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ABSTRACT

Compartmentalization is one of the standard mechanisms used by defenders to secure en-
terprise networks. Unfortunately, the compartmentalization process from a security standpoint
currently remains more of an art than a science. Even when this art is well executed, the ongoing
evolution of the network often violates initial, security-critical design assumptions. Toward improv-
ing operational security, MIT Lincoln Laboratory has a collection of metrics which can be used to
continuously assess risk within the context of cyber security. One important security metric in this
collection is a measure for managing network boundaries and filters or “network porosity.” This
metric computes the risk inherent to a given network architecture. This technical report describes
the model that underlies the network porosity metric and a simulation implementing the model.
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Figure 1. Information Flows

1. INTRODUCTION AND BACKGROUND

The purpose of this technical report is to document this network porosity model and specify
a simulation that implements this model. The remainder of this document is organized as fol-
lows: Section 2 gives an overview of the network porosity model, Section 3 provides the complete
specification of a simulation that implements the porosity model, and Section 4 details event based
development techniques that serve to increase the computational efficiency of implemented network
porosity simulations (as to make them feasible).

1



This page intentionally left blank.



2. NETWORK POROSITY MODEL OVERVIEW

We define “network porosity” as the degree to which a network design is porous to the flow
of an attack over time. This view differs from that of attack graphs [5] which address worst-case
attack reachability of a network for a single point in time. Our model addresses the stochastic
evolution of services on the network as well as the defensive remediation process, rather than the
state of the network at a particular instant in time. The following sections describe the entities
and outputs of the network porosity model and conditions that create/aggrevate risk with respect
to network porosity.

2.1 NETWORK ARCHITECTURE

We describe a network and its architecture in terms of enclaves, services, functional informa-
tion flows, and filters.

2.1.1 Enclaves

The first aspect of network architecture concerns the compartmentalization of the network
into enclaves. We speak of the attack surface of an enclave as being the union of all the services
on devices within the enclave. High-value assets should be placed in separate enclaves which are
difficult to attack. Enclaves should be constructed so that the collection of services offered within
each enclave is as small as possible. We have chosen to model at the level of enclaves, rather
than individual devices, for reasons of data availability, performance, and the goal of evaluating
the inherent risk in network architectures (as opposed to attack graph analysis of a network at a
particular moment in time).

2.1.2 Services

Another aspect of network architecture concerns the use of services that run on enclaves. The
term service is used here in a very general sense as to include programs whose execution can result
in attacker control. This includes programs apt to have server-side vulnerabilities such as HTTPD
or RPCD and programs apt to have client-side vulnerabilities such as browsers, office suites, PDF
viewers, and numerous other common tools. Attackers can propagate either by exploiting vul-
nerabilities in software or by using trust relationships. The presence, over time, of vulnerabilities
within software is taken as an on-going vulnerability-discovery/patch-release process whose prop-
erties are informed by history. Service-side and client-side vulnerabilities are distinguished by the
rates at which the attacker has the opportunity to exploit them: server-side vulnerabilities may
be exploited as the attacker desires and so attacks are essentially instantaneous whereas client-side
vulnerabilities require the action of a network user and thus depend upon the estimated aggregate
actions of network users.

2.1.3 Functional Information Flows

Functional information flows are an aspect of network architecture that specifies com-
munication pathways between enclaves. We use the term “functional information flow” to focus
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on information flows where the source is the enclave from which the attack originated and the
destination is the enclave that was compromised. Network and functional information flows are
depicted in Figure 1 although a more formal description of functional information flows is given in
Section 3.2.1 below.

In the case of server-side vulnerabilities, functional information flows often correspond to the
network reachability of a service. In the case of client-side vulnerabilities, functional and physical
information flows may be different. Consider an attack scenario on the network based on Figure 1 in
which an attacker emails a malicious PDF document which is read using a vulnerable PDF reader by
a user on the LAN. The result is an attack which starts on the Internet and compromises the LAN
(this step compromises only the LAN). We describe this as a functional information flow between the
Internet and the LAN; allowing for other typical information flows we end up with the information
flow graph depicted in Figure 1. We contrast this with the physical information flow wherein the
malicious message deposited on a mail server on the DMZ, pulled in to a mail server situated on the
Server enclave, and finally pulled from the mail server back to the LAN. In this scenario, neither
the DMZ nor the Server enclave have been compromised. As such, reachability of services apt to
expose client-side vulnerabilities in a given enclave is expressed in terms of other enclaves that can
functionally deliver, or have delivered, content that could exploit the vulnerabilities.

In practice, nearly all functional information flows that concern client-side vulnerabilities will
stem from the delivery of email, access to the Internet, or access to an internal document or data
repository. If any of these are possible from a given enclave, then there exists an information flow
from the Internet or repository to the enclave. We note explicitly that the notion of functional
information flows applies to information transfer between air-gapped systems.

Trust relationships between devices (e.g. a trust relationship created by a domain controller
or ssh) can also be considered as an information flow which allow an attacker to propagate from
one enclave to another. In practice, trust relationships will be implemented as services that are
never patched.

This architecture is depicted with the black lines in Figure 1. We generally express such
networks in terms of the services running in each enclave as well as the routing and firewall rules
between the enclaves.

This network diagram does not naturally express the full range of paths that an attack might
traverse as it does not express transitivity of routing (e.g. the server LAN might be able to contact
the Internet despite the fact that there is not a direct line between them) or complex information
flows (mail delivered from the Internet to the DMZ, pulled into the server and read from the LAN).
Analysis of such networks and creation of attack graphs then is addressed in [4]. We will thus base
the metric on functional information flows as depicted through union of the black and dashed gray
lines in Figure 1.

2.1.4 Filters

The final aspect of network architecture concerns filtering mechanisms used to mitigate
risk inherent to the permitted functional information flow. These filtering mechanisms fall into
two categories. The first is filtering based on particular subsets of enclaves that are permitted to
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communicate with each other. This includes both Internet black-listing (destinations as presumed
malicious) and Internet white-listing (destinations presumed benign). We would note that for the
purposes of evaluating network architectures, we need to limit the scope of source/destination based
filtering lest we turn the model into a full probabilistic attack graph analysis of the network whose
data requirements are currently unrealistic. The second is filtering based on content. This addresses
such filters as generic application-layer filtering, spam and phishing filters, general content filtering,
intrusion prevention systems, and data leakage protection systems.

2.2 ATTACKER

The model specifies an attacker who gains access to internal enclaves by exploiting vulnerable
services and then attempts to pivot to other network enclaves via allowed information flows (e.g.
open ports/protocols or manually transported media). When a vulnerability is discovered in a
service, the attacker begins to develop an exploit. Once the exploit is developed, the attacker will
use the exploit to penetrate a network and then spread throughout the network at each opportunity.
The movement of an attacker from one (compromised) enclave to another (uncompromised) enclave
is is depicted in Figure 2. In the figure, the attacker has compromised enclave1 and attempts to
spread to enclave2. For this example, the conditions that allow an attacker to spread are as follows:

• there is a service running on enclave2 that has a vulnerability,

• this vulnerable service onenclave2 can be reached from enclave1 (e.g. there is a functional
information flow from enclave1 to enclave2 via the service),

• the attacker has an exploit for the vulnerability,

• the exploit is not prevented by the filter, and

• there is an opportunity for the attacker to attack.

The above attacker model is based on commonly observed network attacks. The following provides
a detailed description of these attacks:

• External attackers continuously probe networks for servers with open ports and then attack
and compromise these servers. There may be many reasons why a server can be compromised.
Known vulnerabilities may not be immediately patched, servers may be misconfigured, at-
tackers may have discovered a previously unknown zero-day vulnerability, there may be no
mitigation for a vulnerability, or it may not be possible to apply a mitigation. Restricting
information flows within a network provides a second layer of defense to other controls in-
cluding using anti-virus software on hosts, patching vulnerabilities and ensuring that software
is configured properly.

• After attackers compromise a server, they can compromise other devices in the same subnet
or protected enclave. They probe attached firewalls and routers for open ports and attempt
to compromise additional servers with open ports in other enclaves or other devices that can
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be reached through information flows. This allows attackers to pivot and penetrate deeper
into internal enclaves. This process of attacking servers in other enclaves can continue until
attackers have reached all enclaves. Limiting accessible services between enclaves provides a
second layer of defense that complements other controls.

• Additional filtration mechanisms may be utilized to help stem the propagation of attack
between enclaves where information flows of a particular type (service) are permitted:

– An attacker originating from a known malicious site connects to a vulnerable device. A
blacklist or whitelist would prevent this attacker from connecting to this device. Black-
lists and whitelists provide another layer of defense to other controls including using
antivirus software on hosts, patching vulnerabilities and making sure software is config-
ured properly.

– A network device connects to a known malicious site that enables a client-side attack. A
blacklist or whitelist would prevent this device from connecting to the known malicious
site. Blacklists and whitelists provide another layer of defense to other controls.

– A network device receives known malicious content via email that enables a client-
side attack. A spam and malware filter would prevent this content from reaching its
destination. Content filtering provides another layer of defense to other controls.

– Attackers perform server-side attacks by sending malicious content to exposed appli-
cations and devices. An Intrusion Prevention System (IPS) may block the exploit by
filtering malicious content.

– Attackers can travel to and from an air gapped network via a Personal Electronic Device
(PED) such as a USB stick. Removing the ability to use PEDs on air gapped enclaves,
e.g., by removing USB ports, can be modeled as a filter on this information flow.

– Untrustworthy persons may intentionally try to exfiltrate known sensitive data to ex-
ternal networks. People may also unintentionally leak known sensitive data. Content
filters that check for and remove outgoing sensitive data would prevent this data leakage.
Content filtering provides another layer of defense to other controls including managing
network access.

2.3 MODEL OUTPUT

Ultimately risk reduction is the goal of the metrics efforts. Risk concerns the impact of events
to an organization weighted by the probabilities that those events will occur. General purpose
impact modeling is outside the scope of this paper. As such, we focus on event probabilities.
The output of the network porosity model is a stream of timestamped events describing enclave
compromise and enclave cleaning. Enclave compromise events describe the source (enclave) and
vector (service) of the compromise. This stream can be used to compute a variety of outputs
including but not necessarily limited to the following:

• percentage compromise times for each enclave,
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Figure 2. Attack Propagation

• the cumulative density functions (CDF) of compromise times for each enclave,

• the distribution of percent time in each element of the power set of enclaves (where elements
of the power set describe the set of enclaves compromised at a given time),

• a Markov process approximating porosity on the power set of enclaves (again where elements
of the power set describe the set of enclaves compromised at a given time),

• mean/average time until enclaves are compromised by an attacker starting with on the Inter-
net.

2.4 RISK CONDITIONS

The following are examples of common events that create or aggravate risk conditions with
respect to network porosity:

• Instead of putting all web servers open to the Internet into a DMZ network, they are placed
in a large common internal network shared by all users. If any server is compromised, this
could allow attackers to compromise other systems on the internal network.

• Instead of filtering communications between servers in the DMZ and the internal network
using middle-ware application proxies, direct connections from the Internet are allowed to
database, email, and FTP servers on computers in the internal network. If DMZ servers are
compromised, these direct connections could allow attackers to compromise systems on the
internal network.

• An administrator installs a database on the internal network and allows direct incoming
connections from the Internet to facilitate remote testing. These open ports remain open.
This opens up a direct attack path into the internal network.

7



• In a small, but growing high technology company, all systems are on one large network includ-
ing payroll, sales, administration, and engineering. This allows an attacker who penetrates
into the internal network to access valuable intellectual property in engineering, to steal pro-
prietary plans from the administrators, and possibly to arrange illicit monetary transfers from
the payroll or sales departments.

• A person uses a USB stick to move files to and from an air gapped network; this information
flow can result in the compromise of the air gapped enclave or other internal enclave.

• Although different high-value assets are separated into different enclaves, many information
flows could still exist between these enclaves. This could allow attackers to easily pivot
between subnets.

• An attack originating from a site known to conduct SSH password guessing targets an SSH
server running on a network device, initiates a connection, correctly guesses a password, and
compromises the device; a blacklist would have blocked this brute force attack.

• An attacker targets an SSH server that can be defaulted to use an older protocol version that
can be exploited; a properly implemented content filter would have blocked this protocol roll-
back attack. In principle this attack could be blocked by using software that is not vulnerable
to such roll-back attacks.

• A person browses to a gambling site containing malware; a blacklist would have prevented
this person from visiting this site, which is not related to mission function.

• An untrustworthy person exfiltrates known sensitive data by uploading it to an external FTP
site; a properly implemented content filter would have prevented this data leakage.

• An untrained person attaches a sensitive document to an email sent to an outside organization;
a properly implemented content filter would have prevented this data leakage.

• A content filter has been deployed, but in such a fashion that it can be avoided by an attacker.

• Once an exploit runs on a victim computer, it attempts to download larger components of an
attacker toolkit from a known malicious site; a blacklist would block this download and alert
the network administrators.

• A person receives a phishing email containing a malicious attachment or a link to a malicious
site; a properly implemented spam filter would have blocked this e-mail.

• An attacker compromises a domain controller and uses the gained trust relationships to
compromise additional machines on the LAN.

All the above events may lead to a device in an enclave becoming compromised. The attacker
may then continue to spread and compromise other reachable machines on other enclaves on the
network.
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3. OVERVIEW, DESIGN, AND DETAILS (ODD) FOR SIMULATION OF
NETWORK POROSITY MODEL

This section will provide details on the components, procedures, data requirements, and
parameters required to instantiate the network porosity model. These required parameters and
observations are listed in Tables 1 and 2 that characterize defender and attacker capabilities.

We assume both the arrivals of vulnerabilities for a particular service and the disentrenching of
an attacker from a particular enclave via cleaning follow Poisson processes as described in [7, pages
30-31]. These parameters are used in a simulation to compute the risk metric.

Default values for the ∆ parameters in Table 1 can be explicitly specified for each service or
enclave. Specifying only these default values makes it possible to compute the risk metric without
providing different interarrival times for each service or enclave.

The Overview, Design, and Details (ODD) is a widely-used protocol for specification of sim-
ulation models of complex systems [1]. Although the ODD protocol was originally intended for
individual-based or agent-based models (ABM), we adopt this protocol for simulations which need
not necessarily belong to the ABM paradigm. The main objective of the ODD protocol is to provide
a template for thorough model description that would allow for reproducibility of simulation-based
experiments. The purpose of this document is then to provide such a description, utilizing the
ODD protocol, of a simulation model that can be used to compute the operational risk metric of
BOUND-N.

The ODD protocol template consists of the following seven parts:

1. Purpose: consists of a summary of the problem being solved and the overall objectives of
the model. We present this summary in Section 3.1.

2. Entities, State Variables, and Scales: refers to model state specification to such a degree
of detail, that were the simulation to be stopped with its current state saved, no information
would be lost and the simulation could be restarted in exactly the same state some time later.
We discuss these details in Section 3.2. We also provide a summary in Table 3.

3. Process Overview and Scheduling: is a description of all processes and their order of
execution in terms of schedules, specified with pseudo code. These details are discussed in
Section 3.3.

4. Design Concepts: is a list of eleven model design points. These points are discussed in
detail in Section 3.4.

5. Initialization: refers to the specification of all the initial conditions (the state at the start
of every simulation run). We discuss initialization in Section 3.5.

6. Input Data: refers to the specification of any inputs to the model from external sources.
Discussion of these inputs we provide in Section 3.6.
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7. Sub-models: is a detailed description of the sub-models that represent the processes listed
in the Process Overview and Scheduling above. We discuss possible sub-models in Section
3.7.

In addition to describing the simulation model via the ODD protocol, we also discuss implementa-
tion techniques that address model efficiency and verification/replication.

3.1 SIMULATION MODEL PURPOSE

The simulation is intended to model the security risk to a computer network from outside
attackers who gain a foothold on an internal enclave of the network and then try to pivot to
other network enclaves by compromising exposed devices through ports/protocols or compositions
of multiple ports/protocols (i.e., that may correspond to functional information flows) allowed
between enclaves. Recall that an enclave E refers to a collection of networked devices with an
associated network boundary B when the following two properties are satisfied:

• any information flow of any device outside of E must traverse B to reach any device inside E,

• any pair of devices inside E can reach each other (i.e., there exists at least one protocol that
they can use to exchange information) and any possible information flow between them does
not have to traverse B.

Recall that a network boundary we have defined as any composition of filters, firewalls, gateways,
and any other mechanisms used to monitor and regulate information flows between a pair of devices.
See Figure 3 for an example of two enclaves separated by their respective network boundaries. The
simulation is provided for computation of the enclave compromise and clean events for a particular
network with a given network architecture. A network architecture includes the set of enclaves on
the network, the set of services running on these enclaves, information flows between these enclaves,
filters that serve to control information flows between enclaves, and the set of resources that can be
accessed via these enclaves. The simulation is intended to compute the expected value of resource
loss for a network with a given architecture over a given length of time.

3.2 ENTITIES, STATE VARIABLES, AND SCALES

The following is a description of entities to be modeled within the simulation, the state
variables/attributes, and the temporal and spatial scales that characterize these entities.

3.2.1 Network environment

A network environment is modeled in which there exist several connected enclaves such that
communications can flow between enclaves based on a given communications topology (i.e., set
of communication pathways between enclaves). A network environment is characterized by the
following state variables.
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• Communications topology: a set of enclaves and communication pathways that connect these
enclaves.

Here, communication pathways between enclaves do not represent physical connections between
enclaves, but rather represent functional information flows. A functional information flow refers
to any communication pathway between two enclaves and includes pathways in which the source
and destination are directly connected (by a physical line), transitive communication pathways
(e.g. a server enclave being able to communicate with the Internet despite the fact that no direct
line between these two enclaves exist), and more complex information flows (e.g. an email is
sent from the Internet enclave that arrives at a DMZ enclave, is pulled by an email server to a
server enclave, and is finally downloaded and read by a user account in the LAN enclave). For
complex information flows, such as the email information flow just described, it is important to
note that an attack coming from a particular source enclave (such as the Internet) may eventually
compromise the destination enclave (in this example the LAN enclave) without compromising any
of the intermediate enclaves between these two enclaves (in this example the intermediate enclaves
are the DMZ and server enclaves).

For the purposes of the simulation, a functional information flow is modeled only as a commu-
nication pathway from the source enclave to the destination enclave. Intermediate enclaves between
the source and destination are not modeled.

3.2.2 Enclave

A network enclave is modeled. As discussed in section 3.1, an enclave is defined as a group
of network devices with homogeneous reachability. An enclave is connected to other enclaves via
functional information flows as described above. A connection from a source enclave to a destination
enclave is made through one or more services running on the destination enclave. An enclave has
access to one or more resources that have value and, thus, are subject to cyber attacks that seek to
compromise the enclave and extract some value from these resources. For this model, we assume
that an enclave e becomes compromised when a service running on e has had an exploit event arrive
on the service and a functional information flow connects an already compromised enclave ecomp to
e via this service. We assume that there exists a process to cleanse an enclave, i.e., disentrench an
ensconced attacker from the enclave via malware tools, re-imaging, or other similar measures.

An enclave is characterized by the following state variables.

• The set of services running on the enclave.

• The set of resources that can be accessed by the enclave.

• A flag that signals whether or not the enclave is compromised.

• The average completion time for cleansing the enclave, ∆clean. The completion of enclave
cleansing is modeled as a Poisson process and ∆clean represents an average inter-arrival time
for completion of cleansing of the enclave. We assume that the cleansing process for each
enclave is independent and that different enclaves may have different values specified for
∆clean.
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It is important to note that cleansing completion events for an enclave are modeled as arriving at
any time, whether or not the enclave is actually compromised. It is not necessary to model cleansing
events as arriving only after enclave compromises. This is because upon a compromise, an attacker
may become disentrenched by various network hygiene practices, such as software updates/patches
or periodic re-imaging, as well as by explicit cleansing.

An enclave can be either compromised or uncompromised. An uncompromised enclave be-
comes compromised when an exploit event arrives on a service on the uncompromised enclave and
an information flow connects a compromised enclave to a service in the uncompromised enclave.

For each enclave e we have an enumeration of services S (e) where each service s ∈ S behaves
according to the above description. An attacker compromises an uncompromised enclave when
an exploit event arrives on a service running on that enclave and an information flow connects a
compromised enclave to that service in the uncompromised enclave. We note a process may exist
on multiple enclaves, but the vulnerability process is identical for all processes of the same type.

A compromised enclave becomes uncompromised when the defender disentrenches the attacker
from the enclave. This can happen via malware removal tools, reimaging, etc. We assume a process
to disentrench an attacker from enclave e occurs on each enclave according to a Poisson process
with average interarrival time ∆clean(e). We assume the disentrenchment process for each enclave
is independent.

3.2.3 Service

In this section we describe the model that determines the times when an enclave running
a particular service, s, can be compromised by an attacker who exploits a vulnerability in that
service. We begin with a high level description of a service. Over time, multiple versions of a
service will be developed. For each service version, we assume vulnerabilities will be discovered
over time. When a service is upgraded to the next version, we assume the vulnerabilities in the
previous version no longer exist in the current version. For each vulnerability we assume there
exists exactly one possible exploit. See Figure 4 for a simple depiction of a service process over
time.

We now further describe a service by describing how the arrival of patches, vulnerabilities,
and exploits occur over time. A service may have multiple vulnerabilities. We assume that each
vulnerability may correspond to exactly one exploit that may be used to compromise the service
(and thus compromise the enclave that the service is running on). We also assume that there exists
a process to update/patch a service. We assume each service initially has no vulnerability present.
New vulnerabilities for service s arrive (i.e. become known) according to a Poisson process with
average inter-arrival time ∆vuln(s). For every vulnerability, the time to develop an exploit once the
vulnerability has arrived is exponentially distributed with mean ∆dev(s). It is important to note
that whenever a vulnerability arrives on a service, an abstract “clock” governing the time for an
exploit to be developed for this vulnerability is started immediately.

When an exploit is developed for any vulnerability, we assume the service can be exploited
at times corresponding to a Poisson process with average inter-arrival time ∆exploit(s). A small
∆exploit(s) implies once an exploit is developed, the exploit can be used shortly thereafter (e.g. as
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in a server-side exploit). A large ∆exploit(s) implies opportunities to use exploits are infrequent.
These exploits might represent some type of client-side exploit where the attacker must wait for
a user action that initiates the exploit and, thus, may be forced to wait a longer time before the
exploit is executed.

We also assume the service is patched to a new version according to a Poisson process with
average interarrival time ∆patch(s). We assume when the service is patched to a new version, all
vulnerabilities are removed regardless of whether an exploit has been developed for those vulner-
abilities or not. Hence, when patching occurs, the service is considered to have no vulnerabilities
regardless of its current state. We also note that this patching is assumed to be synchronized across
all instances of services s running on enclaves. That is, every service s is patched at the same time
regardless of which enclave it belongs to.

In [summary, a service is characterized by the following state variables. For each of the below
variables that specify an average inter-arrival time for events of a particular type, event arrival is
modeled according to a Poisson process unless otherwise stated.

• The average inter-arrival time for new vulnerabilities on the service to become known, ∆vuln.

• The average inter-arrival time for an exploit to be developed for a currently present (known)
vulnerability on the service, ∆dev.

• The average inter-arrival time for the service to be exploited once an exploit has been devel-
oped for a vulnerability present on the service, ∆exploit.

• The average inter-arrival time for a service with one or more known vulnerabilities to be
patched/updated, ∆patch.

We assume that the processes governing vulnerability, exploit development, exploit, and patch
arrival are independent for each service and that different services may have different values specified
for their respective inter-arrival time variables above.

3.2.4 Setting parameters for Each Service

We now describe how parameters for each service can be informed by historical data. We
first describe how ∆patch(s) can be set for a particular service s and then describe how ∆vuln(s)
can be set. The basic idea of how to inform both these parameters is to look at a sufficiently long
historical window for the service s and take the (possibly weighted) average time between relevant
events. This average time between events can then be used as a parameter for the service. More
specifically, consider ∆patch(s). For a long historical window of length L, we gather the number
of patches released for service s, denoted by # of patches, as well as the total length of time
the service had at least one unpatched known vulnerability, denoted by K. We can then simply
assign the average patch interarrival time to be ∆patch(s) = K

# of patches . For the case of setting
∆vuln(s) we perform a slightly more complicated calculation that weights each vulnerability in the
historical window by some function of its CVSS score. More specifically, consider the set of all
known vulnerabilities for service s over a sufficiently long historical period of length L. Let this set
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of vulnerabilities be denoted by V (s, L). To account for the fact that different vulnerabilities have
different severities we will use the normalization found in Exploitation of Known Vulnerabilities [6]
and weight each v ∈ V (s, L) as a function of its CVSS score. We simply set ∆vuln(s) to be total
length of the historical window divided by this weighted sum.

∆vuln(s) =
L∑

v∈V (s,L)

(
CV SS(v)

10

)2

3.2.5 Filter

A filter acting on a service is modeled. A filter refers to a defensive technology that at-
tempts to block malicious communications on a service. Examples include firewalls or filters that
employ communication blacklisting (disallowing communications from known malicious sources) or
whitelisting (allowing only communications from known benign sources) and filters that block com-
munications based on their potential for containing malicious content, such as spam and phishing
filters, application filters, and intrusion detection systems. See Figure 5 for a depiction of how
filters are applied to a service.

A filter acting on a service serves to potentially block exploits, that is there is some probability
a filter blocks a particular exploit. A filter is characterized by the following state variables.

• The ineffectiveness of the filter for service s, FI(type, s), which specifies a probability that
an exploit event on s is not blocked by the filter type. The parameter type specifies the filter
type.

The filter ineffectiveness variable employs the convention that larger values are worse from a security
perspective. For example a service with no filtering specifies a filter ineffectiveness of 1 while a filter
that perfectly blocks all exploit events on the service specifies a value of 0. For example, if the
protocol is simply not routed between the enclaves then this conditional probability is 0 and if the
protocol is routed between the enclaves without any filtration then the conditional probability is
1. It is also important to note that multiple filters of the same type applied to the same service in
serial are effectively no different than a single filter of that type for that service. This is because
filters of the same type allow the same sets of exploits through and thus, applying them multiple
times will not serve to block additional exploits.

3.2.6 Resource valuation

A resource is modeled. A resource is an abstract item that is accessible from one or more
enclaves. A resource may be data, such as electronic files, an application or functional service,
such as an application that allows authorized users to execute an organization-specific action (e.g.
submit a purchase order), or any other item of value that an enclave can access. A resource has
some value that represents its relative importance to the organization and its mission.

We assume that opportunities for theft of a resource arise and, when they do, an attacker
who has compromised one or more enclaves that allow access to the resource will extract or pilfer
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some amount of value from the resource at each opportunity. After multiple theft opportunities
and subsequent resource value extractions, the full value of the resource will be lost. As described
in section 3.1, the purpose of the simulation is to compute, the expected total resource loss for a
network with a given network architecture.

A resource and its theft are characterized by the following state variables.

• The total value of the resource, v0. This value represents its relative importance to the
organization at the beginning of the simulated time period and assumes that no theft on the
resource has occurred.

• The average inter-arrival time for theft opportunities on the resource, ∆opportunity (recall that
a resource can be stolen only when an opportunity to steal it arrives). We assume that
theft opportunities arrive on a resource according to a Poisson process and that resource
theft opportunities for different resources are independent and may specify different values
for ∆opportunity.

• The amount of value extracted at each theft of the resource, x. This is specified at a value
in [0, v0]. For resources that may be slowly pilfered over time, such as an electronic debit
account with a maximum purchase/withdrawal limit, this may be specified as some fraction
of v0. For resources that need only be stolen once, such as intellectual property, this may be
specified as v0.

We assume that when attackers have compromised an enclave, they can access any resource that the
enclave can access. If the attackers have compromised multiple enclaves simultaneously, then they
have access to the union of resources that the compromised enclaves can access. It is important to
note that compromising multiple enclaves simultaneously with access to the same resource offers
no advantage to the attacker, i.e., an attacker can only steal value from the resource once per theft
opportunity. The total loss to a resource over a simulated time period is computed as the number
of thefts of the resource multiplied by its extractable value, x, but not exceeding its total value, v0.

3.2.7 Temporal and spatial scales

For the simulation, the spatial scale of the various entities does not matter. The temporal
scale matters only in that simulation time units be fine-grained enough to capture event arrivals
that follow a Poisson process. For many network scenarios, a time unit of milliseconds (or larger) is
usually sufficient. It is important to note that an event-based simulation may be more efficient from
a computational perspective than a time-based simulation since network events may be relatively
sparse with respect to the specified simulation time unit. For example if network events occur
hourly and the time unit is milliseconds, there may be many consecutive time units for which no
event occurs thus requiring unnecessary computation.

Additionally, some network events do not cause the state of the network to change. For
example, an exploit event arriving on a service that runs only on an already compromised enclave
does not cause the network state to change and, thus this event may be disregarded. In general,
only events that change the state of the network, e.g., by causing an uncompromised enclave to
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become compromised or by causing a vulnerable service to have an exploit developed for it, should
be considered.

3.3 PROCESS OVERVIEW AND SCHEDULING

The simulation is intended to compute the expected value of resource loss for a network with
a given architecture over a given window of time. We will heretofore refer to the window of time in
which to compute resource loss as the measurement window W . A simulation run is executed as
follows.

1. Instantiate all model entities described above with the exception of resources entities. This
includes the specification of all state variables for each entity. Before simulation execution
starts, all enclaves are initially uncompromised and services running on enclaves have no
vulnerabilities present.

2. Start the simulation execution, that is start the applicable Poisson processes to generate
events (e.g. arrivals of vulnerabilities, exploit development, exploits, patches) for the entities
on the network. Note that because resources have not yet been instantiated, no events for
resources (e.g. theft opportunity events) are generated.

3. It is not always possible to wait until the simulation execution reaches a “steady state” with
respect to being in a compromised state, i.e., when the fraction of time that enclave is com-
promised remains unchanged. To gain some intuition, consider the strategy for determining
if an enclave has reached steady state based on how the following quantity changes over
consecutive runs:

Fractioncomp(E) =
tcomp(E)

T
(1)

where tcomp(E) represents the total time that enclave E has been compromised, T is the
total simulation time, and Fractioncomp(E) represents the fraction of time E has been com-
promised. Suppose we say that the steady state is reached when the difference between
Fractioncomp(E) over any two consecutive runs of the simulation is a non-increasing number
and is at most δ, for some 0 < δ < 1. It is not clear, however, that it is not possible to
construct a system of enclaves such that, for any 0 < δ < 1, Fractioncomp(E) is close to 0 over
any finite sequence of runs required to satisfy this steady-state requirement, but in actuality
Fractioncomp(E) = 1 at steady state. Therefore, it is best to specify the exact number of runs
to be made, e.g., 1,000,000.

4. Once all enclaves have reached steady state as described above, instantiate resources in the
simulation environment and start the applicable Poisson processes to generate events for
resources and their theft. It is at this point in the simulation run that the measurement
window W begins. It is important to note that resources and their theft are not modeled
until the network has reached steady state in order to capture the fact that the attacker may
be already entrenched on an internal enclave of the network as well as on an outer enclave
that the organizational network communicates with. This is a critical aspect of the model
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since the reachability of internal enclaves to each other is important, not just reachability
from an outer enclave (e.g. the Internet) to the internal enclaves. Once in steady state, the
resources appear and the attacker attempts to steal network resources as opportunities arise.

Monte Carlo simulation is utilized to compute the expected resource loss for a given network archi-
tecture over the measurement window by repeating the above steps to execute multiple simulation
runs. Expected resource loss is calculated by averaging the resource loss over all simulation trials.
If computationally feasible, the number of trials executed should be on the order of 104 or greater
to ensure a reliable characterization of expected resource loss.

3.4 DESIGN CONCEPTS

3.4.1 Basic principles

As described in Section 3.2.3, a continuous-time Markov chain is employed to model how
the state of a service running on an enclave changes over time. This is used to capture relevant
state transitions such as vulnerabilities being discovered for the service, exploits being developed
and then arriving to exploit the service, and patches being applied to the service. This model of a
service together with the interactions of services with the other simulation entities are intended to
compute the operational risk for a network with respect to the management of network boundaries
and filters used to partition a network into enclaves.

3.4.2 Emergence

The primary result that emerges from execution of the simulation model is the expected
resource loss for a network with a given network architecture over a given length/window of time.
A secondary result that may also be of interest is the fraction of time that an enclave is compromised
over a given length/window of time, which may or may not be indicative of what happens to the
system in the steady state (Section 3.3, Equation 1).

3.4.3 Adaptation

For this model, agents/entities do not exhibit adaptive behavior.

3.4.4 Objectives

Because agents in this model do not exhibit adaptive behavior, their objectives are not mod-
eled.

3.4.5 Learning

Learning is not relevant for this model.

3.4.6 Prediction

Prediction is not relevant for this model.
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3.4.7 Sensing

Sensing is not relevant for this model.

3.4.8 Interaction

Several interactions between simulation entities occur. Filters directly affect services by al-
tering the rate at which exploit events arrive on these services. Services directly affect enclaves by
causing them to be more or less vulnerable to exploits. Enclaves and the network environment (i.e.
the communication topology of the network) directly affect resources by making them more or less
likely to be stolen over a given window of time.

3.4.9 Stochasticity

Several simulation entities are modeled probabilistically in which events affecting entity state
arrive according to a Poisson process with a specified average inter-arrival time.

3.4.10 Collectives

An enclave is specified in part by the set (collective) of services that it runs and the set of
resources it has access to. A service is specified in part by the set of filters that act on it. These
collectives are defined by the modeler during the initialization of a simulation run.

3.4.11 Observation

Data collected from a single simulation run includes the following.

• The resource loss to a network with a given network architecture over a given window of time
(Eq. ??).

• For each enclave, the fraction of time the enclave is compromised once the simulation has
reached steady state (Eq. 1).

These observations are collected and averaged over multiple runs (≈ 104) to compute their expected
values.

3.5 INITIALIZATION

A simulation run is initialized by instantiating a network architecture without resource enti-
ties, executing the simulation until all enclaves have reached steady state, and then instantiating
the resource entities within the architecture (as described in Section 3.3).

3.6 INPUT DATA

While the model does not explicitly require input data from network logs, audits, and/or
monitoring systems, simulation results will more accurately capture the operational risk to a real

18



network being modeled if the specification of relevant simulation entity state variables (e.g. ∆clean,
∆vuln, ∆patch described in Section 3.1) is informed by such data.

3.7 SUB-MODELS

The simulation does not require any sub-models to characterize processes or sub-processes
given in Section 3.3. However, the specification of entity state variables may be informed by network
observations (as described in Section 3.6) or by sub-models that seek to characterize lower level
details relevant to a particular state variable. For example, in order to specify the average inter-
arrival of network cleansing events, ∆clean (Section 3.2.2), a sub-model that models the various
details and mechanisms by which an attacker may be disentrenched from an enclave can be built.
Monte Carlo experiments can be executed on this sub-model and results aggregated to specify
∆clean in this model.
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Required Parameters

Notation Description

Wt Defender Target Duration - the maximum delay for observing any change

in the network architecture. For this metric, defenders must observe the

network to determine its current architecture including enclaves and

filtering between enclaves and to outside sites. We assume that defenders

must observe the network architecture fast enough to detect any

architectural change within a duration Wt after it occurs. Wt must be

short compared to both the interarrival time for attacks and the

interarrival time for changes in network architecture to guarantee that

risk is estimated accurately.

FI (type, s) Filter Ineffectiveness - the assumed fraction of exploits blocked for the

service s for a particular filter type. A perfect filter has Filter

Ineffectiveness equal to 0 whereas a useless filter has Filter Ineffectiveness

equal to 1 (retaining the convention that big is bad). In general the

ineffectiveness of the filter is largely a function of s. This parameter

focuses on a collection of technologies including “reverse” or “inbound”

proxies, black and white listing, intrusion prevention systems, data

leakage prevention systems, and email malware filters.

∆vuln(s) Interarrival Time Of New Vulnerabilities - assumed interarrival time

between new vulnerabilities on service s. The interarrival time is

exponentially distrubuted with mean ∆vuln(s).

∆dev(s) Average time to develop an exploit for a particular vulnerability - assumed

time to develop an exploit for a particular vulnerability on service s. The

time is exponentially distributed with mean ∆dev(s).

∆exploit(s) Interarrival Time Between Exploitation - default assumed interarrival

time for the execution of exploits on service s. The interarrival time is

exponentially distributed with mean ∆exploit(s). The interarrival time for

execution of server side exploits is typically much smaller than the

interarrival time for execution of client side exploits.

∆exploit(s, es, ed) Interarrival Time Between Exploitation - assumed interarrival time for

the execution of exploits on service s from source enclave es to destination

enclave ed. This is a specialization of the previous parameter to allow for

∆patch(s) Interarrival Time To Patch Service - assumed interarrival time for

patching service s. The interarrival time is exponentially distributed with

mean ∆patch(s). Immediately after patching, the service is assumed to

have 0 vulnerabilities.

∆clean(e) Interarrival Times Between Enclave Cleaning - assumed interarrival time

between the disentrenchment of the attacker from enclave e. The

interarrival time is exponentially distributed with mean ∆clean(e). We

assume the disentrenchment/reset process for each enclave is independent.

TABLE 1

Required and Optional Parameters for Maturity Metrics
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Required Observation Types

Notation Description

E The set of enclaves in the organization. Enclaves are determined by

examining filter and firewall rules (excluding host-based control

mechanisms). It is often devices in a subnet protected by firewalls,

gateways, and proxy filters.

S The software inventory should be used to determine the set of all services

running on the network. A service can be on a single device or span

multiple devices.

MapDevicesToEnclaves For each device in the inventory of devices found in a hardware inventory,

determine what enclave it belongs to

services(e) Set of services running in enclave e

flow(ei, ej , s) Determine is there exists an information flow between enclave ei and

service s in enclave ej

filters(ei, ej , s) Determine what filter types are used on the information flow between

enclave ei and service s in enclave ej

TABLE 2

Required Observation Types for Maturity Metrics

Entities, State Variables, and Scales

Aspect Relevance Description

Entities/Objects Relevant Network enclaves, services running on those enclaves, filters that prevent

exploit arrival on the services, etc., are modeled as separate objects.

Spatial/Temporal

Units and Scales

Relevant Spacial scale does not matter, while temporal scale must be fine-grained

enough to capture event arrivals.

Environment Relevant Network environment consists of multiple connected enclaves specified via

an adjacency list or matrix.

Collectives Irrelevant Groups of objects are not modeled to have their own behaviors.

TABLE 3

The ODD protocol specification criteria for entities, state variables, and scales as
they pertain to Network Porosity.
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Figure 3. Two enclaves, that may belong to the same subnet and exchange communication, are separated
from each other by their associated network boundaries. All traffic coming into or out of Enclave 1 must
cross its boundary, and the same is true for Enclave 2.
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Figure 4. A service can have multiple versions and each version can have multiple vulnerabilities. However,
each vulnerability has only one exploit.
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Figure 5. This figure is an extension to Figure 4 that includes the effect of two filters. Note how each filter
can either block or not block an exploit for a particular vulnerability.
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4. SIMULATION EVENT DESCRIPTIONS

An important consideration for the implementation of any simulation model is that of com-
putational efficiency. Two functionally identical models may have greatly varying performance
(i.e. execution time) depending on how simulation events are processed. This section describes an
approach to implementing the simulation that supports a form of lazy evaluation for simulation
events. Lazy evaluation is a strategy that delays the evaluation of an expression until its value is
needed and also avoids repeated evaluations of the same expression [3]. This approach diminishes
the number of events that are processed and thus, can improve performance significantly. In prac-
tice, this approach is necessary to execute the simulation for non-trivial problem instances such
that runs complete in a feasible amount time. We begin by motivating the approach with a simple
example, including an analysis of execution time improvement, and continue to the general case.

4.1 ASSUMPTIONS AND TERMINOLOGY

We assume that the simulation will be implemented on an event based simulation engine
that wherein we schedule events for execution at some future time. We will use the verb set to
alter system state. We will use standard if / else constructions. We will use typewriter font
to refer to objects, parameters and concrete terms within the simulation. We will use parenthet-
ical composition to express parameters and references such as event(parameter1, parameter2,

reference1). We use ∆name to refer to the mean of an exponential distribution, and sometimes as
a shortcut to refer to a sample from that distribution.

4.2 EVENT EFFICIENCY

Consider a simple model where two independent Poisson processes flip the state of a system
between red and blue. This system can be simulated with or without lazy evaluation.

Figure 6. Two Implementations of Two State System
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Algorithm 1 Non-Lazy Red-Blue Event Scheduling

function event(color, ∆color)

system-color ← color

schedule event(color, ∆color) at ∆color

end function

function initialize

s ← single sample from U(0, 1)
if ∆blue

∆red+∆blue
> s then

system-color ← red

else

system-color ← blue

end if

schedule event(red, ∆red) at ∆red

schedule event(blue, ∆blue) at ∆blue

end function

4.2.1 Non-Lazy Evaluation

In the non-lazy setting we have two recurrent processes that are scheduled at a time sampled
from an exponential distribution with mean ∆color. Algorithm 1 defines those processes where

∆blue
∆red+∆blue

gives the expected fraction of time a system will be red and U(0, 1) is a uniform distri-
bution from 0 to 1. The resultant event sequence is depicted in the upper half of Figure 6. Note
that there is a racing condition involving two independent processes modifying variable system-
color that could in principle be addressed by sampling according to steady state probabilities. In
practice, however, we do not expect such a condition to occur often enough to make a non-negligible
impact.

4.2.2 Lazy Evaluation

In the lazy evaluation setting we have a single alternating recurrent process that is scheduled
at a time sampled from an exponential distribution with mean ∆color or ∆next−color. In the general
case this would require generation of new distributions. In the Poisson setting it does not due to
the memory-less property of exponential distribution. Algorithm 2 defines the alternating process
where ∆blue

∆red+∆blue
gives the expected fraction of time a system will be red and U(0, 1) is a uniform

distribution from 0 to 1. The resultant event sequence is depicted in the lower half of Figure 6.
Note that the issue with a racing condition present in Algorithm 1 does not arise in Algorithm 2
because the latter uses only a single process.

The non-lazy (Algorithm 1) and lazy (Algorithm 2) implementations result in identical red-
blue state distributions but the lazy evaluation implementation will have fewer events. If ∆red

and ∆blue are means of the two processes and w is the duration of the experiment, then non-lazy
implementation should expect

w

∆red
+

w

∆blue
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Algorithm 2 Lazy Red-Blue Event Scheduling

function event(color, ∆color, next-color, ∆next−color)
system-color ← color

schedule event(next-color, ∆next−color, color, ∆color) at ∆next−color
end function

function initialize

s ← single sample from U(0, 1)
if ∆blue

∆red+∆blue
> s then

schedule event(red, ∆red, blue, ∆blue) at ∆red

else

schedule event(blue, ∆blue, red, ∆red) at ∆blue

end if

end function

events whereas the lazy implementation should expect

2 · w
∆red + ∆blue

events so that the ratio of non-lazy to lazy events is

1

2
·
(

∆red + ∆blue

∆red
+

∆red + ∆blue

∆blue

)
whose value is large when the two rates are significantly different. For example if ∆red is 1 week
and ∆blue is one second, the lazy optimization results in a speedup of 302,401 times.

We will utilize this laziness

4.3 NETWORK POROSITY EVENTS

The simulation can be coded in a similarly lazy manner by triggering events from one an-
other rather than fully asynchronously. This provides significant performance gains due to the
significantly different time scales with which various events take place (e.g. compromise time of
milliseconds and enclave clean time of years).

Figure 7 depicts the compromise propagation model of network porosity. A compromise will
flow (spread from one enclave to another) only under the following four conditions:

• there is an attacker on a compromised enclave with a connection to an uncompromised enclave
via a service,

• the service has a current vulnerability,

• the attacker has an exploit for that vulnerability, and
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Figure 7. Compromise Propagation

Algorithm 3 Vulnerability and Patch Processes

function service-vulnerability-event(service, vulnerability)

vulnerability-list ← vulnerability-list ∪ vulnerability

schedule exploit-development-event(service, vulnerability) at ∆dev

schedule service-vulnerability-event(service, vulnerability) at ∆vuln

if len(vulnerability-list) == 1 then

schedule service-patch-event(service) at ∆patch

end if

end function

function service-patch-event(service)

increment version

empty vulnerability-list

end function

• the filter does not block that exploit.

As such there are going to be three distinct cases where we have to consider the compromise
propagation:

1. the source enclave is newly compromised,

2. the destination enclave is newly cleaned, or

3. a new exploit for a service is developed.

In each case, we can speculatively schedule compromise propagation events subject to the four
conditions when such a speculative compromise propagation event from the source to the destination
via the service is not already scheduled1. When the speculative compromise event is executed, it
tests that the attacker has a current exploit for the service that is passed by the filter and that the
source enclave is still compromised.

1 New vulnerability or exploit arrival does not change the frequency at which the source enclave contacts the
destination enclave.
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The two processes in Algorithm 3 define a simplistic model of the arrival of vulnerabilities and
patch releases where each vulnerability has an associated exploit development occurrence interval
(∆dev) and each service has an associated version, vulnerability-list, occurrence interval of
vulnerability discovery (∆vuln), and occurrence interval of patching a particular vulnerability

(∆patch). In variations of the metric we could create more sophisticated models that, handles
vulnerabilities spanning multiple versions of a package, releases without any vulnerabilities, or
creation of multiple exploits for a single vulnerability but for the purposes of this metric we have
chosen simplicity.

The processes in Algorithm 4 define a simplistic model of the exploit development and prop-
agation processes where each service has an associated vulnerability-list, and each (source,
destination, service) triplet is associated with an occurrence interval of compromise propagation
(∆propagate).

2 Note that if multiple services are vulnerable then multiple propagate-compromise-event(...)
processes may be scheduled between a single source and destination, but multiple vulnerabilities
in a service can result in only a single scheduled propagate-compromise-event(...). Also, the
condition to check for exploit filtration was placed in propagatecompromise-event(...) to ease
the development of possible filter signature models in later versions of the metric.

The process in Algorithm 5 defines a simplistic model of what happens when an enclave is
cleaned where each service has an associated vulnerability-list, and each (source, destination,
service) triplet is associated with an occurrence interval of compromise propagation (∆propagate).
Note that if multiple services are vulnerable then multiple propagate-compromise-event(...)

processes may be scheduled between a single source and destination, but multiple vulnerabili-
ties in a service can result in only a single scheduled propagatecompromise-event(...).

2 We assume that any racing conditions between the independent processes will not arise often enough in practice
to have a non-negligible impact.
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Algorithm 4 Exploit Development and Propagation Processes

function exploit-development-event(service, vulnerability)

if vulnerability in vulnerability-list then . service still vulnerable
for all source in compromised-enclaves do

for all destination in uncompromised-reachable-enclaves do . reachable
via service

if propogate-compromise-event(source, destination, service) not in

scheduled then

schedule propogate-compromise-event(source, destination,

service) at ∆propagate

end if

end for

end for

end if

end function

function propagate-compromise-event(source, destination, service)

if attacker-has-exploit and exploit-not-filtered and (source in

compromised-enclaves) then

add destination to compromised-enclaves

attack-from-newly-compromised-enclave(destination)

end if

end function

function attack-from-newly-compromised-enclave(source)

for all destination in uncompromised-reachable-enclaves do

for all service in destination do

if vulnerability-list not empty then . of service

if (source, destination, service) not in compromise-event-schedule

then

schedule propagate-compromise-event(source, destination,

service) at ∆propagate

end if

end if

end for

end for

end function
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Algorithm 5 Post-Clean Compromise Process

function enclave-cleaned-event(destination) . input destination is clean
for all source in compromised-and-can-reach-destination do

for all service in destination do

if vulnerability-list not empty then . of service

if (source, destination, service) not in compromise-event-schedule

then

schedule propagate-compromise-event(source, destination,

service) at ∆propagate

end if

end if

end for

end for

end function
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5. PUBLICATIONS WITH FURTHER DETAILS

1. Suggestions on designing a secure network using enclaves, filtering, and proxies are available
in the NSA. Manageable Network Plan [2].

2. Suggestions on managing unauthorized devices are also available in the description of Critical
Control 19 in SANS CSIS-20 Critical Security Controls Version 4.1 [8].

3. The technical report [7] describing the first four metrics is available as well as a more recent
treatment of the matter [6].
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