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Abstract—This paper considers the problem of rapidly deter-
mining the maximum achievable capacity of a multi-hop wireless
mesh network subject to interference constraints. Being able to
quickly determine the maximum supported flow in a wireless
network has numerous practical applications for network planners
and researchers. Current approaches for determining network
capacity either provide asymptotic results that are not necessarily
achievable, are computationally intractable and cannot be com-
puted quickly, or are not generalizable to different interference
constraints for emerging technologies. In this paper, we present
a new algorithm to rapidly determine the maximum concurrent
flow for an arbitrary number of unicast and multicast connections
subject to arbitrary binary interference constraints, and provide
a feasible route and schedule to support those flows. The solution
provided by our algorithm is within O(δ) of the optimal maximum
flow, where δ is the maximum number of links that cannot be
activated due to interference from some particular transmission.
We use our algorithm to perform a network capacity analysis
for emerging wireless technologies. We compare the achievable
capacity of omni-directional, single-beam and multi-beam direc-
tional networks operating at different frequencies.

I. INTRODUCTION

As the number of wireless devices continues to grow, new
wireless technologies and protocols continue to be developed
to interconnect these devices. A key metric in assessing the
performance of these new technologies and protocols is to
compare their performance with respect to the the maximum
throughput that a network can support. While significant work
has gone into understanding wireless network scalability [1],
developing cross-layer optimization schemes for near-optimal
network throughput [2], or determining bounds on network ca-
pacity [3], there still does not exist an approach that can rapidly
determine the achievable capacity of a wireless network under
interference constraints within a fixed bound of the optimal
solution. Such a tool would have numerous applications for a
network planner or researcher. Examples include determining
the instantaneous capacity of a wireless network with known
mobility patterns at any given point in time, quickly assessing
the maximum achievable flow of a large number of poten-
tial network topologies or deployments, comparing achievable
flows for different wireless technologies and their respective
interference patterns against one another, and understanding
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how well wireless protocols perform versus the maximum
achievable capacity.

In this paper, we present a new algorithm that can rapidly
determines the maximum achievable concurrent flow for any
number of unicast and multicast connections within a wireless
network subject to wireless interference constraints. We label
our approach the Fast Algorithm for Determining Wireless
Network Capacity (FAD-WNC). In particular, we consider
networks with known parameters, such as node placement,
transmission pattern and distance, and link capacity. This is in
contrast to asymptotic analysis that has been previously used to
characterize scalability of network capacity for almost arbitrary
network parameters [1], and does not easily allow insight into
the behavior of actual deployed networks.

The joint routing and scheduling problem for a given set of
demands is an NP-Hard cross-layer optimization problem [4],
and just finding an optimal wireless transmission schedule for
a predetermined set of links without the addition of routing is
NP-Hard [5]. We effectively bypass the cross-layer optimization
problem by leveraging the large body of existing work for
rapidly determining the maximum concurrent flow in wired
(no-interference) networks. The solution for a maximum flow
in wired networks provides insight into how to schedule links to
support a maximum wireless (with-interference) flow, for which
we develop a fast approach to jointly schedule all demands.
Our algorithm is able to determine a set of routes and a
corresponding link activation schedule that achieves a network
throughput that is within O(δ) of the network capacity upper
bound, where δ is the maximum number of links that cannot be
activated due to interference from some particular transmission.
Additionally, we discuss approaches to dramatically increase
the speed of the proposed algorithm with only limited decrease
in the solution quality.

One of the primary motivations of our work is to have a
tool that enables a network planner to quickly compare and
contrast the achievable network capacity of emerging wireless
technologies. Traditional wireless communications have used
omni-directional antennas, where a user’s transmission inter-
feres with others users in all directions. Different papers have
looked at finding feasible routes and schedules for networks
of omni-directional users [6]. More recently, networks using
directional antennas have been studied [7], where beams can
be formed to or from specific users. Since transmissions can be
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targeted, directional networking allows for significantly lower
interference over omni-directional systems, which results in
higher network capacity.

New technologies such as smart-antennas with adaptive digi-
tal beamforming allow a user to selectively communicate simul-
taneously with multiple other users by forming either multiple
transmit or receive beams, while also steering nulls towards
interfering users [8]. This adaptive multi-beam communication
system allows for almost arbitrary interference patterns between
users depending on which set of beams and nulls are activated
at any given moment in time. Our algorithm allows for rapidly
determining the achievable network capacity under arbitrary
interference constraints and allows for a common mechanism
to examine the effect of different wireless technologies and
their respective interference patterns on network capacity.

In this paper, we present the following novel contributions.
The Fast Algorithm for Determining Wireless Network Capac-
ity (FAD-WNC) that finds an achievable maximum network
capacity of a wireless network subject to interference con-
straints. FAD-WNC runs in polynomial time and finds a feasible
maximum flow that is within a guaranteed bound of the optimal
solution. We use our algorithm to do a comparison of max-
imum network capacity using different wireless technologies
operating at different frequencies. In particular, we use FAD-
WNC to compare the capacity of omni-directional networks
operating at 2.4 GHz to directional beamforming networks
operating at the 24 GHz ISM bands. We examine single-
beam directional antennas, as well as antennas capable of using
multiple simultaneous transmit or receive beams. Depending on
the choice of antenna and beamforming algorithms, different
beamforming approaches have different gain and beamwidth
and these different approaches come with different cost and
complexity. We characterize the achievable network capacity
to show when a particular technology has more benefit.

The paper is organized as follows. In Section II, we review
of related work in this area. In Section III, we discuss the
network model that we use for the rest of the paper. In Section
IV, we present the Fast Algorithm for Determining Wireless
Network Capacity (FAD-WNC) algorithm for quickly finding
the achievable capacity of a wireless network. In Section V, we
present simulation results of FAD-WNC, where we examine
runtimes and compare the achievable network capacity for
different wireless technologies and interference patterns.

II. RELATED WORK

A large number of papers have examined the asymptotic be-
havior of networks. In particular, these works consider network
capacity as the number of users goes to infinity. Typically trans-
mission ranges, node placements, and other network parameters
are configurable; finding feasible transmission schemes that
achieve any capacity bound is usually not addressed. For omni-
directional networks without mobility, [1] show that for n
users, total network capacity scales at best O(

√
n). In other

words, as the number of users in the network grows to infinity,
the capacity available for any particular flow between users
goes to zero. The analysis from [1] has been extended to

different types of networks and interference patterns, including
mobile networks [9], directional networks [10, 11], and MIMO
relay networks [12]. While asymptotic results are useful at
understanding fundamental network limits, they often do not
say anything about capacities of finite node networks, nor how
to actually achieve those capacity bounds. There have been
efforts to characterize scalability and performance bounds of
networks with more realistic parameters, with one example
being [13], but these results still do not give feasible solutions.

For cross-layer optimization, numerous papers have been
written that attempt to maximize some network metric (typ-
ically capacity) by finding a feasible solution consisting of
a set of interference-free schedules and routes for the set of
connections. Omni-directional networks are examined in [14–
17], with each of these papers providing solutions that are
within a guaranteed bound of optimal. Heuristic algorithms for
routing and scheduling in directional networks are proposed in
[18–20], but none provide any guaranteed bounds. For general
interference constraints, [2, 5, 21] provide optimal solutions,
but their proposed algorithms are computationally intractable
and do not run in any guaranteed amount of time.

More recently, [3] finds an upper bound on wireless network
capacity by maximizing the multi-commodity flow over the
sparsest “wireless cut”, which is an extension from the NP-Hard
sparsest multi-commodity cut problem for wired networks.
They demonstrate that the upper bound found by their algorithm
is close to the optimal solution proposed by [21]. The upper
bound though does not give feasible routes or transmission
schedules for the demands in the network.

To the best of our knowledge, there has been no work that
tries to find the maximum achievable capacity of networks
using multi-beam adaptive antennas. There also does not ap-
pear to be any work that compares the maximum achievable
network capacity in finite node networks of omni-directional
and directional (both single beam and multi-beam) antennas.

III. MODEL AND PROBLEM DESCRIPTION

In this paper, we study the problem of how to quickly
estimate the maximum achievable network capacity of a multi-
hop wireless network subject to arbitrary binary interference
constraints. Given a traffic demand, our algorithm finds a set of
routes with corresponding interference-free transmission sched-
ules for all demands in the network such that the minimum rate
of any particular demand is maximized. Without interference-
constraints, this has been traditionally known as the Maximum
Concurrent Flow Problem [22]. We consider both unicast and
multicast flows. For the case of a network with both unicast
and multicast flows, polynomial-time algorithms are developed
that achieve a maximum concurrent flow that is O(δ) from the
optimal solution, where δ is the maximum number of links that
cannot be activated due to interference from some particular
transmission. We leverage the large body of work developed
to rapidly determine the maximum concurrent flow in wired
networks for both unicast [22] and multicast [23] traffic to
develop rapid algorithms for calculating network capacity in
wireless networks.
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The network model is as follows. We are given a graph
G with a set of wireless nodes V and links E. Link (i, j)
has capacity cij ,∀(i, j) ∈ E. The number of nodes in the
network is n = |V |. We assume all link capacities are rational
values. The antenna patterns of each user is assumed to be
known, which allows us to formulate interference constraints
accordingly. We consider a stationary network; if a network
is mobile, we consider a stationary snapshot of the network.
Hence, we assume that the wireless nodes are static, and that
the set of edges E is fixed. The number of neighbors node v
has is called its degree, and the maximum degree in graph G
is labeled as ∆(G).

We assume that the network uses a synchronous time slotted
system with equal length time slots with a repeating schedule
of T time slots.

We are given a set of unicast and multicast demands. For a
unicast flow, dij of flow must be sent from user i to user j.
For a multicast flow, dsS of flow must be sent from source s
to all of the multicast members S. We note that if |S| = 1,
the multicast flow is a unicast flow. The goal of the maximum
concurrent flow problem is to maximize the minimum fraction
of any demand that can be achieved subject to all constraints
on the network. In wired networks, the primary constraint is
that no flow on a link can be greater than that link’s capacity.
In wireless networks, interference constraints are added, and
certain links cannot be activated simultaneously or else their
transmissions will interfere with one another.

In this paper, we use the binary interference model. For any
pair of links, (i, j) and (k, l), either both links can be active
simultaneously if they do not interfere with one another, or
at most one of these links can be active if they do interfere
[24]. An interference matrix I is defined where Iklij ∈ I is 1
if links (i, j) and (k, l) can be activated simultaneously (do
not interfere with each other), and 0 otherwise. Similar to [25],
we define Fij as the interference region of link (i, j). Fij is
the set of other links that cannot be active simultaneously with
(i, j). We define δ to be the maximum-sized interference region:
δ = max(i,j)∈E |Fij |.

Binary interference is used for the K-hop interference
model [26], where if link (k, l) is less than K hops away from
link (i, j), the two links will interfere. The 1-hop interference
model has been used to represent interference in directional
networks [27], and the 2-hop interference model has been used
to represent omni-directional interference [26]. More generally,
the binary interference model can be used to represent almost
arbitrary interference constraints. In directional networks, any
realistic transmission pattern will have some beamwidth asso-
ciated with it, which will cause a transmission to interfere with
a set of users. The binary interference model can capture the
interference from various beamwidths and from activating any
particular subset of beams from a multi-beam antenna.

In our analysis, we use a conflict graph [5], which is used to
represent the interference in a network using a binary interfer-
ence model. We construct a conflict graph Ḡc as follows: a node
vij is added for each link (i, j) in the transmission graph G,

and a link is added between two nodes vij and vkl in Ḡc if links
(i, j) and (k, l) interfere with one another in G. We note that the
neighbors of node vij in Ḡc are the nodes associated with the
interference region Fij for link (i, j). Any independent set1 of
Ḡc are a set of edges in the transmission graph G that can be
activated simultaneously without interference. The maximum
degree of the conflict graph, ∆(Ḡc), is the maximum number
of links that cannot be activated due to interference from some
particular transmission. Hence, δ = ∆(Ḡc) = max(i,j)∈E |Fij |.

IV. ALGORITHM FOR RAPIDLY DETERMINING WIRELESS
NETWORK CAPACITY

In this section, we present our algorithm for quickly deter-
mining wireless network capacity. This problem is a cross-
layer optimization, and as discussed in Section II, existing
solutions for jointly determining the set of routes and schedules
for arbitrary interference constraints have been computationally
intractable. The routing portion of such a joint optimization
problem selects the optimal set of links to traverse such that
interference is minimized. Depending on how many demands
traverse any given link, certain links in an optimal solution will
be more heavily utilized, and as such these links require more
time slots than lightly utilized links.

Instead of trying to jointly optimize, we leverage the large
body of existing work for rapidly determining maximum con-
current flow in wired (no-interference) networks. We wish
to understand which links are more heavily utilized for a
maximum flow, allowing us to assign those links a commen-
surate number of time slots. The maximum concurrent flow
for wired networks gives us a rapid method of determining
the utilization of any link for some maximum flow. We note
that these link utilizations are not necessarily optimal for a
wireless maximum concurrent flow, but they offer insight into
how some sort of maximum flow can be allocated. We next
develop a scheduling approach that assigns time slots to the
various links in the network such that at least O(δ) of the
network capacity upper bound can be supported. We call the
set of routes and link utilizations for the wired maximum
concurrent flow the No-Interference Maximum Flow (NI-MF),
and we call the wireless maximum flow the With-Interference
Maximum Flow (WI-MF).

The maximum concurrent flow for networks without interfer-
ence for both unicast and multicast flows is well studied; hence,
the focus of this paper is presenting an algorithm for quickly
determining an interference-free schedule for the maximum
concurrent flow in wireless networks subject to interference
constraints. In Section IV-A, we give a brief overview of the
various methods of solving for NI-MF for both unicast and
multicast flows. In Section IV-B, we present our algorithm to
find an interference-free schedule. In Section IV-C, we evaluate
the performance of FAD-WNC.

1An independent set is a set of nodes where no two nodes are the end points
of the same edge.
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A. Finding the Maximum Concurrent Flow for a Network
without Interference Constraints

In this section we discuss different approaches for finding
the No-Interference Maximum Flow. The maximum concurrent
flow problem seeks to maximize the minimum fraction of each
connection that can be supported in a capacitated network.
There is a large body of literature that we can leverage for
computing the maximum concurrent flow for both the unicast
and multicast case. A linear program that optimally solves for
the maximum concurrent flow problem in polynomial time has
been previously provided in [28] for the unicast case and in
[23] for the multicast case.

While linear programs provide optimal solutions, they are
not necessarily efficient to solve in practice. The authors of
[23] benchmarked the performance of their linear programming
formulation for the multicast maximum concurrent flow and
found that runtime can easily take hours for moderately sized
networks. In [22], a survey of approximation algorithms for
the unicast maximum concurrent flow problem are presented,
as well as a new algorithm that performs faster than previous
versions. To calculate a (1 + ε) approximation of the optimal
unicast maximum concurrent flow, [22] develops an algorithm
that runs in O(ε−2(k + m)m) time, where k is the number
of unicast connections and m is the number of edges in the
network. For the multicast case, [23] provides an algorithm
that achieves the optimal solution. Their approach does not
have guaranteed polynomial runtime, but they demonstrate
that in practice it rapidly achieves the optimal solution. Their
simulation results show the multicast maximum concurrent flow
can be solved in under one second for 1000 node networks. We
note that their approach can be used for the unicast case as well:
a multicast session from source s to a single destination d is
identical to a unicast flow between s and d.
B. Finding an Interference-Free Schedule

In this section, we assume that the NI-MF has already been
found using one of the approaches discussed above, and we
seek to find the WI-MF. The objective of our problem is to
find an interference-free schedule that maximizes individual
link rates, while supporting at least O(δ) of the wired network
capacity.

We assume that NI-MF provides a feasible flow decomposi-
tion for the wired maximum network capacity; i.e., flow values
fij for each link (i, j) ∈ E. We define the no-interference link
utilization of link (i, j) as:

uij =
fij
cij

(1)

If a final schedule has a total of T time slots and some link
(i, j) is assigned tij time slots, then link (i, j) is active for
a fraction tij

T of time and supports a total flow of tij
T cij . We

define the with-interference link utilization for link (i, j) as:

wij =
tij
T

(2)

If wij ≥ uij (i.e., the with-interference link utilization is
greater than the no-interference link utilization), then flow fij

can be fully supported on link (i, j) from the initial NI-MF.
However, if wij < uij , then only a fraction of fij can be
supported on the link. The ratio of without-interference to with-
interference flow supported on link (i, j) is:

σij =
wij
uij

(3)

While the flow decompositions that NI-MF provides may
not be optimal for the wireless maximum flow, any schedule
that maintains σij ≥ σ, ∀(i, j) ∈ E will be within O(σ)
of NI-MF for any constant σ. We know any maximum flow
solution with interference can never be greater than the solution
without interference. Our algorithm finds a feasible flow; hence,
it is a lower bound on any optimal solution. For our solution, by
guaranteeing that σij > δ−1, ∀(i, j) ∈ E, we can guarantee that
the achieved maximum concurrent flow in the wireless network
with interference is at most O(δ) from optimal.

First, we present a high-level outline of the scheduling
algorithm. Afterwards, each step is discussed in more detail,
and potential speed improvements are explored.

1) Algorithm Outline: The steps of the scheduling algorithm
are the following.

(i) Convert to integer: Convert all no-interference link
utilizations uij to integer values zij by multiplying by
some integer R.

(ii) Create multi-edge conflict graph: We create a multi-
edge conflict graph, which is a variant of the traditional
conflict graph. Link (i, j) will be represented by zij nodes
that form a clique2; we label this conflict graph ḠM . If
links (i, j) and (k, l) cannot be active simultaneously in
G, then in ḠM , each node from clique (i, j) will have a
connection to each node in clique (k, l).

(iii) Color conflict graph: Find a minimum graph coloring
of ḠM , where each color represents a time slot of the
final schedule. The total number of colors is the number
of time slots for a schedule. Since the graph coloring
problem is strongly NP-Complete [29], we use the Welsh-
Powell greedy coloring algorithm that has a runtime
of O(n∆(ḠM )) and finds a solution that uses at most
∆(ḠM ) + 1 colors [30].

(iv) Scale flow: Define σmin = min∀(i,j)∈E σij . After
scheduling, each link can support at least σmin of the No-
Interference Maximum Flow. Scale the maximum concur-
rent flow for the network without interference by σmin
to find an achievable maximum flow in a network with
interference. We will demonstrate that σmin ≥ (δ+1)−1.

2) Algorithm Discussion: We now discuss each step of the
algorithm in more detail. The key is to assign time slots
to the different links such that the achieved flow on any
link can support at least O(δ) of the initial flow. Hence,
our goal is find an interference-free schedule such that:
wij ≥ 1

δ+1uij , ∀(i, j) ∈ E.
In step (i), the no-interference link utilizations uij are con-

verted to integer values zij , ∀(i, j) ∈ E. To do so, we find

2A clique are a set of nodes that are all connected to one another.
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some integer value R such that R ·uij ∈ Z, ∀(i, j) ∈ E, where
Z is the set of integers. We demonstrate in Lemma 1 that all
link utilizations uij , ∀(i, j) ∈ E are rational values.

The runtime of the coloring algorithm for some graph is
O(n∆), where n is the number of nodes in that graph and ∆ is
the maximum degree of that graph. Since the number of nodes
in the multi-edge conflict graph scale with R and the runtime
of the graph coloring algorithm is a function of the number of
nodes in the graph, it is important that we demonstrate that R
is polynomial bounded by the size of the input variables. We
demonstrate this to be the case in Lemma 1.

Lemma 1. All link utilizations uij , ∀(i, j) ∈ E are rational
values. Furthermore, there exists some integer R such that
R · uij ∈ Z, ∀(i, j) ∈ E, where R is polynomial bounded by
the size of the input variables.

The proof for Lemma 1 is presented in Appendix A. We note
that demonstrating the existence of an R that is polynomial-
bounded in size with respect to the inputs is important from
an analytic perspective, but not necessarily from a practical
perspective. The value R is a scaling factor that determines
the size of cliques for the multi-edge conflict graph. Since the
runtime of any graph coloring algorithm is dependent on the
number of nodes in the graph, having a large value of R can
result in slower algorithm performance. Smaller values of R can
be used by dropping any fractional values to improve runtime
while still producing high-fidelity results. We consider these
performance trade-offs in Section V.

Next, we discuss steps (ii) and (iii) of the algorithm. A
typical conflict graph construction represents any individual
link (i, j) in G as a single node vij ; we call this conflict
graph construction Ḡ1. In our solution approach, we construct
a multi-edge conflict graph ḠM where each link (i, j) in G
is represented by zij nodes that form a clique. Since no two
nodes of a clique can share the same color, a clique of size z
will require exactly z colors. Recall that zij = R · uij . A final
graph coloring preserves the ratio of utilization factors across
all links:

R · uij
R · ukl

=
zij
zkl

, ∀(i,j)∈E∀(k,l)∈E

If R is reduced in size and the fractional value is discarded,
then each link receives fewer time slots. But, fewer time slots
overall will be needed for a feasible schedule, and the ratio of
link activations will be still roughly preserved; each link will
still be active a similar fraction of time and hence, will be able
to support a similar amount of flow.

In step (iv), we scale the initial maximum concurrent
flow given by NI-MF such that it can be supported by the
interference-free schedule that was found in step (iii). If the
total number of colors (i.e., time slots) to color ḠM is T
and link (i, j) uses zij time slots, then link (i, j) has a with-
interference link utilization of wij =

zij
T . If wij ≥ uij , then

the full flow on link (i, j) can be supported, and if wij < uij ,
then only the fraction σij =

wij

uij
can be supported. Define

σmin = min∀(i,j)∈E σij . We can scale the initial solution given

by NI-MF by σmin to find an achievable maximum concurrent
flow in the wireless network with interference constraints.

We now demonstrate that σmin ≥ (δ + 1)−1, and hence our
algorithm always produces a solution that is O(δ) of optimal.
Recall that in conflict graph Ḡ1, each link (i, j) of G is
represented by a single node vij in Ḡ1, and two nodes in
Ḡ1 have a connection if and only if they cannot be activated
simultaneously. Hence, the maximum degree of the conflict
graph Ḡ1 is the maximum number of links that cannot be
activated due to interference from some particular transmission,
and δ = ∆(Ḡ1).

Theorem 1. The Fast Algorithm for Determining Wireless
Network Capacity finds a feasible maximum concurrent flow for
a network that is always within O(δ) of the optimal solution.

Proof: NI-MF is the upper bound on any achievable
solution for WI-MF. We will demonstrate that the supportable
flow on every link in the WI-MF solution is within δ+1 of the
flow on that link in the NI-MF solution. Specifically, we will
demonstrate:

wij
uij
≥ 1

δ + 1
, ∀(i, j) ∈ E

We define the following two values: zmax = max∀(i,j)∈E zij
and umax = max∀(i,j)∈E uij .

By using the Welsh-Powell coloring algorithm, conflict graph
Ḡ1 can be colored using δ + 1 colors [30], where δ is the
maximum degree of Ḡ1. In the multi-edge conflict graph ḠM ,
the ith clique of size zi will be colored using zi colors. Hence,
ḠM can be colored with at most T ≤ (δ + 1)zmax colors.

To compute zij for any particular link, we multiplied each
link utilization ratio uij by some value R: zij = R · uij . By
definition: zmax = R · umax.

The no-interference link utilization uij =
fij
cij

is the total
percentage of link capacity that is used to support the maximum
concurrent flow in the network without interference. Maxi-
mum concurrent flow is achieved when the multi-commodity
minimum-cut is saturated, and the minimum-cut is saturated
when all of its respective links are allocated at capacity [31].
Hence, there exists some link (k, l) that is allocated at capacity;
i.e., fkl = ckl, and ukl = fkl

ckl
= 1. A link can be utilized at

most at 100%; therefore, umax = 1, and zmax = R·umax = R.
Using T ≤ (δ+1)zmax, the with-interference link utilization

wij has the following bound:

wij =
zij
T
≥ zij

(δ + 1)zmax
=

zij
(δ + 1)R

, ∀(i, j) ∈ E

Using uij =
zij
R , we complete the proof:

wij
uij
≥

zij
(δ+1)R
zij
R

=
1

δ + 1
, ∀(i, j) ∈ E

C. Algorithm Performance Evaluation

In this section, we evaluate the performance of our algorithm
with respect to runtime and how far its achieved network
capacity is from network capacity upper bound.
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Fig. 1: Achieved wireless network capacity of our algorithm (Alg)
compared to the guaranteed algorithm lower bound (LB) and the with-
interference capacity upper bound (UB).

We first compare the achieved wireless network throughput
of our algorithm to both the algorithm’s guaranteed lower bound
and to the maximum with-interference capacity upper bound.
For the upper bound capacity, we implement the maximum
multi-commodity wireless cut algorithm proposed in [3]. We
generate 50 random 100 node networks, and we consider
uniform all-to-all unicast traffic. Since the algorithm in [3] was
designed to work for networks with unit capacity links, we
also consider networks of 1 Mbps links. We consider both
1-hop and 2-hop interference. In Fig. 1, each test result is
plotted in ascending order of the algorithm’s achieved network
throughput. On average FAD-WNC achieves a network capacity
that is close to the network capacity upper bound. For 1-
hop and 2-hop interference, our algorithm finds a solution
that is on average within a factor of 1.6 and 2.2 of the
upper bound, respectively. In about 10% of instances, the
algorithm achieved a solution that was within 10% of the upper
bound network capacity. We also observe that our algorithm on
average performs substantially better than its guaranteed lower
bound. For 1-hop interference, the algorithm is 4.8 times better
than the guaranteed lower bound, and for 2-hop interference,
the algorithm is 13.7 times better.

We next wish to characterize performance trade-off for lower
values of R with respect to runtime. In step (i) of the algorithm,
we convert all no-interference link utilizations uij to integer
values zij by multiplying by some integer R. As noted in the
discussion, the runtime of the algorithm is dependent on R, and
performance gains can be achieved by using smaller values of
R and discarding any fractional components of zij . The value
R can in fact be quite large, which will cause a significant
slow-down in algorithm performance.

Label P the precision factor. To determine R, we consider
the following approach. Let R be some power of 10 such that
each link flow Ruij is greater than P . More precisely, let
R = 10x for the minimum integer x such that zij = bRuijc ≥
P , ∀(i, j) ∈ E. We drop the fractional component of zij .

Smaller values of P (and hence, R) will provide less preci-
sion, but still generally preserve ratios of link utilization factors
to one another. It is possible that uij � ukl. If this is the case,
then Ruij will be potentially be very large, and since a clique
for link (i, j) in the multi-edge conflict graph will have size
Ruij , the graph coloring algorithm may experience slow run-
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Fig. 2: 1-hop interference: capacity and runtime results.
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Fig. 3: 2-hop interference: achieved throuhgput and runtime results.

time. Hence, we allow P to be less than 1. For P < 1, there
will exist at least one link (i, j) such that 0 < Rfij < 1. For
these links, set zij = 1. Hence, zij = max(bRfijc, 1).

When the precision factor is 0, then every link in the network
gets exactly one time slot; this results in the traditional conflict
graph Ḡ1. A schedule for Ḡ1 requires at most ∆(Ḡ1)+1 = δ+1
time slots, and if every link is activated for one time slot, then
each link can support (δ+ 1)−1 flow. This in fact is our worst-
case capacity bound guarantee. Larger precision factors only
improve the solution from the worst-cast guarantee.

We perform the following test to evaluate runtime. We
generate 50 random graphs of 25, 100, and 400 nodes. Each
graph has an average degree of 15. Capacities are randomly
assigned to each link from a uniform distribution between 0
and 100 Mbps. For maximum concurrent flow, we consider
uniform all-to-all unicast traffic; i.e., every node desires to send
an identical amount of flow to every other node. To find the
No-Interference Maximum Flow (NI-MF), we use the algorithm
presented in [22]. We consider the 1-hop and 2-hop interference
model: if link (k, l) is within K hops of link (i, j), the two
links will interfere. We vary the precision factor P between
0.01 and 1000. We also consider P = 0, where the resulting
schedule will assign one time slot per link. All algorithms were
implemented in C, and all tests were run on a 2013 MacBook.

The runtimes presented are only for the scheduling algorithm,
and not the NI-MF. The reason we did not include the runtime
for NI-MF is that there are many approaches for doing so,
and the focus of this paper is on finding a maximum flow
with interference. In our implementation, for all test cases, the
NI-MF algorithm (from [22]) ran in under 1 second.

The results for 1-hop and 2-hop interference are plotted in
Figs. 2 and 3, respectively. Both 1-hop and 2-hop interference
have similar trends. There is little change in the achieved
network capacity as the precision factor decreases from 1000
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to 1. For 1-hop interference, 25, 100, and 400 node networks
see a decrease in achieved network capacity of 3%, 6%, and
1%, respectively. For 2-hop interference, there is a decrease in
achieved network capacity of 2%, 8%, and 1% for 25, 100,
and 400 node networks, respectively. The drop in algorithm
runtime associated with a reduction in the precision factor is
significant. For both 1-hop and 2-hop interference, run time
drops by over 99%. For the 400 node network with 1-hop
interference, runtime goes from 327 seconds at P = 1000 to 1.2
seconds at P = 1. With 2-hop interference, 400 node network
has a runtime decrease from 29,561 seconds at P = 1000
to 30 seconds at P = 1. The 2-hop interference model has
significantly higher conflicts than the 1-hop interference case.
This increased interference causes the graph coloring algorithm
to have a longer search for an available color for each link,
which causes the longer runtime.

For precision factors less than 1, we observe that the achieved
network capacity declines first for the 25 node network, then
the 100 node network, and finally the 400 node network.
For smaller networks with P < 1, after being multiplied
by R, many links will end up with a single time slot in
the final schedule. In larger networks, many links still have
sufficiently high utilization such that they will still assigned a
commensurate amount of time slots. The 400 node case only
sees a significant drop when P = 0, and all links are assigned
a single time slot. But, the savings in algorithm runtime do
not seem to worth the drop in achieved network capacity. Most
of the savings comes from P = 1000 to P = 1. Going from
P = 1 to P = 0 sees at most a 4 second drop for the 400 node
network with 2-hop interference, but sees an achieved network
capacity drop of 13x. For all other cases, the time savings is
below 0.5 seconds.

V. NETWORK CAPACITY EVALUATION FOR DIFFERENT
WIRELESS TECHNOLOGIES

In this section, we use our algorithm to compare network
capacity for wireless technologies that experience different
types of interference constraints. Since different technologies
have different costs associated with them, the goal is to un-
derstand when a certain technology choice is appropriate and
worth the cost. We evaluate network capacity as a function of
beamwidth for directional antennas in the 24 GHz ISM band,
and compare to omni-directional antennas in the 2.4 GHz ISM
band. We consider sparse and dense networks in both terrestrial
and airborne settings. For directional networks, we consider
systems that can support either only a single transmit or receive
beam, or can support multiple simultaneous transmit or receive
beams [32]. We assume the use of directional antennas that
are multi-element phased arrays, where gain, beamwidth, and
interference patterns vary with the number of array elements
and beamforming algorithms. Since multi-beam antennas are
potentially much more expensive and complex, it is important
to characterize when a multi-beam approach makes sense over a
single-beam. Furthermore, we demonstrate that high-frequency
directional systems do not always outperform low-frequency
(and lower cost) omni-directional systems.

c 

a 

d 

b 

(a) Successful transmission

c 
a 

d 
b 

(b) Failed transmission

Fig. 4: Interference using the flat-top antenna model.

The 24 GHz ISM band has been considered for future 5G
network design [33]. Atmospheric absorption loss at 24 GHz
is around 0.1 dB/km [34], while at 2.4 GHz such loss is below
0.001 dB/km [34]. Thus, increased antenna gain is necessary
to successfully operate in the 24 GHz band.

Antenna gain g is a function of the antenna type and the
number of elements. We consider (isotropic) omni-directional
antennas with a single antenna element that have a gain of
g = 0 dBi. Phased antenna arrays are able to focus energy into
directional beams to amplify a signal relative to an isotropic
antenna, and can be used at both transmitting and receiving
systems. For directional systems we use the values for antenna
gain shown in Table I; these values either come from [35] or,
for those marked with an asterisk (*), were derived using a
similar methodology. We note that arrays with a large number
of elements are being developed to support narrow beamwidth
and high gain [36].

There are a variety of potential antenna patterns from
different beamforming approaches. To simplify our analysis,
we assume an ideal “flat-top” directional antenna model with
constant gain across a beam that is θ degrees wide; any
transmissions or receptions falling outside of this beam can be
ignored [37]. All transmissions have some maximum distance,
and interference constraints are as follows. A transmission from
node c to node d can succeed only if there is no simultaneous
transmission from node a such that both (i) d is within the
transmit beam pointing from a to any node b and (ii) a is
within the receive beam pointing from d to c, accounting for
the maximum range of all beams. This example is illustrated
in Fig. 4. We model interference omni-directional antennas as
having a beamwidth of θ = 360◦.

All antennas considered are half-duplex; i.e., a node can-
not both transmit and receive simultaneously. For multi-beam
antennas, we add the following constraints for reception and
transmission: (1) a node can receive simultaneous directional
beams from users that are separated by at least θ

2 degrees, and
(2) a node cannot transmit simultaneously to multiple users that
are spatially separated by less than θ

2 degrees.
Our experiments consider random topologies with 50 nodes

and a uniform all-to-all unicast traffic model. We consider both
terrestrial and airborne networks. For terrestrial networks, trans-

TABLE I: Directional beamwidth vs. gain.

Beamwidth θ 90◦* 60◦ 40◦ 20◦ 10◦ 5◦* 2◦*
Gain g in dBi 5 10 14 20 26 32 38
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Fig. 5: Terrestrial achievable network capacity vs. beamwidth for
single-beam (SB) and multi-beam (MB) systems.

missions have a maximum range of 1 km and transmit power
is set to 1 Watt. For airborne networks, transmissions have
a maximum range of 200 km and, to overcome these longer
distances, transmit power is set to 10 Watts. For directional
transmissions, the beamwidth (and the corresponding gain) is
varied between 2◦ and 90◦. We choose bandwidths of 10 MHz
for the 2.4 GHz band and 100 MHz for the 24 GHz band, as
spectrum is less scarce in the higher frequency range.

We test both sparse and dense networks, and consider 50
random graphs for each case. Nodes are spread further apart
in sparse networks, thus node degrees are lower and paths will
typically be longer. We observe an average node degree of 7 in
our sparse networks and 30 in our dense networks. We assume
free-space path loss, and that there are no blockages between
users. Link capacities are set according to the Shannon capacity,
which takes into account the antenna gain, bandwidth, atmo-
spheric absorption, and free-space path loss between nodes. We
assume a noise spectral density of N0 = −174 dBm/Hz.

Results are shown in Figs. 5 and 6 for terrestrial and
airborne networks, respectively. We first observe that in both
terrestrial and airborne networks, narrower beamwidths result
in significantly higher network capacity. This is due to the
higher gain and lower interference associated with the narrower
beamwidth. As beamwidth gets wider, the benefits of direction-
ality decrease. In the airborne network, the reduced antenna
gain associated with wider beamwidths cannot overcome the
atmospheric absorption losses at 24 GHz for long-distance
links. At a beamwidth of approximately 20◦ in the sparse
airborne network and 45◦ in the dense airborne network, the
achieved capacity of high-frequency directional network and
low-frequency omni-directional network become the same. The
reason the dense network can support wider beamwidths is
that nodes are closer together on average than in the sparse
network, and hence, users experience lower absorption loss and
can support links with lower overall gain. For this exact reason
(users being closer to one another), the short-range terrestrial
network does not experience a “break-even” point between
high-frequency directional networking and the low-frequency
omni-directional system. Wink distances are small enough that
atmospheric absorption does not result sufficient degradation
of link quality, and wider beamwidth still provide substantial
improvement over low-frequency omni-directional networks.

We next examine the performance of multi-beam (MB) di-
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Fig. 6: Airborne achievable network capacity vs. beamwidth for single-
beam (SB) and multi-beam (MB) systems.

rectional networking versus the single-beam (SB) approach. For
sparse networks, we observe the multi-beam approach achieves
a network capacity that is approximately twice that over the
single-beam approach for all beamwidths. For dense networks,
we observe the multi-beam approach yields a network capacity
that is approximately ten times that of the single-beam approach
for narrow beamwidths, but this improvement disappears as
beamwidth becomes wide. Here, the capacity improvement for
narrow beams in dense networks is more significant due to the
reduction in interference, allowing many transmit or receive
beams to be simultaneously activate. Interference increases as
beamwidth becomes wider, causing transmissions to overlap
with unintended recipients. As can be seen, as beamwidth
approaches 30◦ in a dense network, almost all of the benefit of a
multi-beam system disappears. In sparse networks, nodes have
fewer neighbors to simultaneously transmit to using narrow
beams and, conversely, fewer neighbors to interfere with when
using wider beams.

VI. CONCLUSION

In this paper, we considered the problem of rapidly de-
termining the maximum achievable capacity of a multi-hop
wireless mesh network subject to interference constraints. We
present the Fast Algorithm to Determine Wireless Network
Capacity (FAD-WNC) that quickly finds the maximum achiev-
able network capacity for an arbitrary number of unicast and
multicast connections subject to arbitrary binary interference
constraints. The solution provided by FAD-WNC is within
O(δ) of the optimal maximum flow, where δ is the maximum
number of links that cannot be activated due to interference
from some particular transmission. Our algorithms performs
well with respect to optimal wireless maximum flow. We also
suggest speed improvements for FAD-WNC, and demonstrate
that our algorithm can find the maximum network flow in under
1 second for a 100 node network. We then use our algorithm
to perform a network capacity analysis comparing different
wireless technologies, including omni-directional, single-beam,
and multi-beam directional antennas operating at different fre-
quencies. We show that depending on the technology in use and
the network characteristics, different approaches perform better
than others, and that the more complex approach is not always
better. We plan to use our tool to benchmark performance of
different wireless protocols used in industry and academia, and
to characterize the performance of different technologies.
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APPENDIX
A. Proof for Lemma 1

As assumed by the network model, all inputs to our problem
are rational, including all link capacities cij , ∀(i, j) ∈ E. As
discussed in Section IV-A, NI-MF can be solved using a linear
program (LP). The output of the LP are a set of flow allocations
on each edge: fij , ∀(i, j) ∈ E. In an optimal solution given
by an LP, the size of any output variable (i.e., the number
of bits necessary to represent that variable) is polynomially
bounded by the size of the inputs [38]. Since all of the inputs to
our problem are rational (hence requiring a finite and bounded
number of bits to represent), all output variables fij , ∀(i, j) ∈
E are also rational and polynomial bounded by the size of the
inputs. Since link capacities are rational, the no-interference
link utilization uij =

fij
cij

is also rational. Therefore, there exists
some value R that is polynomially bounded by the size of inputs
such that R · uij ∈ Z, ∀(i, j) ∈ E.
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