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Abstract—Execute-only defenses have been proposed as a
way of mitigating information leakage attacks that have been
widely used to bypass randomization-based memory corruption
defenses. A recent technique, Readactor, provides one of the
strongest implementations of execute-only defenses: it exploits
novel hardware features to incorporate non-readable code to
prevent direct information leakage, a layer of indirection to
prevent indirect information leakage of pointers located on
stack and heap, and code randomization as well as decoys to
prevent brute-force attacks. In this paper, we demonstrate three
novel attacks that can bypass Readactor as well as numerous
other recent memory corruption defenses with various impacts.
We analyze the prevalence of opportunities for such attacks
in popular code bases and build two proof-of-concept exploits.
Moreover, we implement countermeasures against our attacks in
Readactor itself and discuss their implications. Our evaluations
indicate that our countermeasures introduce only a modest
additional overhead.

I. INTRODUCTION

Memory corruption has been a primary vector of attacks
against diverse computer systems for decades [4]. From con-
ventional stack smashing techniques [35] to the more sophis-
ticated code-reuse attacks (e.g., return-oriented programming,
abbr. ROP) [44] devised as a result of widespread adoption
of defenses such as W⊕X (Write⊕eXecute) [36]. Part of
the appeal of memory corruption for attackers is its ability
to remotely control the target system in what is known as
control hijacking attacks [1]. Despite numerous advances in
this domain, low-overhead techniques that protect unmanaged
languages such as C/C++ against memory corruption is still
an open area of research [48].

Two classes of memory corruption defenses have been
widely studied in the literature: enforcement-based defenses
and randomization-based. In the enforcement-based class, a
policy is enforced on the program’s execution flow at runtime.
Control-flow integrity [1] and its variants [30, 53, 52], and
memory safety checks [32] are all examples of enforcement-
based defenses. In the randomization-based class, the code or
its execution is randomized or diversified [28] to make it un-
known for an attacker. Address Space Layout Randomization
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(ASLR) [38], binary rewriting [49], compiler-based diversity
[22], and memory re-randomization [7] are all examples of
randomization-based defenses.

A class of attacks that is particularly damaging to
randomization-based defenses is information leakage attacks
[46]. Using information leakage, an attacker can discover
how code or its layout has been randomized, which in turn,
undoes the impact of randomization. Direct leakage of memory
content (a.k.a., memory disclosure) [46], indirect leakage of
addresses from the stack or heap [15], and remote side-channel
attacks [42] are different forms of information leakage that
have been used successfully to bypass recent randomization-
based defenses [16, 15, 11]. Due to the prevalence and power
of such information leakage attacks, recent defenses assume
arbitrary read and write capability to memory locations for
attackers in their threat model if page permissions allow such
operations [13].

In response to information leakage attacks, researchers
have developed “execute-only” defenses that prevent “read”
operations on code regions [5, 13, 18]. The enforcement
of R⊕X (Read⊕eXecute) also known as XnR (eXecute, no
Read) prevents direct information leakage from memory [5].
Readactor [13], is one of the most effective, state-of-the-
art XnR defenses that combine execute-only permissions on
code pages (using Intel’s Extended Page Table permissions)
to mitigate direct information leakage, redirection of indirect
branches through a set of trampolines to mitigate indirect
leakage of addresses during execution (a.k.a. code pointer
hiding), and randomization of trampolines to create uncer-
tainty for an attacker. A recent extension to Readactor, called
Readactor++ [14], also incorporates decoy trampolines and
register randomization to prevent control hijacking through
brute-force by an attacker that can leak large parts of memory.
It also protects C++ data structures such as vtables to mitigate
COOP attacks that inject counterfeit objects into memory [40].
Unless otherwise noted, in the rest of this paper we refer to
both Readactor and Readactor++, simply as Readactor. Other
XnR defenses have also been proposed in the community,
but they can only mitigate a subset of attacks mitigated by
Readactor. For example, the original XnR work [5] and HideM
[18] can only resist direct information leakage, while they
are still vulnerable to indirect leakages or remote side-channel



attacks.

Contributions. In this paper, we describe and demonstrate
two classes of attacks that can bypass execute-only defenses
including Readactor. The first class leverages the information
leaked to an attacker during execution to bypass execute-only
defenses, even when execute-only is implemented perfectly
and comprehensively. We show that an attacker can leak
trampoline addresses from the stack during execution in what
we call Address Harvesting (AH). In addition, we devise
new techniques for performing address harvesting accurately,
chaining trampolines together, and implementing code reuse
attacks at the trampoline granularity. We generalize the COOP
attack [40] to non-Object Oriented Programming languages to
create a chaining mechanism for the trampolines.

The second class of attacks exploit the fact that enforcing
ideal and comprehensive execute-only defense is actually
challenging in modern systems. We generally call these attacks
Execute-Only Bypasses and demonstrate two practical attack
vectors in Linux systems. The first vector maliciously redirects
Direct Memory Access (DMA) operations that do not abide
by page permissions. The second vector uses Linux’s Proc
filesystem to directly leak memory content. Both these vectors
can be used to maliciously leak actual non-readable code pages
after which traditional ROP attacks become straightforward.

We build two proof-of-concept exploits against Nginx com-
bining these various techniques to achieve control hijacking
in the presence of Readactor. Moreover, these attacks are not
limited to Readactor; we discuss the generality of these attacks
against other recent defenses and show that many of them are
vulnerable to the same exploits.

Using the lessons learned from these attacks, we build
and evaluate countermeasures against them. To prevent the
Address Harvesting attack, we build a technique call Indirect
Branch Authentication that prevents trampoline-reuse attacks.
We augment Readactor, itself, to prove the feasibility and
effectiveness of our technique. To prevent the execute-only
bypasses, we augment the lightweight hypervisor used by
Readactor with an IOMMU-like functionality to extend the
page permissions to DMA operations as well. Preventing the
Proc filesystem attack is difficult in the general case because
its removal will break many benign applications. We present
an analysis of popular code bases that require access to Proc
filesystem and discuss the implications of various approaches
to mitigate the attack.

In summary, our contributions are as follows:
• We present two classes of attacks; one that can bypass an

ideal execute-only defense and one that exploits the prac-
tical limitations of such defenses. We build two proof-of-
concept exploits that can achieve control flow hijacking
on a system protected by full-featured Readactor.

• We evaluate the prevalence of opportunities for our at-
tacks in popular code bases and show that there is an
abundance of vulnerable cases in real world.

• We discuss the generality of our attacks against other
recent defenses and demonstrate that they can success-

fully bypass many of them, highlighting the intricacies
of effective memory corruption defenses.

• We propose and implement countermeasures against our
attacks including Indirect Branch Authentication. We
augment Readactor with our countermeasure and show
that it can mitigate trampoline reuse and similar attacks.

• We evaluate the impact of our new countermeasures
and demonstrate that they introduce modest additional
overhead.

Section II describes our threat model. Section III provides
an overview of the two classes of attacks. Sections IV and
V present the details of each class of attack. In Section
VII, we discuss the applicability and implications of our
attacks against recent defenses. Section VIII describes the
countermeasures against our attacks and their implementation.
Section IX provides the evaluation results assessing the impact
of the countermeasures. We review the related work in Section
X before concluding the paper in Section XI.

II. THREAT MODEL

Our threat model assumes a remote attacker that exploits
a memory vulnerability to achieve remote code execution on
the target machine. We assume W⊕X is deployed, so code
cannot be modified and data cannot be executed. Moreover, we
assume Readactor and Readactor++ are deployed to protect the
target application. Although, Readactor and similar techniques
in the literature assume arbitrary read and write accesses
into memory for the attacker (if page permissions allow
them), we show that practical attacks are possible even when
weaker capabilities are assumed. In practice, for the Address
Harvesting attack, we only need multiple read accesses into
stack at specific times. Other attacks presented in this paper
(such as the Forged DMA attack) have a more detailed threat
model which will be presented in their respective sections.

On the other hand, for our indirect branch authentication
extension to Readactor, we assume the strongest threat model
which includes the presence of memory vulnerabilities and
arbitrary attacker read and write access to memory.

III. BACKGROUND AND OVERVIEW OF ATTACKS

In this section we provide an overview of our attacks against
Readactor. We discuss these attacks in detail in the subsequent
sections. Readactor aims to prevent code reuse attacks by
limiting an attacker’s ability to learn the locations of existing
code, either by leaking the code itself or by leaking pointers
to the code. Readactor operates under a strong threat model
in which an adversary possesses arbitrary read and write
vulnerabilities. In defending against such an adversary, two
primary techniques are employed by Readactor:

• Execute-only code enforces execute-only permission on
code pages. Thus, any attempts by an attacker to learn the
locations of code by leaking the contents of code pages
directly will fail due to the lack of read permission.

• Code pointer hiding via indirection modifies the code
such that no pointers to the original code (i.e. function
pointers or return addresses) will reside in data segments.



It achieves this by replacing calls to the original code with
calls to trampoline code; the trampoline code references
the original code directly. The result is that the only
pointers to code which can reside in memory are pointers
to the trampoline code.

We show attacks, called Address Harvesting, that leak
trampoline addresses even when ideal execute-only is enforced
to perform a form of indirect code reuse we call Trampoline-
Oriented Programming and attacks that use the intricacies
of comprehensive execute-only enforcement to directly leak
code in execute-only regions to perform traditional code reuse
attacks.

A. Address Harvesting

A Trampoline-Oriented Programming (TOP) attack can
be performed even if execute-only permissions are applied
ubiquitously throughout the system. A TOP attack involves
various stages. In the first stage, we use Address Harvesting
to reveal trampoline pointers rather than pointers to the orig-
inal code itself. We profile the trampoline pointers to map
them to the underlying functions invoked by the trampolines
and launches a code reuse attack using these trampolines
rather than the underlying functions themselves. The layer of
indirection provided by the trampoline only serves to push
the problem off rather than eliminate it. We demonstrate
a technique called Malicious Thread Blocking (MTB) that
allows an attacker to harvest addresses with high precision.
This technique modifies mutexes to force a threat to block
on certain inputs which allows us to harvest correct addresses
while avoiding unnecessary application crashes. We discuss
the details of these attacks in Section IV and show a proof-of-
concept exploit using such techniques against Nginx in Section
VI.

B. Execute-Only Bypasses

An execute-only bypass attack abuses the fact that ideal en-
forcement of execute-only permissions can be quite challeng-
ing in modern system. Unlike the TOP attack, execute-only
bypasses attack the imperfections of execute-only defenses.

The most straightforward way to bypass Readactor is to leak
the contents of code directly. Readactor implements execute-
only memory by installing a hypervisor that checks the page
permissions in Extended Page Tables (EPT) [21], a form of
nested paging, during address translation. Unfortunately, the
page permissions in EPTs are not enforced universally across
memory read operations. We have identified two such in-
stances in which page permission verification can be bypassed
and execute-only memory can be read: the Direct Memory
Access and Proc Filesystem.

1) Forged DMA: The first vector that we identified in which
page permissions are not checked is in the case of Direct
Memory Access (DMA). DMA provides a means to access
memory quickly and independently of the processor. When
DMA is used, memory contents are not copied into a kernel
buffer and execute-only permissions are not checked. Files
that are opened with the O_DIRECT flag will access memory

Fig. 1. Possible paths to achieve code execution against Readactor

via DMA during I/O operations (i.e. read() and write())
and these operations will not be subject to the permission
checks. Thus an attacker could modify the buffer passed to
a write() call, in what we call a Forged DMA (FDMA)
attack, in order to write arbitrary memory to an accessible
target file descriptor (e.g. index.html for a web server). It
is important to note that a program need not natively use
the O_DIRECT flag as the attacker can overwrite the flags
argument passed to the open() call using a simple data-only
attack. In Section V-A we demonstrate this attack against
SFTP.

2) Proc Filesystem: The /proc/pid/mem file contains
the entire contents of a process’ memory and its access does
not trigger a check for execute-only permission. If a vulnerable
program performs a file read operation an attacker could
overwrite the path argument to point to /proc/self/mem in
order to coerce the program to read the contents of its memory
instead. If the attacker cannot read /proc/self/mem, she
also has the option of leaking pointers to code locations
from several other files within the Proc filesystem, such as
/proc/self/maps, as discussed in Section V-B.

Figure 1 summarizes the paths that an attacker can take
in order to achieve arbitrary code execution on a Readactor-
protected binary. The simplest means is to overwrite the path
argument to a file read to point to /proc/self/mem in order
to read the contents of memory directly. Alternatively, if
an attacker can control the arguments to the open() and
write() calls, she could write the contents of memory to
a file. If neither of these methods are available the attacker
must proceed to Address Harvesting in order to determine
the underlying functions for the trampoline. The trampolines
can be harvested simply to the point of enabling one of the
previously mentioned attacks or can be harvested to the extent



of launching a complete code reuse attack using trampolines
alone (i.e., TOP attack).

IV. ADDRESS HARVESTING ATTACK

In this section, we describe a code reuse attack that circum-
vents Readactor and other execute-only memory defenses even
under the strong assumption that execute-only permissions are
universally enforced.

In addition to the execute-only permissions, Readactor cre-
ates a layer of indirection in order to prevent code point-
ers from residing in readable memory. At compilation time,
Readactor ensures that any pointers to the original code of
a program are moved into a trampoline section of execute-
only memory such that only the trampolines directly reference
the original code. Readactor effectively replaces the original
pointers that were in readable memory (i.e. function pointers
and return addresses) with pointers to trampoline code. Under
this approach, a memory leak can only reveal the addresses
of trampoline code, as opposed to the original program code
itself. The underlying assumption of this indirection is that the
attacker cannot utilize the trampoline pointers themselves to
execute a useful code reuse attack.

We show how an attacker can indeed use these trampoline
pointers to launch meaningful exploits. This is achieved by
harvesting the trampoline pointers to determine the underlying
original code to which they point. We demonstrate how
multiple harvested trampoline pointers can be used together to
launch a chained attack akin to traditional ROP; a Trampoline-
Oriented Programming (TOP) attack.

A. Address Harvesting

The goal of harvesting is to determine the original function
f that is invoked by a trampoline pointer tptr. An attacker
who can identify the mapping of tptr -> f can redirect
control flow to f in an indirect way via tptr. “->” denotes
that tprt is the pointer to the trampoline that corresponds to
function f.

To infer this mapping we exploit the fact that programs
execute in a manner that inherently leaks information about
the state of execution [42]. Knowledge about the execution
state of a program at the time of a memory disclosure enables
us to infer the tptr -> f mapping from a leaked tptr.

At the time a given disclosure vulnerability is triggered,
memory contains pointers corresponding to the code on the
vulnerable execution path leading to the vulnerability. An at-
tacker, possessing knowledge about the execution path leading
to the vulnerability, is similarly aware of which stack frames
should exist on the stack and which function pointers (or
trampoline pointers in the case of Readactor) should exist
in these stack frames, for instance. Thus, trampoline pointers
resident in these stack frames or other observable memory
at the point of triggering the vulnerability are mappable
to underlying functions by an attacker. At the moment the
disclosure is triggered, the attacker may know that memory
contains trampoline pointers to functions of interest and in
this simple case the attacker’s harvesting stage is complete.

1) Malicious Thread Blocking: A naı̈ve approach to create
an accurate mapping of trampoline pointers to underlying
functions can rely on repeated stack disclosures and precise
timing of the leakage. However, since the state of the system
changes very rapidly, this can result in inaccuracies in the
mappings which eventually causes a crash at the exploitation
time. To enhance the precision of the mapping, we devised a
technique which we call Malicious Thread Blocking (MTB).

In the case of programs that utilize threading, as in the
attack model defined by Readactor, we can employ MTB that
enables an attacker to harvest a broader range of trampolines
and avoids dependence upon strict timing requirements for
triggering the disclosure vulnerability.

The approach of MTB is to use one thread, TA, to cause
another thread, TB , to hang at an opportunistic moment by
manipulating variables that cause TB’s execution to block,
e.g. by maliciously setting a mutex. By opportunistically
blocking a thread, we can more easily locate and map desired
trampoline pointers. A memory disclosure vulnerability may
be triggered in TA that enables memory inspection at a known
point in execution in TB . Note that this technique gets around
any timing unpredictability that the attacker may face when
trying to trigger a disclosure in thread TA at the appropriate
time in execution for thread TB .

As one example of this technique in practice, we show in
Section VI how an attacker can set a mutex in Nginx to cause a
thread to block upon returning from a system call. Triggering a
memory disclosure vulnerability in another thread at any point
after the system call enables the attacker to inspect a memory
state that she knows contains trampoline pointers relevant for
the system call.

To more easily distinguish one system call from another, the
attacker can supply unique input and scan disclosed memory
for that input. For instance, if the attacker wishes the profile
the open() call, she may supply a unique file name as
normal input to the program. Upon inspecting the stack of a
blocked thread, the attacker would expect to find this unique
value as an argument to the open() call. An attacker can
continually block and unblock a thread by manipulating the
mutex until this value is discovered in disclosed memory
which indicates that the attacker has located the relevant frame
for open(). As the attacker is relying upon information
leaked via execution, disclosures of this type require that the
program natively use the functions that the attacker wishes to
reuse.

B. Hijacking Control Flow

After the attacker has mapped relevant trampoline pointers
to the underlying functions, it is straightforward to direct
control flow to the function. The program has already been
recompiled in such a way that rather than using code pointers
it will use trampoline pointers, making it easy to overwrite
values with trampoline pointers that will later be invoked.

Consider the use of function pointers. A standard use
of a function pointer might be compiled into x86 64 as-
sembly as pop %r11, call %r11, where the value of



%r11 represents the address of the function itself, we call
it printf() for this discussion. An attacker with a memory
corruption vulnerability that wishes to call execve() instead
of printf() would overwrite the memory location from
which %r11 is popped; changing a printf() call to an
execve() call, for instance.

In Readactor, that code will be recompiled into pop
%r11, jmp tramp_ind_cs200. A trampoline,
tramp_ind_cs200, is also generated by Readactor for
this specific call site. This call site invokes the code specified
in register %r11 and, upon return from printf(), jumps
back to the call site 200. Rather than pointing to printf()
directly, the value in %r11 points to another trampoline,
tramp_printf, which jumps directly to printf().
Rather than storing the address of printf() in memory,
Readactor instead stores the value of tramp_printf.
Thus, to invoke execve() an attacker would replace the
value of tramp_printf in memory with the value of
tramp_execve. The code will pop that value into %r11,
jump to the trampoline at tramp_ind_cs200, which calls
%r11 (tramp_execve), jumping to tramp_execve,
which finally jumps to execve(). We have effectively
replaced overwriting &printf() with &execve() for
overwriting &tramp_printf with &tramp_execve.

C. Chaining

An attacker wishing to chain multiple functions together
faces another challenge under Readactor. After the call to
printf() completes, the code is going to ret, which
returns to the value pushed onto the stack at the last call in-
struction, tramp_ind_cs200. Tramp_ind_cs200 jumps
back to the call site associated with that trampoline. A
challenge arises in chaining multiple calls together since a
function will return to the call site from which it was invoked.
If the attacker can overwrite the return value before the
function issues the ret, she can point it to another leaked
call site. However, this approach requires continuous rewriting
of memory in order to ensure that the return address is
overwritten at some point during the function call (e.g. after
the call is made and before the ret is executed).

To overcome this challenge we introduce a technique we call
Counterfeit Procedural Programming (CPP), which operates at
a higher-level of abstraction, similar to the COOP [40] tech-
nique, but which works for non object-oriented languages such
as C. Specifically, we leverage a loop construct that invokes
a sequence of function pointers (or trampoline pointers in the
case of Readactor). In this way, control is always returned to
the loop following the execution of any function. An attacker
can overwrite the sequence of trampoline pointers with a set
of malicious trampoline pointers, effectively offloading the
chaining to the existing loop mechanism.

In order to prevent passing computation results in a chained
attack, Readactor employs register randomization. However,
the register randomization is only applied within functions
themselves and not across function boundaries, lest it break
ABI. Since this attack is effectively a function-level ROP at-

tack it can circumvent any register randomization that happens
within a function itself. All function arguments and return
values will reside in the standard set of registers.

V. EXECUTE-ONLY BYPASSES

This section describes a class of attacks which we call
execute-only bypasses. Unlike the harvesting attack which
is applicable even when execute-only is applied universally,
execute-only attacks target the imperfections of enforcing
execute-only permissions in modern systems. We discuss two
attack vectors that are widely available in x86 Linux systems.
Similar vectors may exist in other operating systems and
architectures. Rather than indicating weaknesses in a particular
execute-only technique, these attack vectors are meant to
highlight the intricacies and challenges of applying execute-
only permissions universally. Without loss of generality, we
discuss these attacks in the context of Readactor, but discuss
their general applicability in Section VII.

A. Forged Direct Memory Access Attack

Readactor relies on the presence of nested paging, a mecha-
nism for providing hardware-based support for multiple-levels
of address translation. Nested paging is called Extended Page
Tables (EPT) in Intel processors, while it is called Rapid
Virtualization Indexing (RVI) in AMD ones. For consistency
with previous Readactor publications, this paper will refer only
to Extended Page Tables, however the concepts are equally
applicable to Rapid Virtualization Indexing.

Readactor implements execute-only memory via a small
hypervisor implementation written as a Linux kernel module.
When the Readactor kernel module is loaded, it initializes a set
of Extended Page Tables, sets up a Virtual Machine Control
Structure that uses these EPT’s, and executes a VM entry
instruction. This kernel module marks a page of memory as
execute-only by setting the execute bit for the page’s mapping
and clearing the read and write bits. Any code that is executed
within a VM context must adhere to the permissions specified
in the EPT. This policy is enforced at hardware level by the
processor’s MMU, so no software, including the kernel, can
violate it.

This enforcement, however, applies only to software mem-
ory accesses. Accesses performed by devices capable of Direct
Memory Access (DMA), e.g. GPUs, disk drives, and network
cards, do not undergo translation by the MMU and are
unaffected by EPT permission.

The idea of exploiting systems via DMA is well studied,
especially in the context of DMA-capable interfaces with
external connectors, e.g. IEEE 1394 “Firewire” and Thunder-
bolt [39]. DMA attacks have been successfully used against
systems in both physical and virtualized environments. The
need for protection against malicious DMA devices has led
to the implementation of the IOMMU [3], an MMU between
main memory and any bus with DMA-capable devices.

DMA is difficult to perform from a userspace application.
Typically, userspace applications cannot directly make requests



process_write() {
fd = get_fd()
data = get_string()
write(fd, data, data.len)

}

process_open() {
path = get_string()
flags = get_flags()
mode = get_mode()
fd = open(path, flags, mode)
send_fd(fd)

}

Fig. 2. process_write() and process_open() in SFTP

to DMA-capable devices. However, some userspace function-
ality is implemented via the kernel requesting a device to per-
form a DMA against a userspace-controlled address. Examples
of this include OpenCL’s CL_MEM_USE_HOST_PTR flag and
Linux’s O_DIRECT flag.

The attack described in this section, called Forged DMA
(FDMA), makes use of Linux’s O_DIRECT flag to bypass
execute-only. At a high level our attack would be the equiva-
lent of running the following code:

fd = open("code.bin", O_DIRECT | O_WRONLY);
write(fd, paged_aligned_text_ptr, 4096);
close(fd);
fd = open("code.bin", O_RDONLY);
read(fd, outgoing_buffer, 4096);

1) Attacker model: The FDMA relies on the following
assumptions:

• The target program suffers from a memory corruption
vulnerability which allows control-flow hijacking.

• The target program has a call to open() with the
O_DIRECT flag or one whose flags argument can be
controlled by the attacker.

• The target program writes to the file descriptor returned
from the O_DIRECT open() call.

• The attacker is able to retrieve data written to the previ-
ously mentioned file.

This attacker model is consistent with the model presented
in the Readactor paper. In the following section we present
a simple attack against the OpenSSH SFTP server which is
consistent with the above model. The attack is presented as a
way to describe the concept here. A more detailed description
of our complete exploits against Nginx using a combination
of our attack techniques will be presented in Section VI. We
then examine the availability of such a vulnerability in sample
codebases.

2) SFTP Attack: SFTP is part of the OpenSSH suite of ap-
plications and provides a more secure alternative to FTP. Our
attack targets two functions executed when a client uploads a
file: __process_open() and __process_write().
Pseudocode for the functions are provided in Figure 2.

Our attack proceeds as follows:

• Scan non-code memory for a data structure containing a
code pointer.

• Subtract the page offset from this pointer to get a code
pointer that is page aligned.

• Connect to the SFTP server.
• Send a file code.bin.
• __process_open() will be called to write the file to

disk. Corrupt the flags variable to contain O_DIRECT
after the call to get_flags(), but before the call to
open().

• Shortly after __process_open() is finished,
__process_write() will be executed. Corrupt the
data variable to point to the code address we calculated
in the first step and corrupt the length (len) variable to
be an integer multiple of 4096. This causes code from
the running SFTP process to be written to disk.

• Retrieve code.bin.
At the end of this procedure the file code.bin will contain

code from the SFTP process. As we chose the address this
code was obtained from, we now have both the contents
and absolute location of one or more execute-only pages of
the SFTP process. We can repeat this process for as many
iterations as needed to construct a ROP attack.

3) Direct I/O Availability: Using FDMA to bypass memory
permissions requires opening a file using the O_DIRECT
flag, which has been available on Linux since kernel 2.4.10.
This flag instructs the kernel to write all data to the relevant
file descriptor directly (i.e., from one user space buffer to
another) without first being copied into kernel buffers. Note
that O_DIRECT is only available for file I/O. A socket, for
example, cannot be opened for direct I/O. From an attacker’s
standpoint, this means that the DMA attack requires exfiltra-
tion of a file on disk (e.g., index.html) in order to recover
the memory dump.

There are two ways an attacker can gain access to a
file opened using O_DIRECT. In the most straightforward
scenario, the victim process may already use direct I/O when
opening files for writing. In this case, the attacker needs
to make two memory corruptions: the filename prior to an
open() call and the buffer pointer prior to a write() on
that file descriptor.

Alternatively, the victim may not use O_DIRECT when
opening files. The attacker can still force direct I/O if the vic-
tim uses a flags variable. In this case an additional corruption
(beyond filename and write buffer) is needed to modify the
flags variable prior to an open() call and add O_DIRECT.

We investigated how prevalent the use of both direct I/O and
flags variables are in popular real-world software packages.
Our analysis focused on Internet-facing web servers (due to
their exposure) and database managers (due to their focus on
fast I/O).

Webservers: We investigated the usage of O_DIRECT
in the top webservers that use the open() system call in
C or C++. Source code was checked for the presence of
O_DIRECT, as well as for usage of variables to pass flags. The
systems studied include traditional webservers (AOLserver,
Apache, Boa, lighttpd, and Nginx), as well as other web-facing
services (OpenSSH and Squid). Our results are displayed in



TABLE I
DIRECT IO IN WEBSERVERS

Name O_DIRECT Flag Variables
AOLserver No Yes
Apache No No
Boa No No
lighttpd No No

Nginx Compile-time option.
Disabled by default. Yes

OpenSSH No Yes
Squid No Yes

TABLE II
DIRECT IO IN DATABASE MANAGERS

Name O_DIRECT Flag Variables

Firebird
Configuration option.
Enabled by default on
supported platforms.

Yes

Hypertable Configuration option.
Disabled by default. Yes

MariaDB Configuration option.
Disabled by default.

Storage-engine
dependent

Memcached No No

MongoDB
Configuration option.
Enabled by default on
supported platforms.

Yes

MySQL Configuration option.
Disabled by default. Yes

PostgreSQL Configuration option.
Disabled by default. Yes

Redis No No
SQLite No Yes

Table I.
As can be observed, the majority of webservers use con-

stants to pass flags directly. Only Nginx uses O_DIRECT;
however, this is a configuration option at compile-time. How-
ever, a few webservers (AOLserver, Nginx, OpenSSH, and
Squid) use variables to store flags that can be controlled by
an attacker to set the O_DIRECT flag.

Database Managers: We also investigated the prevalence of
O_DIRECT and flags variables in the top open-source database
engines written in C or C++. When applicable, the conditions
under which O_DIRECT is enabled were determined via
manual analysis of source code and available documentation.
The systems studied include traditional relational databases
(Firebird, MariaDB, MySQL, and PostgreSQL), No-SQL data-
stores (Hypertable, Memcached, MongoDB, and Redis), and a
library database for mobile and embedded platforms (SQLite).
The results are displayed in Table II.

As can be seen, the majority of database platforms support
using O_DIRECT as a configuration option that is initially
disabled. Firebird and MongoDB enable it at compilation-time
if the underlying platform supports direct I/O. Note that even
when O_DIRECT is disabled, the fact that it is a run-time
configuration option at all necessitates the use of flag variables
in open() calls. These can be corrupted by an attacker to
force direct I/O regardless of the intended configuration.

Unlike Internet-facing webservers, the attack vectors that
can be used to cause memory corruption in databases are not
obvious. These systems usually serve as back-ends to public

websites, or provide services to clients on a local intranet. In
either case it is unusual for a database to be listening on an
Internet-routable IP address. Nonetheless, analysis of CVEs
for all of the above databases revealed two broad classes of
attack.

Authenticated connections are services (such as webserver
front-ends) or users who are intended to have access to
a database and can authenticate successfully. These can be
corrupted by attackers in three ways. First, a vulnerability
in the SQL request parser can allow malicious user-provided
data to trigger a memory corruption, such as in CVE-2014-
0063 and CVE-2005-0247 [31]. Note that this is distinct from
(and more severe than) SQL injection attacks, in that the
parser itself is attacked via a malformed input which triggers,
e.g., a buffer overflow leading to remote code execution.
Alternatively, databases with intranet connectivity (e.g., an
email database) can be attacked via by client-side attacks on
end users and subsequent credential theft. Once authenticated,
these attackers can compromise the database server by exploit-
ing memory corruption vulnerabilities in database commands
(e.g., CVE-2012-5612) and scripting environments (e.g., CVE-
2013-3969). Finally, embedded databases like SQLite may
have vulnerabilities that can be exploited by malicious files
opened by an application with access to the database (e.g.,
CVE-2015-3717).

Unauthenticated connections can be launched from any at-
tacker machine that can route to the database, such as infected
end-hosts on an enterprise network. These attackers can utilize
memory corruption vulnerabilities in connection establishment
protocols (e.g., CVE-2014-0001) and authentication libraries
(e.g., CVE-2012-0882 and CVE-2009-4484) that parse user-
provided input. Since these run in the same memory space as
the database itself, an attacker can still fully compromise the
system.

B. Procfs Attack

The /proc filesystem, often abbreviated as “Procfs” or
simply “proc”, provides a number of interesting attack vectors
against a variety of different defenses, including memory
randomization and execute-only protections. First introduced
in 1984 [26] as a method of gaining access to the full memory
space of a process in the 8th edition of Unix, it was further
expanded in 1991 for System V [17] to provide access to
several additional process control and information-gathering
interfaces. Although implementations of Procfs are currently
available on a broad variety of Unix-like operating systems,
interfaces and standards for each implementation may differ
significantly.

We will here focus on the Linux implementation of
Procfs [9], which defines its implementation as: “act[ing]
as an interface to internal data structures in the kernel ...
[and] can be used to obtain information about the sys-
tem and to change certain kernel parameters at runtime
(sysctl).” These files are accessed via /proc/pid/* for
any given process ID (pid), and may also be accessed
via the symbolic link /proc/self/*; for example, cat



TABLE III
POTENTIALLY USEFUL FILES AVAILABLE IN THE LINUX IMPLEMENTATION

OF THE PROC FILESYSTEM.

Procfs File Relevant Information
auxv Address of executable region (interpreter)
maps Address of executable region (all)
mem Full memory contents (self-access only)
numa maps Address of executable region (all)
pagemap May be probed to discover mapped pages
smaps Address of executable region (all)
stat Start address of executable; current instruction pointer
syscall Instruction pointer
exe Executable file
stack Symbolic function trace of stack with addresses
task/ Subdirectory with per-thread entries for each file

/proc/self/status will output a variety of status infor-
mation about the “cat” process that is itself running.

The number and type of easily-accessible (e.g., not being
limited to root access) Procfs files are highly dependent upon
the kernel versions and the options with which it is configured.
Current standard kernels provide on the order of a few dozen
files per process, and about a half dozen subdirectories, some
of which may have dozens more subfiles and additional
subdirectories. These files are, for the most part, treated in
the same way as any other file in a filesystem. They have
ownership settings and assigned permissions, and are accessed
via the same mechanisms as any other file. Through them, a
wealth of information about the process is made available:
details about program invocation, processing status, memory
access, file descriptors, networking, and other internal details.

Of these files, documentation for which is available in
kernel code, kernel READMEs, and in man procfs in the
Linux manpages, eight immediately stand out as providing
potentially useful information in bypassing execute-only de-
fenses. Seven of them may be used to discover valid addresses
in executable memory, and all eight provide access to read
that memory directly. Two additional files provide interesting
associated information, and a thread-based subdirectory offers
a path to gain finer-grained data. These eleven files are listed
in Table III along with a brief description of what information
they provide. The following subsections provide more detail
about their specific properties and uses, followed by simple
Procfs attacks, and potential defenses to block them.

1) Executable Region Address Discovery: Execute-only
defenses prevent an attacker from directly discovering code
addresses via arbitrary memory reads. However, Procfs ex-
poses several different memory addresses of executable re-
gions via the filesystem, and reading those files can pro-
vide an attacker with everything that they need to launch
a traditional code reuse attack. Seven different Procfs files
are available for this purpose at varying levels of de-
tail: auxv, maps, numa_maps, pagemap, smaps,
stat, and syscall.

The most comprehensive and useful files of this set are
maps, numa_maps, and smaps. The maps and smaps
files provide, among other things, the starting and ending

addresses of each mapped memory region, along with that re-
gion’s memory permissions and the file (if any) with which the
region is associated. The numa_maps file provides scarcely
less information, related to non-uniform memory accesses,
including the start address of most memory maps including
all file-backed regions and the filenames associated with those
regions. Such a listing of memory addresses directly defeats
randomization techniques such as ASLR, as it enables the
reader of the file to determine precisely where every executable
region of memory is located, and including which executable
or library resides in each region.

Slightly more limited is the auxv file, which contains the
auxiliary vector that the program interpreter passes to the
main executable at runtime. The vector contains several well-
defined entries per architecture, critically including AT_BASE
and AT_ENTRY, which respectively provide the base address
of the program interpreter and the entry address of the main
executable. Not as comprehensive as the maps-based Procfs
files, the auxv file still allows the determination of the
addresses of at least two well-defined executable regions.

More limited still is the stat file, which can be used to
discover two pieces of information. First, entries 26 and 27
in stat show startcode and endcode, which denote
the area in which the main executable text section resides.
Second, entry 30 shows the current instruction pointer of the
process, which must lie in an executable region of memory.
The syscall file provides information similar to that of
entry 30 from stat: an address in the executable region.
Specifically, among other system call related information, it
shows the value of the instruction pointer. Entries 26 and
27 from stat allows determination of the main executable,
while entry 30 from stat and the value from syscall can
provide two possible pieces of information. If the system is in
a known state when those instruction pointers are read, then
the remainder of a particular static executable region can be
extrapolated thereby. If the system is not in a known state or
the executable region is not in a known configuration, then at
the least, the address provides a valid location with which to
start exploring the executable region.

Finally, pagemap shows mappings between virtual and
physical pages of memory, one entry per virtual page. This file
is of the least value for executable region discovery because it
contains entries for every virtual page whether it is mapped or
not; the Procfs documentation specifically suggests making use
of maps to determine which pages are mapped and seeking
to skip over the unmapped pages. However, when time and
bandwidth permit, the pagemap file can be leaked in its
entirety, and the entries compared against known memory
distributions for executables and libraries to determine where
executable memory regions reside. Access to this file was
restricted in Linux kernels 4.0 and 4.1, but was restored
in Linux kernel 4.2 with certain information (unrelated to
what we need for this attack) redacted for users without
CAP SYS ADMIN capabilities.

By default, each of these eight files is readable by the user
that owns the process, including from the context of any other



process that the user owns.

C. Executable Region Leakage
The original 1984 Procfs implementation was designed for

the specific purpose of enabling direct access to the virtual
memory space of a process. Each subsequent implementation
on Unix-like systems has maintained that access, despite
otherwise differing philosophies on what else belongs there
and how it should be made available. In Linux, access is
granted via the mem file which is always readable and may
often be writable depending on the exact kernel version and
compilation options.

Access to memory contents are obtained through the filesys-
tem rather than through virtual memory, and correspondingly,
access restrictions are only checked through the filesystem
and not through virtual memory. Therefore, all user-space
memory may be read via the filesystem regardless of the
permissions set on that virtual memory area in process context.
A program may deny itself read access to a memory area via
the mprotect and yet read that same memory by opening
up /proc/self/mem and running lseek to the appropriate
address to read. Similarly, when writing capability is present,
that too may take place anywhere in memory even if write
permissions are not granted to that particular memory area
while in process context.

The mem file cannot be read straight through in its full 248

byte size on a 64-bit platform, since it will return an I/O error
when attempting to operate on a virtual memory address that is
not allocated. Thus, in order to avoid the necessity of a random
search throughout the entire memory space, the attacker must
be able to identify a valid address and be able to lseek to that
position. Use of the Procfs files discussed in subsection V-B1
neatly solve the address identification problem.

Write access naturally enables a rewriting of the entire
allocated process virtual address space with whatever attacker
chosen data, and no further attack step is necessary. Read ac-
cess allows the attacker to map out the entire virtual memory,
and as part of that, the executable regions protected by execute-
only defenses including Readactor.

By default, the mem file is only accessible to the process that
owns it, or to other processes (sometimes owned by the same
user and sometimes only by root, depending on configuration
options) when it is in a stopped state.

D. Other Procfs Files
Among the few dozen other Procfs files, exe and stack

are also of interest. The exe file is a soft link to the main
executable. If it may be accessed and read, even an unknown
executable may be exfiltrated to the attacker. The stack
file contains a traceback of the current state of the program
stack, including stack addresses and the symbolic interpreta-
tion of return values, both of which allow a certain amount
of de-randomization. Finally, the /proc/<pid>/task/*
subdirectory contains a set of files as per /proc/<pid>/*,
individualized to each task (thread) in the process. It contains
little additional information not found in all the files previously
discussed, but is an alternate vector to obtain it.

E. Attacks using Procfs
Arbitrary read/write access to /proc when write access

is available on mem allows an attacker to execute their own
injected code at will regardless of any other defense. Read
access to Procfs does not in itself allow a code reuse attack,
but it does provide the information required to carry one out
in the face of address randomization coupled with indirection
and execute-only memory that prevents an attacker from
discovering the contents of code pages. Therefore, the attacker
must do the following:

1) Discover the location of a suitable piece of executable
memory.

2) Leak executable memory directly.
Discovering the location of a suitable piece of executable

memory is simply a matter of reading one of the Procfs files
discussed in subsection V-B1, preferably the relatively small
maps file. Vulnerabilities allowing arbitrary file reads from the
filesystem are prevalent in a wide variety of internet-facing ap-
plications. According to the CVE [31], 123 such arbitrary read
vulnerabilities were reported between January and September
of 2015, in Firefox (CVE-2015-4495), WordPress plugins
(CVE-2015-8606), SAP applications (CVE-2015-6662), and
many others. Interestingly, such vulnerabilities are frequently
given a score of around 5.0 out of 10, ranking as a “medium”
threat.

A read of /proc/self/{maps, numa_maps,
smaps} is the most effective, followed
by /proc/self/{auxv,stat}, and then
/proc/self/{syscall}, and finally by reading the
very large /proc/self/pagemap.

Any will obtain addressing information that can be used to
identify executable regions within the process. Alternatively,
/proc/<pid>/* can be read for any other process owned
by the same user, and possibly any other process on the
machine (if it is poorly configured); by default, the PID will
be between 1 and 32768 for every process, and will have
increased monotonically (until wrapping) since the last boot.

If the attacker does not know the layout of the exe-
cutable regions of memory by mere identification, they can
read /proc/self/mem at the appropriate location. This is
slightly trickier than the previous file read since the attacker
must be able to lseek to the appropriate file position before
reading, but again, such vulnerabilities do exist in programs
designed for partial file transfers, such as in CVE-2015-
3306, ProFTPD. Generically, the attacker need only be able
to overwrite a filename and an lseek parameter in a data-
only attack, values that are often kept on the stack in known
locations.

VI. SAMPLE EXPLOIT

We combine the two previous techniques into an attack
against Nginx. We have implemented a proof of concept of
this attack as a GDB script At a high level our attack proceeds
as follows:

1) Cause Nginx to hang whenever glibc executes a can-
cellable system call.



_open:
<...>
call __pthread_enable_asynccancel
mov __nr_OPEN, %eax
syscall
call __pthread_disable_asynccancel
<...>

Fig. 3. glibc’s implementation of open()

2) Craft and submit requests that will allow us to fingerprint
functions with suffixes we wish to execute e.g.open()
and write().

3) Execute the DMA attack outlined in V-A by chaining
our suffix gadget together. After code is written to a
file, retrieve it via HTTP GET.

1) Causing Nginx to hang at cancellable system calls:
POSIX specifies that certain functions should be cancel-
lation points. If a function is a cancellation point, any
thread that is executing that function may be cancelled via
pthread_cancel(). glibc represents the current cancella-
tion state of a thread as a variable within that thread’s local
storage. As this variable has the potential to be modified by
concurrent threads, all reads and writes to it are protected
by a mutex. The cancellation state is checked and modified
before and after every cancellable system call. For example,
the implementation of the open() system call in glibc is
roughly implemented as followed:
write() and the other cancellable sys-

tem calls have similar implementations.
__pthread_enable_asynccancel() and
__pthread_disable_asynccancel() are relatively
simple functions that set or unset the thread’s cancellation
state. They both begin by acquiring the mutex
protecting the thread’s cancellation state. We mark
this mutex as locked, so that all future cancellable
system calls performed by that thread will hang at the
__pthread_enable_asynccancel() before the
system call. We can then examine the stack to obtain a suffix
gadget suitable for executing that system call.

2) Fingerprinting the stack: Every time our target thread
goes to perform a cancellable system call, it will hang
in __pthread_enable_asynccancel(), providing us
with a potential suffix gadget which performs a system call.
However determining which system call our gadget performs
requires some work due to the randomizations performed
by Readactor. To overcome this we exploit the correlations
described in ??.

We begin by generating a random filename and requesting
it from the target.
GET /547432c34b100bc9ddc98ac HTTP/1.1
Due to our corruption of the thread’s cancellability

state, Nginx will hang at every cancellable system call
it makes while servicing this request. While Nginx is
hung, we examine the stack looking for strings that con-
tain 547432c34b100bc9ddc98ac. By examining Nginx’s
stack on a local machine, we determined that at an _open()
call, the path will be replicated on the stack at least times
within the first stack frames. If the stack we’re examining

matches this heuristic we can safely assume that the return
address of the bottom frame is the address of our gadget.

We repeat a similar process for write() and . The latter
is used for preparing the arguments to a call.

3) Chaining everything together: Now that we have gadgets
for preparing to arguments to a call and for calling open()
and write(), all that’s left is to chain them together and
execute our attack. The sequence of functions calls we wish
to execute are

fd = open("/usr/share/html/exfil.html",
O_DIRECT | O_RDWR)

write(fd, paged_aligned_text_ptr, 4096)

To do this we make use of an indirect function call made
in ngx_log_error_core. We trap the thread’s execution
in the while loop by setting the loop variable to always be
true. We then corrupt the memory pointer to call open()
and write() to a file called “exfil.html”.y

At which point we can retrieve the file containing one page
of the code with

GET /exfil.html HTTP/1.1

This process can be repeated until we have found sufficient
gadgets to launch a standard ROP chain.

VII. DISCUSSIONS

The attacks described against Readactor are generic. In
fact, a quick look at the recently proposed defenses indicate
that many of them are vulnerable to the same attacks. This
is not limited to execute-only defenses. In fact, numerous
other enforcement-based or randomization-based defenses are
vulnerable to our attacks. A separate column indicates the
resilience of these techniques against various forms of infor-
mation leakage. Table IV summarizes these techniques and the
applicability of our attacks against them.

VIII. INDIRECT BRANCH AUTHENTICATION

In order to mitigate the DMA attack, we have augmented
the hypervisor used by Readactor with an IOMMU-like func-
tionality. The additional checks ensure that each DMA read
also abides by the page permissions, thus mitigating the forged
DMA attack.

The /proc filesystem attack can be mitigated by denying
access to certain /proc entries. Unfortunately, this has the
downside of breaking many benign applications. For example,
popular applications listed in Section V-B will break if access
to proc entries are denied. We have augmented Readactor with
a blacklist capability to mitigate this attack, but this is a partial
solution as it damages the functionality of benign applications.
A more comprehensive solution can be achieved with software
development best practices that avoid direct usage of proc
filesystem.

A. Improving Code Pointer Hiding

As shown with red arrows in Figure 4, adversaries can
leak trampoline addresses in preparation for a trampoline-reuse



TABLE IV
DEFENSES PROTECTING AGAINST DIFFERENT CLASSES OF ATTACKS

Defense Proc Attack DMA Attack Profiling Attack Direct Leakage Indirect Leakage Side-Channel

HideM
Readactor
CPI
XnR
Isomeron
Stirring
ILR
ASLR-Guard
Heisenbyte
Our Technique Partially

attack. To prevent such attacks, we can use randomly cho-
sen values—cookies, nonces, and opaque pointers—to restrict
the ways adversaries can use leaked trampoline addresses.
Readactor’s trampoline mechanism was designed to preserve
the pairing of call and return instructions to make the best
use of the branch prediction unit since front-end stalls due to
mis-predicted branches are generally costly. Another feature of
Readactor, and probabilistic defenses in general, is that they
avoid the challenges relating to static program analysis and
therefore scale to real-world software without code changes
in contrast to CFI and CPI. Another difference between CFI
and our proposed cookie mechanism is that the former checks
control flows at the source whereas cookie checks happen at
the destination. Note that since only trampoline addresses leak
to adversaries, the set of possible control flow destinations is
automatically reduced by Readactor.

Cookies are assumed to be randomly chosen 64-bit words
encoded as immediate operands in instructions hidden by X-
only memory. Cookies may temporarily reside in registers
but never in attacker observable memory. In practice, cookie
values should be chosen at program load time rather than
at compile time. Opaque pointers are randomly chosen 64-
bit words residing in attacker observable memory that, when
combined with an unobservable nonce, yield a pointer to an
address-taken function.

B. Direct Calls

To prevent return addresses from revealing the function
layout, direct function calls use direct call trampolines such as
dct_read in Figure 4. Because x86 call instructions invari-
ably push the return address onto the attacker-observable stack,
both the location of the call instruction and the preceding
instruction leak to an adversary that can observe readable
memory arbitrarily often.

To ensure that direct call trampolines can only be called
from a direct call site, the caller sets set a per-function “for-
ward cookie” before jumping to its associated call trampoline.
The callee then checks for the expected cookie which authen-
ticates the call. When the callee returns, it sets a “backwards
cookie” (unique to the callee) so that the caller can check
that it is getting control back from the callee. If the adversary

executes the call instruction on line 10, the cookie check-and-
clear operation in dc_read function will fail. Similarly, if
the adversary executes the instruction on line 11, the backward
cookie check on line 4 will fail.

C. Indirect Calls
In case of indirect calls, we do not know the set of

callees as we do not attempt to compute a call graph. Our
proposed solution replaces the function pointer trampolines
from Readactor with an opaque pointer mechanism. We still
use indirect call trampolines like Readactor. Address-taken
functions in attacker observable memory are identified by
“opaque pointers” (e.g. op in Figure 5) which are simply ran-
dom tags that do not have any correlation with the trampoline
or code layout. Opaque pointers are computed and stored in
memory where an unprotected program would store a pointer
to an address-taken function. On lines 1-3 in bar, we first
compute the index of the nonce that will be used to hide
the underlying pointer value using an XOR operation before
storing the result in attacker-observable memory. Nonces are
stored in a hidden table. The base address of the table can be
hidden using the vestiges of x86b segmentation (e.g. the gs
segment selector) or the base address can be stored in X-only
memory. We believe the table need not be larger than a few
tens of megabytes. We are explicitly not suggesting to hide
a table with a size of 242 bytes. The nonces are randomly
selected at program load time. The hidden table is effectively
a poor-man’s pseudo-random function (PRF). We XOR the
opaque pointer address with a per-program key to hide the
input to the hash function on lines 1 and 4; we are not 100%
certain this is necessary.

The indirect call in foo computes the index of the nonce
needed to unmask the target pointer using the address that
holds the opaque pointer: &op. With the target pointer stored
in a register, the program then jumps to the indirect call
trampoline ict_read which transfers control to read on
line 13. Since we’re making an indirect call, we bypass the
function stub dc_read which checks the forward cookie
when the function is called directly.

The indirect call mechanism requires that opaque pointers
are paired with the correct nonce to correctly compute the
address of the callee. Assuming the contents of the hidden



…
1 set  $read_f_cookie
2 jump dct_read
3 r1: 
4 cac  $read_b_cookie
…

foo:

10 call dc_read
11 jump r1

…
8 set $read_b_cookie
9 ret

dc_read:

XO 
functions

XO 
trampolines

RW
non-code

dct_read:

cac = check & clear

stack

= leaked to adversary

DC-S

DCP-G

3

4
1

5 cac $read_f_cookie
6 jump read

2

read:

Fig. 4. Direct call sites and trampolines.

table do not leak, the adversary can only swap two opaque
pointers if they are stored on addresses that hash to the same
entry in the hidden table due to hash collisions. Both the speed
and collision resistance of the proposed scheme hinges on the
hash function we use. We use SipHash in our implementation.
Adversaries can also swap two pointers written to the same
address at different times. In this case, however, the adversary
is restricted to control flow transfers that are part of some
valid execution which mirrors the restrictions imposed by a
fully precise, static CFI policy.

D. Returns

Before the callee terminates, it sets its unique backwards
cookie (line 11) which is checked at the return site (line 8).
Since the callee does not know whether it was called directly
or indirectly, we choose the value of the backwards cookie
(read_b_cookie in the figure) such that it’s lower 32-bit
equals the value of the “global backwards cookie”.

Because line 11 sets a cookie which is compatible with
the global backwards cookie being checked on line 8, the
adversary can reuse indirect-call-preceeded gadgets, ICP-Gs,
if they are not affected by register randomization and callee-
stack save slot randomization. We can improve the protection
of ICP-Gs by assuming that the function pointer used to make
an indirect call is type compatible with the callee. Under this
assumption, we can replace the global backwards cookie with a
type-specific backwards cookie. For C functions, type includes
the number and types of the input arguments as well as the
return type.

We have implemented the above three mechanisms to pro-
tect the direct calls, indirect calls, and return addresses. In the
next section, we evaluate the performance overhead introduced
by these mechanisms.

IX. EVALUATION

We have evaluated the performance impact of our IBA
scheme on top of Readactor. To assess the additional overhead,
we have evaluated the SPEC CPU 2006 benchmark and V8

Javascript engine. The results are illustrated in Figures 7 and
6.

As the results indicate, the additional checks perfomed for
IBA, IOMMU, and proc filesystem blacklisting only introduce
a modest overhead.

Fig. 6. Performance overhead of modified Readactor evaluated with V8
benchmark

X. RELATED WORK

Memory corruption attacks have been used since the early
70’s [4] and they still pose significant threats in modern
environments [12]. Memory unsafe languages such as C/C++
are vulnerable to such attacks.

Complete memory safety techniques such as the SoftBound
technique with its CETS extension [32] can mitigate mem-
ory corruption attacks, but they incur large overhead to the
execution (up to 4x slowdown). “fat-pointer” techniques such
as CCured [33] and Cyclone [23] have also been proposed
to provide spatial pointer safety, but they are not compatible
with existing C codebases. Other efforts such as Cling [2],
Memcheck [34], and AddressSanitizer [43] only provide tem-
poral pointer safety to prevent dangling pointer bugs such as



4 i = H($key ^ &op)
5 rax =    T[i] ^ op
6 jump ict_read
7 r1: 
8 clca $glob_b_cookie
…

foo:

13 call *rax
14 jump r1

XO 
functions

XO 
trampolines

RW
non-code

ict_read:

cac  = check & clear all bits

IC-S

ICP-G

= leaked to adversary
clca = check lower halfword & clear all bits

observable

hidden table T

noncei

&opop

4

constraint: 
$read_b_cookie & 0xFFFF == $global_b_cookie 

…
1 i = H($key ^ &op)
2 op = T[i] ^ &read 
3 mem[&op] = op

bar:

1

…
11 set $read_b_cookie
12 ret

dc_read:  9 cac $read_f_cookie
10 jump read

read: 2

3

Fig. 5. Indirect call sites and trampolines.

Fig. 7. Performance overhead of modified Readactor evaluated with SPEC2006 benchmark

use-after-free. A number of hardware-enforced memory safety
techniques have also been proposed including the Low-Fat
pointer technique [27] and CHERI [50] which minimize the
overhead of memory safety checks.

The high overhead of software-based complete memory
safety has motivated weaker memory defenses that can be
categorized into enforcement-based and randomization-based
defenses. In enforcement-based defenses, certain correct code
behavior that is usually extracted at compile-time is enforced
at runtime to prevent memory corruption. In randomization-
based defenses different aspects of the code or the execution
environment are randomized to make successful attacks more
difficult.

The randomization-based category includes address space
layout randomization (ASLR) [38] and its medium-grained
[25] and fine-grained variants [49]. Different ASLR imple-
mentations randomize the location of a subset of stack,

heap, executable, and linked libraries at load time. Medium-
grained ASLR techniques such as Address Space Layout
Permutation [25] permutes the location of functions within
libraries as well. Fine-grained forms of ASLR such as Binary
Stirring [49] randomize the location of basic blocks within
code. Other randomization-based defenses include in-place
instruction rewriting such as ILR [20], code diversification
using a randomizing compiler such as the multi-compiler
technique [22], or Smashing the Gadgets technique [37].
Unfortunately, these defenses are vulnerable to information
leakage (memory disclosure) attacks [47]. It has been shown
that even one such vulnerability can be used repeatedly by an
attacker to bypass even fine-grained forms of randomization
[45]. Other randomization-based techniques include Genesis
[51], Minestrone [24], or RISE [6] implement instruction set
randomization using an emulation, instrumentation, or binary
translation layer such as Valgrind [34], Strata [41], or Intel



PIN [29] which in itself incurs a large overhead, sometimes
as high as multiple times slowdown to the applications.

In the enforcement-based category, control flow integrity
(CFI) [1] techniques are the most prominent ones. They
enforce a compile-time extracted control flow graph (CFG) at
runtime to prevent control hijacking attacks. Weaker forms of
CFI have been implemented in CCFIR [52] and bin-CFI [53]
which allow control transfers to any valid target as opposed
to the exact ones, but such defenses have been shown to
be vulnerable to carefully crafted control hijacking attacks
that use those targets to implement their malicious intent
[19]. The technique proposed by Backes et al. [5] prevents
memory disclosure attacks by marking executable pages as
non-readable. A recent technique [13] combines aspects of
enforcement (non-readable memory) and randomization (fine-
grained code randomization) to prevent memory disclosure
attacks.

On the attack side, direct memory disclosure attacks have
been known for many years [47]. Indirect memory leakage
such as fault analysis attacks (using crash, non-crash signal)
[8] or in general other forms of fault and timing analysis
attacks [42] have more recently been studied.

Non-control data attacks [10], not prevented by CPI, can
also be very strong in violating many security properties;
however, since they are not within the threat model of CPI
we leave their evaluation to future work.

XI. CONCLUSION

In this paper, we evaluated the effectiveness of state-of-
the-art execute-only defenses. We presented three generic
attacks that can bypass Readactor, and various other recent
defenses and built two proof-of-concept exploits. Moreover,
we proposed, implemented, and evaluated countermeasures
against attacks such as ours by modifying the Readactor de-
fense itself. Our findings indicate the intricacies of mitigating
memory corruption attacks and that execution alone leaks
valuable information to a potential attacker. In addition, our
countermeasures can be implemented with modest additional
overhead.
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