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Abstract
Coordinating agents to complete a set of tasks with in-
tercoupled temporal and resource constraints is com-
putationally challenging, yet human domain experts
can solve these difficult scheduling problems using
paradigms learned through years of apprenticeship. A
process for manually codifying this domain knowl-
edge within a computational framework is necessary to
scale beyond the one-expert, one-trainee apprenticeship
model. However, a human domain expert often has dif-
ficulty describing their decision-making process, caus-
ing the codification of this knowledge to become labori-
ous. We propose a new approach for capturing domain-
expert heuristics through a pairwise ranking formula-
tion. Our approach is model-free and does not require
enumerating or iterating through a large state-space.
We empirically demonstrate that this approach accu-
rately learns multi-faceted heuristics on both a synthetic
data set incorporating job-shop scheduling and vehicle
routing problems and a real-world data set consisting
of demonstrations of experts solving a variant of the
weapon-to-target assignment problem. Our approach
is able to learn scheduling policies of superior quality
to those generated, on average, by human experts con-
ducting an anti-ship missile defense task.

Introduction
Optimization and scheduling of resources is a costly, chal-
lenging problem that affects almost every aspect of our lives.
In healthcare, patients with non-urgent needs who experi-
ence prolonged wait times have higher rates of treatment
noncompliance and missed appointments (Kehle et al. 2011;
Pizer and Prentice 2011). In military engagements, the
weapon-to-target assignment problem requires warfighters
to deploy minimal resources to mitigate as many threats as
possible while maximizing the duration of survival (Lee,
Su, and Lee 2003). The problem of optimal task alloca-
tion and sequencing with upper- and lowerbound temporal
constraints (i.e., deadlines and wait constraints) is NP-Hard
(Bertsimas and Weismantel 2005), and real-world schedul-
ing problems quickly become computationally intractable.
However, human domain experts are able to learn from ex-
perience to develop strategies, heuristics and rules-of-thumb
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to effectively respond to these problems. The challenge we
pose is to autonomously learn the strategies employed by
these domain experts. This knowledge can be applied and
disseminated more efficiently with such a model than with a
single-expert, single-apprentice model.

Researchers have realized important progress toward cap-
turing domain-expert knowledge from demonstration (Berry
et al. 2011; Abbeel and Ng 2004; Konidaris, Osentoski, and
Thomas 2011; Zheng, Liu, and Ni 2015; Odom and Natara-
jan 2015; Vogel et al. 2012; Ziebart et al. 2008). For exam-
ple, in one recent work (Berry et al. 2011) an AI scheduling
assistant, called PTIME, learns how users prefer to schedule
events. PTIME can then propose scheduling changes when
new events occur by solving an integer program. Two limita-
tions to this work exist: PTIME requires users to explicitly
rank their preferences over scheduling options to initialize
the system, and PTIME uses a complete solver, which must
consider an exponential number of options in the worst case.

Research aimed at capturing domain knowledge solely
based on user demonstration led to the development of In-
verse Reinforcement Learning (IRL) (Abbeel and Ng 2004;
Konidaris, Osentoski, and Thomas 2011; Zheng, Liu, and
Ni 2015; Odom and Natarajan 2015; Vogel et al. 2012;
Ziebart et al. 2008). IRL serves the dual purpose of learn-
ing an unknown reward function for a given problem and
learning a policy to optimize that reward function. How-
ever, there are two primary drawbacks to IRL for scheduling
problems: computational tractability and the need for an en-
vironment model.

In the classical apprenticeship learning algorithm devel-
oped by Abbeel and Ng in 2004, one must solve a Markov
Decision Process (MDP) repeatedly until a convergence cri-
teria is satisfied. However, enumerating a large state-space,
such as one found in large-scale scheduling problems in-
volving hundreds of tasks and tens of agents, can quickly
become computationally intractable due to memory limi-
tations. Approximate dynamic programming approaches
exist which essentially reformulate the problem as regres-
sion (Konidaris, Osentoski, and Thomas 2011; Mnih et al.
2015), yet the amount of data required to regress over a large
state space remains challenging, and MDP-based scheduling
solutions exist only for simple problems (Wu et al. 2011;
Wang and Usher 2005; Zhang and Dietterich 1995).

IRL also requires a model of the environment for training.



At its most basic, reinforcement learning uses a Markovian
transition matrix that describes the probability of transition-
ing from an initial state to a subsequent state when taking
a given action. For circumstances in which the environ-
ment dynamics are unknown or difficult to model within the
constraints of a transition, researchers have developed Q-
Learning and its variants, which have had much recent suc-
cess (Mnih et al. 2015). However, these approaches require
the ability to practice, or explore the state-space by query-
ing a black-box emulator to solicit information about how
taking a given action in a specific state changes that state.

Another effort has been to directly learn a function that
maps states to actions (Chernova and Veloso 2007; Terrell
and Mutlu 2012; Huang and Mutlu 2014). For example, Ra-
manujam and Balakrishnan trained a discrete-choice model
using real data from air traffic controllers and showed how
the model can accurately predict the correct runway config-
uration for an airport (Ramanujam and Balakrishnan 2011).
Sammut et al. (Sammut et al. 1992) applied a decision tree
model for an autopilot to learn to control an aircraft from ex-
pert demonstration. Action-driven learning techniques offer
much promise for learning policies from expert demonstra-
tors, but they have not been applied to complex scheduling
problems. In order for these methods to succeed, one must
model the scheduling problem in a way that allows for effi-
cient computation of a scheduling policy.

In this paper, we propose a technique, which we call “ap-
prenticeship scheduling,” to capture this domain knowledge
in the form of a scheduling policy. Our objective is to learn
scheduling policies through expert demonstration and vali-
date that schedules produced by the policies are of compara-
ble quality to those generated by human or synthetic experts.
Our approach efficiently utilizes domain-expert demonstra-
tions without the need to train within an environment em-
ulator. Rather than explicitly modeling a reward function
and relying on dynamic programming or constraint solvers,
which become computationally intractable for large-scale
problems of interest, our objective is to use action-driven
learning to extract the strategies of domain experts to effi-
ciently schedule tasks.

The key to our approach is using pairwise comparisons
between the actions taken (e.g., schedule agent a to com-
plete task τi at time t) and the set of actions not taken (e.g.,
unscheduled tasks at time t) to learn relevant model param-
eters and scheduling policies demonstrated by the training
examples. We validate our approach using both a synthetic
data set of solutions for a variety of scheduling problems,
and a real-world data set of demonstrations from human ex-
perts solving a variant of the weapon-to-target assignment
problem.

Preliminaries
We aim to empirically demonstrate the generalizability of
our learning approach through application to a variety of
problem types. Korsah et al. provide a comprehensive tax-
onomy for classes of scheduling problems, which vary with
formulation of constraints, variables, and objective or utility
function (Korsah, Stentz, and Dias 2013). Within this tax-
onomy, there are four classes addressing interrelated utilities

and constraints: No Dependencies (ND), In-Schedule De-
pendencies (ID), Cross-Schedule Dependencies (XD), and
Complex Dependencies (CD). The ND problem class con-
sists of independent tasks that must be assigned to agents,
where the utility of one assignment does not affect the utility
of other possible assignments. This class of problems is ad-
dressed, for example, in (Liu and Shell 2013). The ID class
consists of problems in which the assignment of an agent
to a task may affect the utility of other tasks assigned to
that agent. This class is addressed, for example, in (Brunet,
Choi, and How 2008) and (Nunes and Gini 2015). For XD
class problems, making any assignment of an agent to a task
can affect the utility of any other agent performing any other
task, as addressed in (Gombolay, Wilcox, and Shah 2013).
The CD class incorporates conditional constraints, where as-
signing an agent to a task affects the manner in which that
task and other tasks can be performed. For example, in a
rescue scenario, the travel routes available to fire trucks de-
pend on the roads the bulldozers are assigned to clear (Jones,
Dias, and Stentz 2011).

The Korsah et al. taxonomy also delineates between tasks
that require one agent to perform, i.e. “single-agent tasks”
(SA), and tasks requiring multiple agents, i.e. “multi-agent
tasks” (MA). Agents that perform one task at a time are
“single-task agents” (ST), and agents capable of perform-
ing multiple tasks at the same time are “multi-task agents”
(MT). Lastly, the taxonomy distinguishes between instanta-
neous assignment (IA), in which all task and schedule com-
mitments are made at the same time, versus time-extended
assignment (TA), in which current and future commitments
are planned.

In this work, we demonstrate our approach for two fami-
lies of scheduling problems that span these classes. The first
problem is the “Vehicle Routing Problem with Time Win-
dows, Temporal Dependencies, and Resource Constraints
(VRPTW-TDR),” which is an XD [ST-SA-TA] class prob-
lem. Depending on parameter selection, this family of prob-
lems encompasses the traveling salesman, job-shop schedul-
ing, multi-vehicle routing, and multi-robot task allocation
problems, among others. We consider agents to perform
tasks sequentially (ST) and each task to require one agent
(SA), with commitments made over time (TA). We also as-
sume agents are heterogeneous in that they perform tasks
at different rates. An agent that is incapable of performing a
task is specified with a null completion rate. The objective is
to minimize the makespan or other time-based performance
measure. Agents and tasks have defined starting locations,
and task locations are static. Each agent travels with a con-
stant speed between task locations, and agents may only per-
form tasks when at the corresponding task location.

The second problem is the “Weapon-To-Target Assign-
ment Problem (WTA),” which involves selecting weapons
(e.g., a missile) to fire at targets (e.g., a stationary military
compound). The canonical formulation as described in (Lee,
Su, and Lee 2003) is in the ND class. However, we con-
sider a more complex, CD [MT-MA-TA] class variant of
the problem for anti-ship missile defense (ASMD). Here,
one must determine how to deploy a set of soft kill weapons,
also known as decoys, to distract an enemy’s anti-ship mis-



sile from impacting one’s own ship. These decoys are the
agents, and the neutralization of missiles are the tasks. The
effectivenessEai of deploying a decoy a against target τi at a
given location ~xa = [x, y, θ] and time t is dependent on the
time history of all other decoy deployments h. Decoys can
distract many missiles (MT), and many decoys can be used
to distract the same missile along various points of its trajec-
tory. Task allocation and scheduling commitments are made
over time (TA). The key challenge of this problem is that the
time history of how decoys have been deployed thus far af-
fects the future effectiveness of decoys, where they should
be deployed, and when they should be deployed. Agents and
tasks have defined starting locations. Each task (i.e., missile)
is modeled as a dynamical system with a homing function
Fτ (h, t) that guides the missile towards its target and is a
function of the current time and the time history h of previ-
ous decoy deployments. Decoys travel with a constant speed
to their target locations xg from the ship that deploys them.

Model for Apprenticeship Learning
In this section we present a framework for learning, via ex-
pert demontration, a scheduling policy that correctly deter-
mines which task to schedule as a function of task state.

Many approaches to learning such models are based on
Markov models, such as reinforcement learning or inverse
reinforcement learning (Busoniu, Babuska, and De Schut-
ter 2008; Barto and Mahadevan 2003; Konidaris and Barto
2007; Puterman 2014). These models, however, do not cap-
ture the temporal dependencies between states and are com-
putationally intractable for large problem sizes. To deter-
mine which tasks to schedule at which times, we draw in-
spiration from the domain of web page ranking (Page et al.
1999), or predicting the most relevant web page in response
to a search query. One important component of page ranking
is capturing how pages relate to one another as a graph with
nodes (i.e., web pages) and directed arcs (i.e., links between
those pages) (Page et al. 1999). This connectivity is a suit-
able analogy for the complex temporal dependencies (i.e.,
precedence, wait, and deadline constraints) relating tasks in
a scheduling problem.

Recent approaches to page ranking have focused on pair-
wise and listwise models, which have been shown to have
advantages over pointwise models (Valizadegan et al. 2009).
In listwise ranking, the goal is to generate a ranked list of
web pages directly (Cao et al. 2007; Valizadegan et al. 2009;
Volkovs and Zemel 2009), while a pairwise approach deter-
mines ranking based on pairwise comparisons between in-
dividual pages (Jin, Valizadegan, and Li 2008; Pahikkala et
al. 2007). We chose the pairwise formulation to model the
problem of predicting the best task to schedule at time t.

The pairwise model has key advantages over the listwise
approach. First, classification algorithms (e.g., support vec-
tor machines) can be directly applied (Cao et al. 2007). Sec-
ond, a pairwise approach is non-parametric, in that the cardi-
nality of the input vector is not dependent upon the number
of tasks (or actions) that can be performed in any instance.
Third, training examples of pairwise comparisons in the data
can be readily solicited. From a given observation in which
a task was scheduled, we only know which task was most

important – not the relative importance between all tasks.
Thus, we create training examples based on pairwise com-
parisons between the scheduled and unscheduled tasks. A
pairwise approach is most natural because we lack a con-
text to determine the relative rank between two unscheduled
tasks.

Consider a set of tasks, τi ∈ τ , each of which has a set of
real-valued features, γτi . Each scheduling-relevant feature
γjτi may represent, for example, the deadline, the earliest
time the task is available, the duration of the task, which re-
source r is required by this task, etc. Next, consider a set
of m observations, O = {O1, O2, . . . , Om}. Observation
Om consists of a feature vector {γτ1 , γτ2 , . . . , γτn} describ-
ing the state of each task, the task scheduled by the expert
demonstrator (including a null task, τ∅, if no task was sched-
uled) and the time at which an action was taken. The goal is
to then learn a policy that correctly determines which task to
schedule as a function of task state.

We deconstruct the problem into two steps: Step 1): For
each agent/resource pair, determine the candidate next task
to schedule. Step 2): For each task, determine whether to
schedule the task from the current state. In order to learn
to correctly assign the next task to schedule, we transform
each observation Om into a new set of observations by per-
forming pairwise comparisons between the scheduled task
τi and the set of tasks that were not scheduled (Equations
1-2). Equation 1 creates a positive example for each ob-
servation in which a task τi was scheduled. This example
consists of the input feature vector, φm〈τi,τx〉, and a positive
label, ym〈τi,τx〉 = 1. Each element of the input feature vec-
tor φm〈τi,τx〉 is computed as the difference between the corre-
sponding values in the feature vectors γτi and γτx , describ-
ing scheduled tasks τi and unscheduled task τx. Equation
2 creates a set of negative examples with ym〈τx,τi〉 = 0. For
the input vector, we take the difference of the feature values
between unscheduled task τx and scheduled task τi.

This feature set is then augmented to capture additional
contextual information important for scheduling, which may
not be captured in examples consisting solely of differences
between features of tasks. For example, one’s scheduling
policy may change based on the progress towards comple-
tion of the tasks, i.e. based on proportion of tasks com-
pleted so far. To provide this high-level information, we
include ξτ , the set of contextual, high-level features de-
scribing the set of tasks for observation Om, in (Equa-
tions 1-2). Prior work has shown that domain experts are
adept at describing the features (both high-level, contex-
tual and task-specific) used in their decision-making, yet,
it is more difficult for experts to describe how they rea-
son about these features (Cheng, Wei, and Tseng 2006;
Raghavan, Madani, and Jones 2006).

We can use these observations to train a classifier
fpriority(τi, τx) ∈ {0, 1} to predict whether it is better to
schedule task τi as the next task rather than τx. Given this
pairwise classifier, we can determine which single task τi
is the highest priority task τ∗i according to Equation 3 by
determining which task is most often higher priority in com-
parison to the other tasks in τ .



Next, we must learn to predict whether τ∗i should be
scheduled or the agent should remain idle. We train a second
classifier, fact(τi) ∈ {0, 1}, which predicts whether or not
τi should be scheduled. In our observations set, O, we only
have examples in which a task was scheduled and those in
which no task was scheduled. To train this classifier, we con-
struct a new set of examples according to Equation 4 where
positive labels are assigned to examples from Om in which
a task was scheduled and negative labels to examples in Om
in which no task was scheduled.

Finally, we construct a scheduling algorithm to act as an
apprentice scheduler (Figure 1). Lines 1- 2 iterate over each
agent at each time step. In Line 3, the highest priority task
τ∗i is determined for a particular agent. In Lines 4- 5, τ∗i is
scheduled iff fact(τ∗i ) predicts that τ∗i should be scheduled
at the current time.

A benefit of the pairwise ranking formulation is that one
can apply any one of a number of standard machine learn-
ing classification techniques to learn fpriority(τi, τx) and
fact(τi). In our experimental evaluation, we compare the
performance of a decision tree, support vector machine and
other common classification techniques.

Algorithm 1 Pseudocode for an Apprentice Scheduler
ApprenticeScheduler(τ ,A,TC,τR)

1: for t = 0 to T do
2: for all agents a ∈ A do
3: τ∗i ← argmax

τi∈τ

∑
τx∈τ

fpriority(τi, τx)

4: if fact(τ∗i ) == 1 then
5: Schedule τ∗i
6: end if
7: end for
8: end for

rankθm〈τi,τx〉 := [ξτ , γτi − γτx ] ,
ym〈τi,τx〉 = 1,

∀τx ∈ τ\τi,∀Om ∈ O|τi scheduled in Om (1)

rankθm〈τx,τi〉 := [ξτ , γτx − γτi ] ,
ym〈τx,τi〉 = 0,

∀τx ∈ τ\τi,∀Om ∈ O|τi scheduled in Om (2)

τ̂∗i = argmax
τi∈τ

∑
τx∈τ

fpriority (τi, τx) (3)

actφmτi := [ξτ , γτi ] ,

ymτi =

{
1 : τi scheduled in Om ∧

τi scheduled in Om+1

0 : τ∅ scheduled in Om
(4)

Data Sets
Next, we validate that schedules produced by our learned
policies are of comparable quality to those generated by hu-
man or synthetic experts.

Synthetic Data Set
First we generated a synthetic dataset in which schedules
were produced through application of context-dependent
scheduling heuristics. Our objective was to show that our
technique learns both the heuristics and policy for their cor-
rect application. We constructed a synthetic data set based
on the Vehicle Routing Problem with Time Windows, Tem-
poral Dependencies, and Resources. Problems involved two
heterogeneous agents and 20 partially ordered tasks located
within a 20 x 20 grid.

We constructed a mock heuristic to serve as our source for
synthetic-expert demonstrations, as shown in Figure 2. Our
heuristics were based on our prior work in scheduling (Tan
et al. 2001; Gombolay, Wilcox, and Shah 2013) and prior
work addressing the vehicle routing problem with time win-
dows (Solomon 1987). In Lines 1-6, the algorithm collects
all alive and enabled tasks τi ∈ AE as defined by (Muscet-
tola, Morris, and Tsamardinos 1998). Consider a pair of
tasks τi and τj , with start and finish times si, fi and sj , fj ,
respectively, such that there is a wait constraint requiring τi
to start at least W〈τj ,τi〉 units of time after τj . A task τi is
alive and enabled if t ≥ fj + Wτj ,τi for all such τj and
W〈τj ,τi〉 in τ .

Algorithm 2 Pseudocode for the Mock Heuristic
MockHeuristic(τ ,A,TC,τR)

1: τAE ← initialize alive and enabled task set
2: for all τi ∈ τ do
3: if all wait constraints for τi have been satisfied then
4: τAE ← τAE ∪ τi
5: end if
6: end for
7: for all agents a ∈ A do
8: if Speed ≤ 1ms //Vehicle Routing Problem then
9: ~lx ← location of τx

10: ~la ← location of agent a

11: θxa ←
acos(~lTx~la)
‖~lx‖‖~la‖

12: τ∗i ← argmin
τx∈τAE

(
‖~lx −~la‖

13: +α1θxa + α2‖~lx −~la‖θxa
)

14: else if
∑
τi

∑
τx

1Rτi=Rτx ≥ c //Resource Con-
tention Mode then

15: τ∗i ← argmax
τx∈τAE

((∑
τi

∑
τx

1Rτi=Rτx
)
− α3dτx

)
16: else
17: τ∗i ← argmin

τx∈τAE

dτx

18: end if
19: if Rτ∗

i
is unoccupied at time t then

20: if agent a could travel to reach τ∗i by time t then
21: Schedule τ∗i
22: end if
23: end if
24: end for

Next, the heuristic iterates over each agent and task to
find the highest-priority task τ∗i to schedule for each agent.



In Lines 7-18, the algorithm determines which heuristic is
most appropriate to apply. If agent speed is sufficiently slow,
travel time will become the major bottleneck. If the agents
are fast but one or more resources are heavily utilized, use of
these resources can become the bottleneck. Otherwise, task
durations and associated wait constraints are generally most
important.

In Line 8, the algorithm identifies travel distance as the
most important bottleneck and switches to a heuristic well-
suited for vehicle routing that minimizes a weighted, lin-
ear combination of features (Gambardella, Éric Taillard, and
Agazzi 1999; Solomon 1987) comprised of the distance and
angle relative to the origin between agent a and τx and an
indicator term for whether τx must be executed to satisfy a
wait constraint for another task τa. This rule is based on
prior work on the vehicle routing problem (Gambardella,
Éric Taillard, and Agazzi 1999; Solomon 1987) and on a
heuristic proposed to mitigate resource-contention in multi-
robot, multi-resource problems (Gombolay, Wilcox, and
Shah 2013). In Line 14, the algorithm determines that
there may be a resource bottleneck and tries to alleviate it
by switching to a resource-contention mode and applying
a heuristic that returns the task τ∗i ∈ τAE that maximizes
a weighted, linear combination of the commonality of the
task’s required resource less its deadline. If neither travel
distance nor resource contention are perceived as the major
bottlenecks, the algorithm switches to applying an Earliest
Deadline First rule (Line 16), which performs well across
many scheduling domains (Chen et al. 2014; Gombolay
et al. 2013). If the resource required for τ∗i , Rτ∗

i
, is idle

(Line 19), and the agent is able to reach the task by time
t (Line 20), then the heuristic schedules task τ∗i at time t
(Line 21). We note that an agent is able to reach task τ∗i if
t ≥ fj+k (xi − xj) /‖xi−xj‖ for all τj ∈ τ that the agent
has already completed, where k is the agent’s speed.

With the heuristic shown in Algorithm 2, we generated a
set of training data incorporating 30, 000 task sets – 10, 000
for each type of bottleneck identified by the heuristic. A
spectrum of problems (i.e. traveling salesman, job-shop
scheduling, multi-vehicle routing) was represented, as task
locations, agent travel speeds and task completion rates were
varied. These task sets provided 533, 737 observations. In
96% of the observations, the mock heuristic idled (i.e., chose
not to schedule a task), and in 4% of the observations, the
mock heuristic scheduled an agent to complete a task.

Real-World Data Set
We collected a real-world data set consisting of human
demonstrators of various skill levels solving the ASMD
weapon-to-target assignment problem. We utilized a virtual
gaming environment requiring players to manage a set of
heterogeneous decoys to defeat raids of heterogeneous en-
emy anti-ship missiles. We modeled a scenario with five
types of decoys and ten types of threats. The threats were
randomly generated for each played scenario, thereby pro-
moting the development of strategies that were robust to a
distribution of threat scenarios. Each decoy had a speci-
fied effectiveness against each threat type. Players attempted
to deploy a set of decoys of the correct decoy types, at the

right location, and at the right times in order to distract in-
coming missiles. Threats were launched over time, mean-
ing an effective deployment at time t could become coun-
terproductive at a future point in time as new enemy mis-
siles were launched. Games were scored as follows: 10,000
points were received each time a threat was neutralized and
2 points for each second each threat spent homing in on a
decoy. 5,000 points were subtracted for each threat impact
and 1 points for each second each threat spent homing in on
one’s own ship. Lastly, 25-1,000 points were subtracted for
each deploy of a decoy, depending on the type.

The collected data set consisted of 311 games played from
35 human players across 45 threat configurations or “sce-
narios”. We sub-selected sixteen threat configurations such
that each configuration had at least one human demonstra-
tion that mitigated all enemy missiles. For these sixteen
threat configurations, there were 162 total games played by
27 unique human demonstrators. Players consisted of tech-
nical fellows and associates as well as contractors at MIT
Lincoln Laboratory, and their expertise varied from “gener-
ally knowledgeable about the ASMD problem” to “domain
experts” with professional experience or training in anti-ship
missile defense.

Empirical Evaluation
In this section, we evaluate our prototype for apprenticeship
scheduling on the synthetic and real-world data sets.

Synthetic Data Set
We trained our model using a decision tree, KNN classifier,
logistic regression (logit) model, support vector machine
with a radial basis function kernel (SVM-RBF) and a neu-
ral network to learn fpriority(., .) and fact(.). We randomly
sampled 85% of the data for training and 15% for testing.
We defined the features as follows: The high-level feature-
vector of the task set, ξτ , is comprised of the agents’ speed
and the degree of resource contention

∑
τi

∑
τx

1Rτi=Rτx .
The task-specific feature vector γτi is comprised of the
task’s deadline, a binary indicator for whether or not the
task’s precedence constraints have been satisfied, the num-
ber of tasks sharing this task’s resource, a binary indicator
for whether or not this task’s resource is available, the travel
time remaining to reach the task, the distance agent a would
travel to reach τi and the angular difference between the vec-
tor describing the location of agent a and the vector describ-
ing the position of τi relative to agent a.

We compared the performance of our pairwise approach
with a point-wise approach and a naı̈ve approach. In the
point-wise approach, training examples for selecting the
highest priority task were of the form rankφmτi := [ξτ , γτi ];
the label γmτi was equal to 1 if task τi was scheduled in ob-
servation m, and was 0 otherwise. In the naı̈ve approach,
examples were comprised of an input vector that concate-
nates the high-level features of task set and the task-specific
features of the form rankφm := [ξτ , γτ1 , γτ2 , . . . , γτn ]; la-
bels ym are equal to the index of the task τi scheduled in
observation m.

Table 1 depicts the sensitivity (i.e., true positive rate) and
specificity (i.e., true negative rate) of the model. We found



Table 1: Sensitivity/specificity for machine learning tech-
niques using the pair-wise, point-wise, and naı̈ve ap-
proaches.

that a pairwise model outperformed the point-wise and naı̈ve
approaches. Within the pairwise model, a decision tree pro-
vided the best performance: The trained decision tree was
able to identify the correct task and when to schedule that
task 95% of the time, and was able to accurately predict
when no task should be scheduled 96% of the time.

We sought to more fully understand the performance of
a decision tree trained with a pairwise model as a function
of the number and quality of training examples, as shown in
Table 2. We trained decision trees with our pairwise model
with 15, 150, and 1,500 demonstrations. The sensitivity and
specificity reported in Table 2 for 15 and 150 demonstra-
tions are the average sensitivity and specificity of ten mod-
els trained via random sub-sampling without replacement.
We also varied the quality of the training examples, assum-
ing the demonstrator was operating under an ε-greedy ap-
proach with a probability of (1 − ε) of selecting the correct
task to schedule and selecting another task from a uniform
distribution otherwise. This assumption is conservative; a
demonstrator making an error would be more likely to pick
the second- or third-best task than selecting a task at random.

Training a model based on pairwise comparison between
the scheduled task and unscheduled tasks effectively pro-
duced policies of comparable quality to those generated by
the synthetic expert. The decision tree model performed
well due to modal nature of the multi-faceted schedul-
ing heuristic. We note that this dataset was composed of
scheduling strategies with mixed discrete-continuous func-
tional components, and in future work, performance can be
further improved by combining decision trees with logistic
regression. This hybrid learning approach has seen success
in machine learning classification tasks (Landwehr, Hall,
and Frank 2005), and can be readily applied to this appren-
ticeship scheduling framework.

Real-World Data Set
We trained and tested a decision tree on our pairwise
scheduling model via leave-one-out cross-validation using
the sixteen real demonstrations in which a player mitigated
all enemy missiles. Each demonstration came from a unique
threat scenario. Features for each decoy/missile pair (or
null decoy deployment from inaction) included indicators
for whether the decoy had been placed such that the mis-
sile was successfully distracted by that decoy, whether the

Table 2: Sensitivity/specificity for a pair-wise decision tree
varying the number and proportion of correct demonstra-
tions.

missile would be lured into hitting the ship by the decoy
placement, or whether the missile would be unaffected by
the placement. Across all sixteen scenarios, the average and
standard deviation of players’ scores was 74,728 ± 26,824.
With merely 15 examples of expert human demonstrations,
our apprenticeship scheduling model was able to achieve an
average score of 87,540 with standard deviation of 16,842.

We performed statistical analysis to evaluate our hypothe-
sis that the scores produced by the learned policy were statis-
tically significantly better than the average scores achieved
by the human demonstrators. The null hypothesis stated
that the number of scenarios in which the apprenticeship
scheduling model achieved superior performance was less
than or equal to the number of scenarios in which the aver-
age score of the human demonstrators was superior to the
apprenticeship scheduler. We set the significance level at
α = 0.05. Application of a binomial test1 rejects the null
hypothesis, meaning that the learned scheduling policy per-
formed better than the human demonstrators on statistically
significantly more scenarios (12 versus 4 scenarios), with
p = 0.011. This promising result was achieved with a rela-
tively small training set and indicates that the learned policy
can form the basis for a training tool to improve the average
player’s score.

Conclusions
We propose a technique for apprenticeship scheduling that
relies on a pairwise comparison of scheduled and unsched-
uled tasks to learn a model for task prioritization. We vali-
date our apprenticeship scheduling algorithm on both a syn-
thetic data set covering a variety of scheduling problems
with lower- and upperbound temporal constraints, resource
constraints and travel distance considerations, as well as a
real-world data set where human demonstrators solved a
variant of the weapon-to-target assignment problem. Our
approach is able to learn scheduling policies of superior
quality to those generated, on average, by human experts
conducting an anti-ship missile defense task.

1The probability of rejecting the null hypothesis is 1 −∑a
k=0

(
a

a+b

)
ρa(1 − ρ)b with ρ = 1/2, and where a and b are

the number of scenarios the apprenticeship scheduling model per-
formed better than the average human score. and vice versa, re-
spectively.
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