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Abstract

Recent interest in the lasting effects of early-life stress has expanded to include effects 

on cognitive performance.  An increase in circulating glucocorticoids is induced by stress 

exposure and glucocorticoid effects on the hippocampus likely underlie many of the cognitive 

consequences.  Here we review studies showing that corticosterone administered to young rats 

at the conclusion of the stress-hyporesponsiveness period affects later performance in 

hippocampally-mediated trace eyeblink conditioning. The nature and even direction of these 

effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by 

different administration methods. In general, constant glucocorticoid elevations resulted in 

hippocampus-mediated learning deficits, whereas acute, cyclical elevations result in improved 

initial acquisition. Sensitivity was greater for males than for females. Further, changes in 

hippocampal neurogenesis paralleled some but not all effects. The findings demonstrate that 

specific patterns of glucocorticoid elevation produced by different drug administration 

procedures can have markedly different, sex-specific consequences on basic cognitive 

performance and underlying hippocampal physiology. Implications of these findings for 

glucocorticoid medications prescribed in childhood are discussed. 

Keywords: Glucocorticoids, Development, Eyeblink Conditioning, Trace Conditioning, 
Hippocampus, Neurogenesis, Sex Differences 
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1.0 Introduction

1.1 Stress, glucocorticoids and cognition 

Exposure to stressors in childhood has been linked to a number of later 

psychopathological conditions, including depression (Agnew-Blais & Danese 2016; Penza et al., 

2003), anxiety (Fernandes & Osόrio, 2015; Penza et al., 2003), schizophrenia (Fernandes & 

Osόrio, 2015; Jiang et al., 2013), and cognitive impairment (Hedges & Woon, 2011; Spies et al., 

2016). Evidence for cognitive deficits derive from observations such as reductions on measures 

of attention, memory, and executive function in children who had experienced stress sufficient to 

induce PTSD (Beers & De Bellis, 2002; Moradi et al., 1999). While confounds in human studies 

(e.g., current PTSD status) can cloud their interpretation, well-controlled animal experiments 

support the conclusion of early stress disrupting cognition. Maternal separation and disturbance 

of normal maternal behavior, for instance, have been found to impair performance of rats in the 

Morris water maze and novel object recognition tests in adulthood (Aisa et al., 2007; Ivy et al., 

2010). One potential mediator of such effects is an increase in circulating glucocorticoids 

induced by the early stress. Indeed, blockade of glucocorticoid receptors reversed the effect of 

maternal separation on novel object recognition (Aisa et al., 2007). In humans, there is a wealth 

of evidence for glucocorticoid medications negatively impacting cognitive processes (Belanoff et 

al., 2001). However, studies in children are sparse even though glucocorticoid therapy in 

childhood has been associated with reductions in cognitive ability, particularly verbal memory 

(Bender et al., 1988; Bender et al., 1991; Mrakotsky et al., 2013), and there is evidence that 

effects can persist (Hitzert et al., 2014; Lajic et al., 2008; ter Wolbeek et al., 2013). In one clear 

example, school age children who had been given dexamethasone for respiratory distress 

syndrome shortly after premature birth scored lower than a matched placebo group on several 

measures of cognitive ability, including verbal and performance IQ (Yeh et al., 2004). 
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1.2 Stress, glucocorticoids and hippocampus

The hippocampus likely underlies many of these cognitive consequences of stress- and 

pharmacologically-induced elevations of glucocorticoids. The hippocampus is rich with 

glucocorticoid receptors and plays a pivotal role in regulation of the stress response by 

providing negative feedback to the hypothalamic-pituitary- adrenal (HPA) system.  In addition, 

the hippocampus is a critical structure for learning and memory including short-term memory 

storage, the formation of new memories, and spatial working memory (Eichenbaum et al., 2016; 

Mahmmoud et al., 2015; Garcia, 2001).  Some glucocorticoid activation is necessary for 

memory formation, and acute elevations can increase hippocampal LTP to promote learning 

(Beylin & Shors, 2003; Blank et al., 2002).  However, the abundance of glucocorticoid receptors 

also appears to increase the vulnerability of the hippocampus to over-activation in the presence 

of excess glucocorticoid levels with potentially toxic effects (You et al., 2009). Cushingoid 

patients who have pathologically high levels of cortisol exhibit reduced hippocampal volume and 

deficiencies in cognitive, particularly verbal, tasks, while treatment to lower cortisol levels results 

in increased hippocampal volume that is associated with improvement in verbal learning 

(Starkman et al., 1992; 1999; 2001; 2003). Moreover, children suffering from PTSD show 

significant negative correlation between cortisol levels and hippocampal volume (Carrion et al., 

2007). In adult rodents, prolonged elevation of glucocorticoids in adult rodents has been shown 

to reduce neural volume and LTP, alter dendritic morphology, and inhibit neurogenesis (Lupien 

et al., 1997; Sousa et al., 1998; Tata & Anderson, 2010). In all, there is substantial evidence for 

stress effects on cognition mediated by the hippocampus across the lifespan in both humans 

and animals (for reviews see Belanoff, et al., 2001; Kosten et al., 2012; Lupien et al., 2009; 

Heffelfinger & Newcomer, 2001).    

1.3 Glucocorticoid effects on cognitive development
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Early maternal separation or even altered maternal care can also affect hippocampal 

structure and disrupt its intrinsic physiology in rats (Maccari et al., 2014; Dricks, 2016). 

Exogenous glucocorticoids administered prenatally can have lasting effects on hippocampus 

and behavior (Zeng et al., 2015). Early postnatal administration has been largely confined to 

demonstrations of massive disruption of neural development and behavioral effects when given 

during the first 2 weeks of life in rats (Brummelte et al., 2006; Edwards & Burnham, 2001; 

Ferguson et al., 2001), the time of the “stress-hyporesponsiveness period” (SHRP), when 

circulating levels are greatly suppressed and the brain appears to be exceptionally sensitive to 

glucocorticoid’s catabolic effects on brain growth (Sapolsky & Meaney, 1986; Walker et al., 

1991). There is some indication that hippocampal-mediated behavioral effects can be affected 

by glucocorticoids later in the preweaning period (Machlor et al., 2004), but this question has 

received scant attention. In light of the fact that the SHRP has no true equivalent in human 

development, and that hippocampal development continues well after the SHRP, it is 

remarkable that there has been so little investigation of glucocorticoid administration in the 

preweaning period after the SHRP on the development of hippocampal-mediated cognitive 

tasks. Glucocorticoid medications are widely used in our society, and altered hippocampal 

function may compromise development, contributing to deficits in learning and memory in a 

variety of neurodevelopmental disorders (e.g., ADHD, Autism, Major Depressive Disorder). 

Further, it is important to consider possible differential vulnerabilities in males and females to 

early glucocorticoid administration. Sex differences in the effects of early-life stress and of 

glucocorticoid administration, including effects on the hippocampus, have frequently have been 

observed (e.g., Bale & Epperson, 2015; Gobinath et al., 2016; Jones et al., 2014). A better 

understanding of how males and females differ in the response to early glucocorticoid treatment 

may shed light on the differential prevalence of developmental disorders in males and females 

(e.g., more ADHD and autism in males; more depression in females).
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1.4 The eyeblink classical conditioning approach to assessing cognitive development 

In our approach, rats begin testing at postnatal day (PND) 15. At this age, the SHRP has 

ended and there is a peak in endogenous circulating corticosterone which continues to rise into 

at least the fourth week of life (Walker, Perrin, Vale, & Rivier, 1986).  The learning task used in 

our studies is eyeblink classical conditioning, which we consider to be ideal for examining the 

interplay between glucocorticoids and hippocampal learning in development for the following 

reasons. It is a simple associative learning task for which the underlying neural substrates are 

well known, and different versions of the eyeblink conditioning task rely on different 

combinations of neurological structures (Green and Woodruff- Pak, 2000; Stanton et al., 1994; 

Thompson and Krupa, 1994).  For this reason, selective behavioral deficits might provide clues 

as to the specific site of action of glucocorticoid effects on cognitive development. 

We studied two forms of eyeblink classical conditioning: delay and trace (see Figure 1). 

In delay eyeblink classical conditioning, an auditory conditioned stimulus (CS) overlaps the 

presentation of a periocular shock, which serves as the unconditioned stimulus (US). Delay 

eyeblink classical conditioning is mediated chiefly by circuits in the cerebellum and brainstem. In 

contrast, trace eyeblink classical conditioning engages the hippocampus and prefrontal cortex, 

as well as the basic associative circuits underlying delay eyeblink classical conditioning, and is 

our primary procedure for assessing hippocampal-mediated glucocorticoid effects on learning. 

During trace eyeblink classical conditioning the CS terminates before the onset of the US, so 

that the subject must retain a ‘‘memory trace’’ of the CS to form the association with the 

subsequently presented shock. Acquisition of the CS-US pairing (i.e., learning) is measured by 

the percentage and amplitude of conditioned responses (CRs), responses which occur after the 

CS but before the US and therefore indicate anticipation of the US.  The frequency and strength 

of the responses typically increase across training trials. When the timing of conditioned 

responses is such that the peak is within the 200 ms immediately preceding the shock US the 

CRs are labelled as “adaptive” or well-timed responses, although any response within the CS-
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US window can be counted in a “total” CR measure.  All of the data presented in the following 

figures will be of adaptive conditioned responses. 

Based on the known susceptibility of the hippocampus to glucocorticoid effects, we 

hypothesized that glucocorticoid administration—specifically corticosterone, the primary 

endogenous glucocorticoid in the rat—would impair trace eyeblink classical conditioning, but 

have no or less effect on delay eyeblink classical conditioning. Developmentally, the ability to 

acquire trace eyeblink conditioning emerges postnatally and becomes robust by about 28 days 

of age in the rat, corresponding to the prolonged maturation of hippocampal and cortical circuits 

during the first several weeks (Ivkovich et al., 2000b; Travaglia et al., 2016 ).  In humans with 

hypercortisolism, trace eyeblink conditioning deficits were observed (Grillon et al., 2004) while 

metyrapone- induced acute, mild hypocortisolism facilitated trace but not delay eyeblink 

conditioning (Nees et al., 2008), confirming that the trace eyeblink conditioning task may be 

sensitive to glucocorticoid effects mediated by hippocampus. 

Figure 1. Schematic diagram of Trace versus Delay classical conditioning as used in the studies 
described here. A tone conditioned stimulus is paired with a periorbital shock unconditioned 
stimulus separated in time for trace conditioning, but overlapping in delay conditioning.  Trace 
conditioning engages forebrain structures, including the hippocampus, in addition to the 
brainstem structures necessary for simpler delay conditioning.
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2.0 Corticosterone effects on eyeblink trace conditioning 

2.1  Corticoserone pellets- chronic high dose

In an initial study (Claflin et al., 2005), corticosterone was administered by way of 21-day 

timed-release subcutaneous pellets in order to examine the effects of chronic elevation of 

corticosterone beginning immediately post SHRP on later learning.  Either a 35 mg 

corticosterone pellet or an equivalent-size inert placebo pellet was surgically implanted at the 

nape of the neck on PND 15. Two weeks later, on PND 28, acquisition of delay and trace 

eyeblink conditioning was compared between treatment groups and between males and 

females. Although initial acquisition of delay conditioning was slower for corticosterone-treated 

animals, they easily reached asymptotic performance during the 4th of 6 training sessions, with 

no sex differences (Figure 2, left panel). In contrast, for hippocampal-dependent trace eyeblink 

conditioning (Figure 2, right panel) there was a clear impairment in learning, as measured by the 

percentage of adaptive conditioned responses, for corticosterone-treated male rat pups only. 

These males showed no significant improvement across trials, whereas control males, as well 

as corticosterone-treated and control females, exhibited gradual learning that reached 

asymptote in the 4th or 5th sessions of training. Conditioned-response amplitude measures 

followed the same patterns.  
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Figure 2.  Percentage conditioned responses for delay (left) and trace (right) conditioning on 
PND 28-29, two weeks after corticosterone or placebo pellets were implanted on PND 15. 
Effects of corticosterone were not significant for delay conditioning but a significant impairment 
in acquisition of trace was observed for males only. 

However, the physical appearance of both males and females was also affected by 

corticosterone pellet treatment. Their coats were scruffy and weight gain retarded (59 +/- 2 g for 

treated males and females vs. 84 +/- 2 g for controls on PND 27). Assessment of circulating 

corticosterone concentrations revealed that hormone treatment had produced a much greater 

and briefer elevation than intended: pharmacological levels of about 80 µg/dl were detected 3 

days after implant on PND 18, but had declined to the levels of animals treated with placebo 

pellets (~ 20 µg/dl) by 6 days after implant. Inspection of the pellets (designed for 21-day 

release) indicated a deteriorating pellet mass that appeared to have become encapsulated by 

scar tissue, potentially preventing further regular release of the hormone. In all, the results of 

this experiment demonstrated a clear sex-specific vulnerability of males in a hippocampal-

mediated learning task. Furthermore, since the corticosterone elevations were not maintained 
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throughout the study, the deficit we observed was due to a lasting effect produced by earlier 

hormone administration. Finally, our results, like those of others (Hermann et al., 2009), serve 

as a caveat for the importance of verifying actual blood levels following hormone pellet 

administration.  

2.2 Corticosterone by mini-pumps- steady moderate elevation 

If three days of pharmacologically elevated corticosterone could produce a sex-specific, 

later impairment in a hippocampal-mediated task, the next obvious question seemed to be 

whether a more physiologically relevant elevation of the same duration would have a similar 

outcome. To achieve a more-controlled delivery, we turned to osmotic mini-pumps. On PND 15, 

pups were implanted subcutaneously with pumps containing corticosterone or vehicle that were 

designed for a 3-day period of delivery. Trace eyeblink conditioning was again evaluated 

beginning on PND 28 (Claflin et al., 2014). 

Unlike the previous experiment, there was no effect of corticosterone on the appearance 

or body weights of pups. Furthermore, the pumps were successful at achieving an elevation of 

plasma levels 24 hours following implantation (12 µg/dl vs 6 µg/dl for controls) that might best 

be considered to be in the low to moderate physiological stress range. During trace conditioning 

almost 2 weeks later, percentage of adaptive CRs was numerically lower for corticosterone-

treated animals relative to controls, but not statistically different (Figure 3, left panel). However, 

the difference as measured by percentage of “total” CRs did reach significance (see Figure 4) 

and resembled the data for amplitude of the adaptive conditioned responses which were also 

found to be significantly different (Figure 3, right panel). Both males and females were impaired 

in this study, but visual inspection of the data separated by sex suggest a tendency again for 

males to exhibit greater impairment than females (Figure 4).  In summary, a short-term, modest 

elevation of corticosterone at the conclusion of the SHRP was sufficient to disrupt acquisition of 

trace eyeblink conditioning at 4 weeks of age. And while there was some suggestion of greater 
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vulnerability in males, animals of both sexes exhibited deficits following corticosterone 

treatment. 
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Figure 3. Percentage and amplitude of adaptive conditioned responses for trace conditioning on 
PND 28-29, two weeks after corticosterone or vehicle mini-pumps were implanted on PND 15. 
Impairment in CR amplitude was statistically significant. 
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Figure 4. Percentage of total CRs plotted separately for males and females. Impairment 
following corticosterone delivery was significant regardless of sex, though males administered 
corticosterone exhibited numerically lower percentage of responses than did corticosterone-
treated females.
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2.3 Corticosterone by injection – fluctuating elevation 

Though osmotic mini-pumps successfully achieved circulating corticosterone levels in 

the normal range, they are not designed to mimic normal temporal variation in hormone levels. 

For one, they obscure natural circadian and ultradian cycles. Further, because the output is 

consistent, mini-pumps eliminate the repeated elevation and descent of circulating levels that 

characterize acute stress exposures or intake of steroid medications. One drug delivery method 

that better approximates this pattern of temporal fluctuation is injection. Accordingly, pups were 

injected with corticosterone in our next study. Initial testing revealed that doses of 5 and 20 

mg/kg produced peak plasma elevations within an hour of the injection in the physiological 

range for the low dose (44.2 ug/dl) and in the pharmacological range for the high dose (103 

ug/dl), both of which declined precipitously, returning to control levels by 4 hours post-injection 

(Wentworth-Eidsaune et al., 2016). For this reason, subjects were treated twice daily, at 0900 

and 1700, for 3 days—PND 15, 16, and 17. Once again, corticosterone treatment affected trace 

eyeblink performance and, as in our initial study, the effect was limited to males. However, 

rather than impairing performance, corticosterone—particularly the higher, pharmacological 

dose—facilitated acquisition (Figure 5). Moreover, it was only the initial acquisition of the 

response that was enhanced since effects were limited to the first of six sessions, each of which 

consisted of 90 paired CS-US trials. In other words, fluctuating glucocorticoid levels in the 

period immediately following the end of the SHRP enhanced the males’ initial phase of 

acquisition of trace eyeblink conditioning 2 weeks after drug treatment was initiated.  
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Figure 5. Percentage of adaptive conditioned responses for males only during trace conditioning 
on PND 28-29. Facilitation in CR percentage was statistically significant in the first session (left). 
Right panel shows Session 1 data only, across blocks of 9 trials. Facilitation of initial acquisition 
during Session 1 was statistically significant the high dose corticosterone-treated males relative 
to the control males.

Overall, we found that three different methods of administering corticosterone during the 

post-SHRP portion of the preweaning period all had lasting effects on hippocampal-mediated 

trace eyeblink conditioning. Yet, the nature of the outcomes observed varied with the pattern of 

elevation (level, duration, temporal fluctuation) that each administration procedure achieved.  

Nonetheless, our assessment of blood levels was based on limited samples so as to constrain 

the conclusions that can be drawn for these results. In the first experiment, we know that pellets 

dramatically increased corticosterone concentrations at 24 hours and that the increase had 

disappeared by 3 days, but we do not know how quickly the elevations subsided. Similarly, in 

the second study, physiological levels were observed 24 hours following implantation of the 

mini-pumps, but the duration of this elevation is unclear. And in the third experiment, we cannot 

comment on how repeated injection at different times of the day or on consecutive days may 

have affected the pattern of elevation. Therefore, we conducted a systematic study of plasma 
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corticosterone levels following implantation of pellets or mini-pumps, or administration of 

repeated injections, at multiple time points. 

3.0 Corticosterone elevation patterns over time 

Specific procedures and doses were as described for the previous experiments. 

Implantation or first injection occurred at 0900 on Day 15, with blood samples collected 1, 4, 9, 

and 12 hours later. Further blood collection was spaced according to the expected reliable 

duration of effect for a particular treatment method (see Figure 6). For injection, only the high 

dose of 20 mg/kg was used here, and sampling occurred 1 hour and 4 hours after each 

injection. Samples from pups undergoing control procedures for each method were collected for 

comparison. In all, 149 pups from 17 litters were each sampled twice—initially via cardiac 

withdrawal and the second time following decapitation, at a minimum interval of 12 hours. Data 

for each time point for each method are based on between 6 and 9 samples. Blood was 

collected within 4 minutes of home cage disturbance in order to minimize any effect of the 

procedure on corticosterone levels in the samples obtained (Coover, Heybach, Lenz, & Miller, 

1979). Plasma samples were run in duplicate with radioimmunoassay procedures. 
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A

B

C

Figure 6. Circulating corticosterone levels over time (hours and days) for the three 
administration methods, pellets (A), mini-pumps (B), and injection (C). 
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Once again, pellets yielded the largest elevations. Though designed for release over 21 

days, plasma corticosterone concentrations of pellet-implanted pups rose to pharmacological 

levels and then fell sharply on day 2 and were no different than controls by day 5. Mini-pumps 

yielded a relatively steady elevation in the physiological stress range into the 3rd day.  Injections 

yielded the same oscillating peaks and troughs whenever administered, with significant 

elevations persisting for less than 4 hours. It is clear, therefore, that the three administration 

methods result in very different levels, temporal fluctuations, and durations of circulating 

glucocorticoid elevation, which apparently have distinct individual consequences for underlying 

brain development. 

4.0 Corticosterone effects on neurogenesis

While there are a number of mechanisms by which glucocorticoids may be affecting 

brain development to produce the different behavioral outcomes we have reported, one of the 

first to come to mind is by altering hippocampal neurogenesis. To assess this possibility, we 

examined potential differences in neurogenesis in the dorsal dentate gyrus following 

corticosterone administration by the same three methods. Neurogenesis in this region of the 

hippocampus has most frequently been observed in adults to correlate with changes in cognitive 

performance (Gould et al., 1999; Leuner et al., 2006). As described above, corticosterone 

administration began on PND 15. Daily bromodeoxyuridine (BrdU) injections (i.p., 50mg/kg) 

began one day later and were administered once a day for 3 days, on PND 16-18, to label 

newly dividing cells during this critical time window when corticosterone levels were known to be 

elevated. We examined brain samples of 4-7 pups, approximately balanced for sex, in each 

corticosterone and corresponding control group. An additional 4 brain samples served as 

baseline non-manipulated controls. Brains were harvested and preserved on PND 28 to 

correspond with the day of behavioral testing in our other studies. Coronal sections (80-μm) 
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were collected, yielding 7-9 sections per animal, for immuno-histochemical staining with Anti-

BrdU, anti-NeuN, anti-GFAP, and Sox10 as the primary antibodies followed by secondary 

antibodies FITC, Cy3, and DyLight649 to allow for confocal imaging (Figure 7). Stereological 

techniques were used to obtain counts of the total number of newly generated neurons (both 

mature and immature), their density, and the volume of the dorsal dentate gyrus.  Values were 

estimated using a rare event version of the optical fractionator (Gundersen et al., 1988) and 

Cavalieri methods (Gundersen et al., 1988b) with Stereo Investigator software.

Figure 7. Confocal images of dorsal dentate gyrus showing all fluorescent co-labelling (left). 
Immunohistochemical staining (right) allowed us to identify newly generated neurons: a) 
combined fluorochromes, b) BrdU labeled cells (any dividing cells), c) NeuN labeled mature 
neurons, and d) GFAP/Sox-10 labeled glia. The yellow perimeter tracing was used for calculating 
the cross-sectional area/volume of the dorsal dentate gyrus.     

Among the different administration method groups, statistically significant differences 

were observed for the pellet groups only and the direction of the effects was sex dependent 

(Figure 8). There was a significant decrease in neurogenesis for corticosterone-treated male 
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pups relative to placebo control males but a significant increase in neurogenesis for the female 

corticosterone-treated group relative to placebo females. These data are consistent with the 

significant behavioral deficit in learning we observed in corticosterone-pellet-treated males. 

Interestingly, examination of control groups indicated that for both placebo pellet controls and 

untreated controls there was a significantly higher rate of neurogenesis for males than females.  

Although not significant for the other control groups, this post-SHRP increased rate of 

neurogenesis for males is consistent with a growth spurt period in hippocampus (Bayer, 1980; 

Bayer & Altman, 1974; Travaglia et al., 2016) and makes the decrease in neurogenesis for 

corticosterone-pellet-males even more significant.  It is possible that the increased rate of 

neurogenesis during this developmental window produces a vulnerability to glucocorticoid 

perturbation specifically in males.  The volume of the dentate and cell density of new neurons 

did not differ between the corticosterone-treated and control animals, regardless of sex or drug 

administration method. 
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Figure 8. Total number of newly generated neurons (includes both mature and immature 
neurons) on PND 28, two weeks after corticosterone treatments began by pellet, injection, and 
mini-pump methods. Statistically significant effects of corticosterone treatment were found within 
the pellet groups only. Untreated control data are provided for comparison.  

5.0 General Discussion 

It is clear that the pattern of circulating glucocorticoids (level, duration, temporal 

fluctuation) is affected by the drug administration method and that even seemingly modest 

differences (i.e., output of mini-pump vs injection) can determine the direction of a behavioral 

effect.  Our work has focused on exploring the consequences of raising glucocorticoid levels 

starting on PND 15, immediately after the SHRP, and the potential effect on the developing 

hippocampus, as assessed 2 weeks later, on PND 28.  Although none of the drug administration 

methods we evaluated affected hippocampal volume, neurogenesis in the dentate was altered 

by the pharmacologically high levels of corticosterone delivered by pellets but not by the more 

modest levels produced by mini-pumps and injections. Moreover, the effect was sex specific.  






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Although across all control groups, males generally demonstrated more neurogenesis in the 

PND 16-28 period assessed, there was a drastic decrease in newly-generated-neurons for 

corticosterone-pellet-treated males relative to placebo controls.  Our results are consistent with 

those of others who have found that postnatal exposure to glucocorticoids through nursing or 

early postnatal injections reduced neurogenesis in males and in specific regions of 

hippocampus, like the dentate gyrus (Brummelte et al., 2006 and Gould, 1991, respectively). 

So, although pharmacological doses of corticosterone may impair neural development in males, 

this reduced neurogenesis argument cannot explain the learning deficits observed with lower 

levels of corticosterone delivered by mini-pump or the facilitated learning observed with 

injections.  

One prevailing view for some time has been that the differential effect of glucocorticoids 

on hippocampal function is mediated by the ratio of occupied glucocorticoid receptor types, 

Type 1(mineralocorticoid; MR) and Type II (glucocorticoid; GR). Rising glucocorticoid 

concentrations first saturate the high-affinity MR receptor sites, but with continuing elevation, 

glucocorticoids increasingly occupy GR receptors, which are found in abundance in the 

hippocampus. Initial activation of MRs appears to facilitate hippocampal function, enhancing 

LTP and improving spatial memory in the Y-maze (Conrad et al.1996, 1997; deKloet et al., 

1999). So long as the exposure is short-term and at low-moderate levels, glucocorticoid 

elevations appear to support neural plasticity and specifically post-training memory 

consolidation.  For example, intra-hippocampal infusion of corticosterone improves memory 

consolidation in awake but not sleeping rats (Kelemen et al., 2014). Memory consolidation is 

impaired in the absence of glucocorticoids following adrenalectomy or administration of 

antagonists (e.g., Marin et al., 2011; Nees et al., 2008). In contrast, prolonged exposure to 

stressors activates GRs, which appears to impair hippocampal excitability associated with 

learning plasticity, altering NMDA receptor expression (Lee et al., 2003), suppressing LTP, and 
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impairing performance on declarative and spatial memory tasks and memory retrieval (see 

reviews: Conrad et al., 2005; DeKloet et al., 1999; McEwen et al., 2006, 2007; Roosendaal, 

2002). One suggestion is that chronic, prolonged elevation produces genomic level changes 

that specifically affect hippocampal functions during later-stage memory processes 

(Roosendaal, 2002; Schwabe et al., 2012). In addition, prolonged glucocorticoid elevation and 

GR stimulation can have neurotoxic effects on the hippocampus in adult humans and in other 

animals, including rats (for review, see Lupien et al., 1997, 1998; Sousa et al., 1998).

We cannot rule out the possibility that GR activation in the non-hippocampal basic 

eyeblink conditioning circuits may produce the effects we observed in trace eyeblink 

conditioning. Certainly Wilber et al., (2007, 2010, 2011) demonstrated that early postnatal 

maternal separation and corticosterone administration during the SHRP resulted in impaired 

delay eyeblink conditioning for males in adulthood, but not females, and that the deficits 

corresponded with enhanced GR expression in the interpositus nucleus of the cerebellum, an 

area critical for this form of associative learning. However, our results obtained by manipulating 

corticosterone after the SHRP are consistent with adult human studies suggesting that 

hippocampus-mediated trace, but not delay conditioning, is more sensitive to these later 

variations in glucocorticoid levels.  When cortisol levels are endogenously high (Cushing’s 

syndrome) trace eyeblink conditioning is impaired and correlates with hippocampal-declarative 

memory deficits (Grillon et al., 2004). On the other hand, when cortisol production was inhibited 

by metyrapone in healthy volunteers, facilitation of trace eyeblink conditioning was observed 

while delay conditioning remained unaffected (Nees et al., 2008). It is possible that the later, but 

not earlier, postnatal glucocorticoid effects on cognition are mediated by hippocampus, 

especially since the immediate post-SHRP period of PND 15-18 has been reported as a time 

when there is a noticeable spurt in hippocampal cell maturation, in particular in the dentate 

gyrus (Bayer & Altman, 1974). It has been argued that brain areas are more vulnerable 
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precisely during such developmental spurts than they are either before or after reaching an 

adult state (Rice & Barone, 2000)

Beyond the potential glucocorticoid effects on hippocampal structure and function are 

the effects exogenous glucocorticoids can have on endogenous activity via feedback systems in 

the HPA Axis. It is possible that the chronic, though low level, corticosterone supplementation 

provided by minipumps impacts the natural physiological variations in corticosterone levels 

associated with rhythmic ultradian and circadian cycles of the hormone and regulatory feedback 

effects on the HPA axis.  Minipumps may obscure natural circadian rhythms of corticosterone by 

producing a constant output that raises physiological levels above normal circulating levels for 

an extended period.  In contrast, injections produce rapid fluctuations superimposed on the 

circadian cycle, thereby adding in additional periods of elevation into the natural cycle, which 

are likely to better mimic real-life repeated acute stressor effects. In one study in which early-life 

stress exposure enhanced later fear conditioning in adulthood, similar to our injection effects, 

the diurnal corticosterone cycle was disrupted so as to produce a second daily peak (Poulos et 

al., 2014). Some researchers are proposing that disruptions of the natural diurnal corticosterone 

cycle may prove to be useful in modelling PTSD symptoms in rodents (Hall et al., 2015; Poulos 

et al., 2014). 

Peaks and troughs in the circadian cycle may be particularly important to normal 

cognitive development. Liston et al. (2013) determined that peaks in circadian glucocorticoid 

levels promoted dendritic spine growth in cortical tissue of mice whereas troughs in the 

circadian cycle were periods of stabilization for the new spines. An injection of glucocorticoids 

during the trough period enhanced spine growth in mice to similar levels as those seen during 

normal peak circadian periods.  A similar beneficial effect on memory function was observed in 

human young adults administered hydrocortisone during the evening trough period (Lupien et 

al., 2002). It is increasingly clear that endogenous and exogenous glucocorticoids will interact to 
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alter the natural cyclical patterns of elevation in ways that may produce either facilitative or 

deleterious effects on cognition. 

Although excessive glucocorticoid elevation over a prolonged period is generally 

detrimental, and likely to result in hippocampal damage, acute elevations such as those 

produced by injections or by administration at specific times of day, may provide beneficial 

effects by way of a different mechanism. Facilitative effects on cognition have been 

demonstrated following cortisol administration in humans, specifically enhanced memory for 

emotional material (Abercrombie et al., 2003; Buchanan & Lovallo, 2001) and improvement in 

working memory (Stauble, et al. 2013) . Inhibitory avoidance, contextual-fear conditioning, and 

water maze spatial learning in rodents (reviewed in Roozendaal, 2002) were similarly improved.  

Acute administration of glucocorticoids also appears to follow the hormetic, or U-shaped, dose-

response function, with beneficial effects at lower doses (Lupien et al., 2005). It is proposed that 

the enhanced learning observed following acute stress or glucocorticoid exposure is the result 

of better memory encoding and consolidation processes, the early phases of memory formation, 

which are modulated by amygdalar-noraderenergic interactions with the learning circuits 

(Roozendaal, 2002). Given the delay between glucocorticoid treatment and assessment of 

learning in our paradigm, our findings may reflect a lasting increase in amygdalar-noradrenergic 

activity or excitability that promotes faster acquisition of trace eyeblink conditioning at a later 

time.  According to this model, there would also be no negative effect on hippocampal function, 

so the basic neural substrates for performing the task would remain intact. 

6.0 Summary and conclusion   

Our results offer caveats not just for the delivery of glucocorticoids in the laboratory, but 

also for their administration in a clinical setting. Results confirm that hippocampally-mediated 

DISTRIBUTION STATEMENT A.  Approved for public release.                                                              Cleared, 88PA, Case #2016-6284.



24

cognitive function appears to be especially vulnerable to early glucocorticoid administration, but 

that the observed effects may be in different directions. Early glucocorticoid manipulation may 

influence hippocampal development during a critical period of vulnerability for males moreso 

than for females. Our data show fairly consistent evidence for male sensitivity to glucocorticoid 

effects, both positive and negative, at PND 15, a time that corresponds with a significant growth 

spurt in the hippocampus in the rat. Glucocorticoids may alter the trajectory of brain 

development to affect cognitive development in a sex-specific manner (Howard et al., 2006, 

Kosten, 2012). Because the effects of glucocorticoids on cognition may vary greatly with factors 

beyond just dose (e.g., timing, developmental period, sex), adverse effects may be difficult to 

detect without thorough testing.  Systematic study of these various parameters using animal 

models for cognitive assessment may be able to provide clues to increase our understanding of 

the development, sex specificity, and underlying mechanisms contributing to certain learning 

disorders. 
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Highlights:

 Preweaning glucocorticoids affect later eyeblink trace conditioning
 Varying glucocorticoid elevation patterns differentially affect later cognition
 Greater sensitivity of males to glucocorticoid effects on hippocampal tasks
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