATGAATTACCCCCCCCTCCACTGCACTCCCGCCACAAAGCCCCACATTGTCCCA<br>TATTGCATCAGCACAACTACTGCATCCTGCCACAATTGATCCGCT<br>CATGAATTACCCCCCCCCTTATAAACCGCACACCCCCCCC | loxP<br>Data         |
| DSD-4[α]                 | pBZ23 | pBAC-<br>LacZ<br>(F'/oriV                                      | ATAACTTCGTATAATGTATGCTATACGAAGTTATGCAGTTTCATTTGATGCTCG<br>ATGAGGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCAAGCTCGAATCCAG<br>TACTCGACGTCTCTAGGGCGGCGGCGATTTGTCCTACTCAGGAGAGCGTTCACC<br>GACAAACAACAGATAAAACGAAAAGGCCAGTCTTTCGACTGAGCCTTTCGATT<br>TATTTGATGCCTCTAGCACGCGTACCTGGTGGCGCGCCCTTATTTGTATAGTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loxP<br>FRT<br>Data1 |

|                     |       | origins and<br>Cam <sup>R</sup> )                         | ATCCATGCCATGTGTAATCCCAGCAGCTGTTACAAACTCAAGAAGGACCATGT<br>GGTCTCTCTTTTCGTTGGGATCTTTCGAAAGGGCCAGATTGTGTGGGACAGGTA<br>ATGGTTGTCTGGTAAAAGGACAGGGCCATCGCCAATTGGAGTATTTTGTTGTAT<br>AATGGTCGCTAGTAGATGGACCTTCCATCGTTGTGTCTCAATTTTGAAGT<br>TAACTTTGATTCCATTCTTTGTTGGTCCACGATGATGTATACATTGTGTGAGT<br>TAACTTGATTCCATTCTTTGTTGTCCCACGATGATGTATACATTGTGTGAGT<br>TAACTTGATTCCATTCTTTGTTGTCCCACGATGATGTATACATTGTGTGAGT<br>ACCTTTGAACTCGATTCTATTAACAAGGTATCACCTTCATACATTGACTCAGC<br>ACGTGTCTTGTAGTTCCCGCACGAAAGTACTCCATCATGACTTCAGC<br>ACGTGTCTTGTAGTTCCCGCACGAAAGTACTGCTGTTCCTGTACATA<br>ACCTTCGGACAGCATTGAACACCGCAAAGTAGTGGCACATG<br>ATCCCGCAAAGCATTGAACACCATAACCGAAAGTAGTGGCAAGTGTTGCCCA<br>TGGAACAGGTAGTTTCCCGTCACTGACAGCAACTCCAGTGAAAAGTGTTGCCCA<br>TGGAACAGGTAGTTTCCCGTCACTGACAGCAACTCCAGTGAAAAGTTCTTCCCT<br>ATGTTGCATCACCTTCAACAAGAATTGGGCCAATTGAGGGCCAATTGAACTCCGCTGAAGGTATCTCCC<br>TTTACGCATGGATATCTCCCTCTCTAAAGTGGTCAGTGCCCACTGAAGGTACTGC<br>CCCACTGAATTGAACAACAACTCCAAAGTACTGCCCCCCCC                                                                                                                                                                                                  | Data2<br>Data3                                                |
|---------------------|-------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| SpyTag-Bla          | pBZ51 | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCA<br>CATCAGCAGGACGCACTGACCATTTAAGAAGGAGATATACCATGGCCCACA<br>TCGTGATGGTGGACGCCTACAAGCCCACGAAGGGTTCAGCGGGTCCCCGCGC<br>ACCCAGAAACCGCTGGTGAAAGCTAAAGATGCTGAAGAGTCATTGGGTGCACG<br>AGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGGGTGCACG<br>AGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGGGTGCACGG<br>AGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGGGTGCACGG<br>CCCGCGTATTATCCCGTATTGATGAGCACCTTTTAAGGTCCTGCATATGTGG<br>CCCGGCTATTATCCCGTATTGACGACGCGCAACACCGGTCGCCCCGCAT<br>ACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATC<br>TTACGGATGGCCAGCCTACTTAGTTGCACACGACTGCGCCGCAACTCGGAGGCCCAAAGCGC<br>GCTAACACTGCGCCCAACTTACTTCTGCTACACAGGACGCACCGCGCACCGAGGAG<br>CTAACCGCTTTTTTGCACAACGATGGCAGCACCGCGGACCCGAAGGAG<br>CTAACCGCGGCCAACTTACTTCTGCACAACGATCGGACGCAACCGACGGAG<br>GCTACCCGGAGCTGAATGAACCCATACCAAACGGACGACGCGTGACACCACGAT<br>GCCTGCAGCCAGCACACATTAATAGACTGGATGGAGGCGGGTAAAGTTG<br>CACGACCCGGCCAACCATTAATAGACTGGATGGAGGCGGATAAAGTTG<br>CAGGACCCGGCACCAACTATCACCGGGATGCACCGCACACGATG<br>CAGGACCCGGCACCAATTAATAGACTGGATGGAGGCGGGATCAGGGC<br>AACTCTGGACCGGCTGCCCCGGATACCATTGCAGCACGACGGGCC<br>AGATGGTAAGCCCCCCCGTATCGTAGCATAGCA | P <sub>LtetO-1</sub><br>SpyTag<br>Linker<br>Bla<br>Terminator |
| YcbK-<br>SpyCatcher | pBZ52 | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCA<br>CATCAGCAGGACGCACTGACCACTTTAAGAAGGAGATATACCATGGATAAATT<br>TGATGCCGAACCCCCGCAAACTGCTGGCCGCGGCGGCGGCGCGCGGCGGCG<br>CGGCGATTCTGCCGACCCCGGCGTTGCGACCCCTGAGCACCCCGCGGGAA<br>GCGGTAGTGGAAGTATGGGAGTTGATACCTTATCAGGTTTATCAAGTGAGCA<br>AGGTCATTCCGGTGATATGACAAGGATAGCTCACCCATATTAAAT<br>TCTCAAAACGTGATGAGGACGGCAAAGGATTAGCTGGTGCAACACTATGGAGTT<br>GCGTGATTCATCTGGTAAAACTATTAGTACATGGATTTCCAGATGGACAACTAG<br>GGTGATTCTACTGGTAAAACTATTAGTACATGGATTTCCAGATGGACAACGGAGCACA<br>GGGTAGTGGGAGGCAAAGACTAAGGTTAGCTGGTGCAACCGCAGCACA<br>GACGGTTATGAGGAGCGAAAAATTACCTTTACAGTTAGGACACGCAGCACA<br>GGTTACTGTAGATGCCAACTGCTATTCACGTTATGAGCAAGGTCA<br>GGTTACTGTAGATGCCAACGCCACTAAGGTAGCTAGGCAAGGCAC<br>GGTTACTGTAGAAGGCAACTGCATAATGCATAGCTAGGCAAGGCACAAATG<br>CGGCAAACCTCAGGAAAAACTAAAGGTAGCTAGCTAGGCAAGGCACAAATA<br>AAACGAAAGGCTCAGTCGAAGAACTGGGCCTTTCTGTTGTTTGT                                                                                                                                                                                                                                                                                  | P <sub>LtetO-1</sub><br>YcbK<br>SpyCatcher<br>Terminator      |
| MIT<br>Message 1    | pBZ63 | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCACCTCG<br>AGCTGGTGGCGCGCCTTATTTGTATAGTGGCCACGATCCATGCTAACGTCTC<br>TGCGTAGGGATGAATCCCGTTTTGAACTCGTTCCTACTGACGGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forward<br>primer<br>MIT<br>message 1<br>Reverse<br>primer    |
| MIT<br>Message 2    | pBZ64 | pET28a<br>(pBR322<br>origin and<br>Kan <sup>R</sup> only) | GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCACCTCG<br>AGCTGGTGGCGCGCCCTTATTTGTATAGCCCACCAATACTGCCAATAGACGGT<br>ACTGTACACCCTGTTTTACAGCAACGGGAAAGGAGGATCACTTTCTACAATTG<br>TGTGCTGGACTGACAGTCGCATATCCACACATGCCATCATTGCATACTCGTG<br>CATTCCAATGATGCATCTACACGTAGTCCATATGGTAATGGTGATGTCACTACA<br>CATGTCAATGATGCATCTACACGTAGCGCGCGATACGACTCGCCCATAGGGT<br>TCGCCGGCTCGCACTGACTACCTTACGCTCTGACCCAGATCGGAGCCGGCC<br>GCATGACCCCTGTGACTAACCGTTCATCGCGCATATGGATGTCACTCGC<br>CATGTCATCATCAGTAACCGTTCATCCTCACGGGATATCGCGCCGCC<br>GCATGACCCCCTGAATAACCGTTCATCCTCGACCCAGGATCGGCGCC<br>CATGTTCATCATCAGTAACCCGTTCATCCTCGGGGATATTCCCGCTTCG<br>CATGTTCATCATCAGTAACCCGTATCGTGAGCACCCTCGTTTCATCGGT<br>ATCATTACCCCCCATGAACAGAAATCCCCCCTTACACCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Forward<br>primer<br>MIT<br>message 2<br>Reverse<br>primer    |

**Supplementary Table 5** Identity, plasmid, and sequence information of all constructs used in this study.