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Abstract

In this paper we describe the most recent MIT Lincoln 
Laboratory language recognition system developed for the 
NIST 2015 Language Recognition Evaluation (LRE). The 
submission features a fusion of five core classifiers, with most 
systems developed in the context of an i-vector framework. 
The 2015 evaluation presented new paradigms. First, the 
evaluation included fixed training and open training tracks for 
the first time; second, language classification performance 
was measured across 6 language clusters using 20 language 
classes instead of an N-way language task; and third, 
performance was measured across a nominal 3-30 second 
range. Results are presented for the average performance 
across the 6 language clusters for both the fixed and open 
training tasks. On the 6-cluster metric the Lincoln system 
achieved average costs of 0.173 and 0.168 for the fixed and 
open tasks respectively. 

1. Introduction and Task

The National Institute of Science and Technology (NIST) has 
conducted formal evaluations of language detection 
algorithms since 1994. In previous evaluations, NIST has 
explored issues related to language recognition ranging from 
closed-set language detection to confusable language pairs in 
the 2011 evaluation. In 2015 NIST pursued a different task 
and a new paradigm. The task for the NIST 2015 language 
recognition evaluation (LRE) was to determine the average 
performance of systems when classification within six 
predefined language clusters is considered. Additionally, the 
(mandatory) core condition for the 2015 campaign was a fixed 
training data task where all the data used for system 
development was provided by NIST. The evaluation also 
included a second optional condition where developers could 
construct their systems using any data that they had available. 

The classification metric Cavg is defined as the average cost 
over the six clusters. As mentioned earlier, in contrast to 
previous evaluations, the 2015 LRE focused on classifying 
target classes within six language clusters. The language 
clusters included Arabic, Chinese, English, French, Slavic and 
Iberian. The breakdown of these language clusters is 
presented in Table 1. 
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Cluster Target Classes 
Arabic Egyptian, Iraqi, Levantine, Maghrebi, 

Modern Standard 
Chinese Cantonese, Mandarin, Min, Wu 
English British, General American, Indian 
French West African, Haitian Creole 
Slavic Polish, Russian 
Iberian Caribbean Spanish, European Spanish, Latin 

American Spanish, Brazilian Portuguese 

TABLE 1. Language clusters for NIST LRE 2015. 

The overall performance measure, Cavg, was computed for all 
submissions for both the fixed and open development tasks 
following the NIST LRE 2015 evaluation plan. [1] 

The organization of this paper is as follows: Section 2 
describes the partitioning of the data used for the MITLL 
submissions. Section 3 presents a description and the score 
fusion technique used on the submitted systems. Section 4 
presents system performance on the NIST 2015 LRE task and 
a discussion of the results, with Section 5 presenting 
conclusions and suggestions for future work. 

2. Development Data

The development data description covers two areas: data 
handing for the fixed condition and data used for the open 
condition. First, we will describe some of the commonalities 
covering both data sets and then discuss specific elements for 
each data set. 

For both of these sets the Lincoln system used a common test 
set using the data provided NIST for the fixed condition. This 
test set consisted of segments generated by conducting speech 
activity detection on the files provided and extracting 
segments of duration no shorter than 3 seconds and no longer 
than 30 seconds. The duration of the files extracted was 



uniformly distributed on the 3-30 seconds range to emulate the 
expected distribution of the evaluation segments. This test set 
covered roughly 40% of the total files provided by NIST for 
development. For languages where a large amount of data was 
provided and the duration of the provided files was longer than 
5 minutes, the amount of files generated was limited to 10 files 
to reduce the possibility of biasing the performance of the 
system towards these languages. Table 2 describes the amount 
of data provided by NIST for each class.  
 

LANGUAGE Cuts 
Speech 
(hrs) 

Iraqi (ara-acm) 420 43.44 
Levantine (ara-apc) 450 47.43 
Modern Standard (ara-arb) 406 3.65 
Maghrebi (ara-ary) 414 42.69 
Egyptian (ara-arz) 440 97.27 
British English (eng-gbr) 47 0.51 
Indian English (eng-sas) 418 7.82 
American English (eng-usg) 428 100.37 
Haitian Creole (fre-hat) 323 2.51 
West African French (fre-waf) 34 3.88 
Brazilian Portuguese (por-brz) 47 0.75 
Polish (qsl-pol) 487 31.25 
Russian (qsl-rus) 470 18.44 
Caribbean Spanish (spa-car) 120 29.84 
European Spanish (spa-eur) 38 4.03 
Latin American Spanish (spa-lac) 30 4.38 
Min (zho-cdo) 41 5.27 
Mandarin (zho-cmn) 438 74.62 
Wu (zho-wuu) 45 5.07 
Cantonese (zho-yue) 23 2.56 

TABLE 2. Development data distribution as provided 
by NIST. The NIST language codes are in parentheses. 

2.1. Fixed Condition 

For the fixed condition, the remaining 60% of the data 
provided by NIST was used for training. The data available for 
some of the languages was very limited as observed in Table 
2. To help reduce the impact of this data limitation in our 
system, multiple data augmentation techniques were 
considered ranging from simply reusing the same data by 
using both full files and segments generated from these files 
(effectively letting the systems use the same data file twice) to 
modifying the speech signal via warping and tempo 
modification. The only technique that showed consistent gains 
on contrastive experiments for our systems was the data reuse 
into both full files and segments. 

2.2. Open Condition 

As described earlier, the open condition allowed for 
development of the systems using any data sources and 
amounts deemed necessary by the system developers. For this 
condition, data was used for development from sources 
including: 

 Telephone data from previous LREs (2007, 2009, 
2011), OHSU, OGI-22, Fisher, CallFriend, Babel,  

Ahumada, MI5-UK, Appen, Qatar-Dialect, and 
Kalaka 

 Narrowband segments from VOA broadcasts. 
 
sources of data were considered, during development it was 
observed that using the additional data hurt performance on 
our initial experiments. Additional experiments showed that 
judiciously adding data to some specific classes helped 
improve performance. This issue will be discussed in more 
detail in Section 4. 

3. Classifiers 

As in previous LREs, the Lincoln language recognition system 
consisted of the fusion of multiple classifiers. For LRE 2015, 
systems developed were largely based on the i-vector 
framework [8]. In this section, we describe the different 
classifiers and the fusion/calibration strategy.  

3.1. Bottleneck features Classifiers 

Eleven systems were considered, with ten of them based on 
the i-vector framework and with  many of the systems using 
bottleneck features in some form. 

3.1.1. Bottleneck features  

The bottleneck features (BNF) used for the various systems 
are obtained by training a Deep Neural Network (DNN) using 
a seven hidden layer architecture. On these systems, all hidden 
layers have 1024 nodes except for the sixth layer which has 
either 64 or 80 nodes with a linear activation function that is 
used for extracting the BNFs. The output layers have varying 
compositions for the different systems and will be discussed 
for each system separately. Other features that were common 
across the systems include: 
 
 Processing speech window of 20 ms length with 10 ms 

shift. Mean subtraction is performed and low energy 
dither added to the signal to avoid digital zeros. 

 Mel-scale filterbank analysis is conducted over the 
band 0-4000 Hz resulting in 24 log-filterbank energies. 
RASTA filtering is applied to the log-energy filterbank 
trajectories. 

 Non-speech frames are gated out using speech activity 
detection marks derived from a GMM-based 
speech/non-speech detector. 

 Feature vectors are normalized to zero mean, unit 
variance by subtracting the mean and dividing by the 
standard deviation computed from either a 3 second 
window of speech frames or from the entire file. 

 PLP features are computed with coefficients 0-12 kept 
for processing. 

 In the cases where SDC features are used, cepstral 
coefficients 0-6 are used. 

3.1.2. Conventional bottleneck feature systems  

Two core bottleneck feature systems were developed 
following the architecture described above. The first 
bottleneck system, named BNF1, uses 1024 nodes in each 
hidden layer and a bottleneck layer of dimension 80. This 
DNN is trained using 90% of the Switchboard (SWB) phase 1 
dataset. The training for this DNN uses the Kaldi toolkit [2] to 
extract 4168 senone posteriors. The feature set used to train 



the network uses a stack of 21-frames of dimension 39 which 
includes 13 static cepstral coefficients plus both first and 
second derivatives. The bottleneck feature vectors obtained are 
normalized to follow a standard normal distribution and used 
to train a GMM-UBM [3] and subsequently generate a set of 
400-dimensional i-vectors. Additionally, this system employed 
data augmentation techniques using the scheme proposed by 
Ko [4] The augmented data set was used to train the linear 
discriminant analysis (LDA) component and the within class 
covariance normalization (WCCN) matrix. Scores for this 
system were generated using cosine scoring. 
 
A second BNF system (BNF2) was also trained using a 
scheme similar to BNF1. In the case of BNF2, the DNN was 
trained using a 100-hour subset of the SWB data set and the 
bottleneck dimension was 64. In this case, the system training 
resulted in the extraction of 4199 senone posteriors. The 
architecture and parameters are the same as BNF1 with the 
exceptions described. 

3.2. DNN posteriors systems 

Another group of systems was trained using DNNs for direct 
computation of the sufficient statistics in lieu of using a 
GMM-UBM system. In this case, the systems use the DNN 
senone posteriors to compute sufficient statistics used to train 
the i-vector extractor. Under this general approach we 
considered four systems, all of which employ an i-vector 
framework and cosine distance scoring. 

3.2.1. Multinomial subspace systems 

Three of the systems evaluated (CNT1, CNT2, and CNT3) 
used the same framework as developed for the BNF1 system 
with a difference in the DNN architecture. In this case, 
although 4168 senones were also used, the architecture of the 
system uses hidden layer dimensions alternating between 2048 
and 1024 nodes. Posterior statistics are extracted for each 
hidden layer. Additionally, the subpace multinomial model is 
applied and an 800-dimensional space is ultimately used. 
 
The first system (CNT1) modeled all 4168 posteriors while 
the second system (CNT2) modeled 20 posteriors representing 
the 20 classes of interest among the 6 language clusters. The 
third multinomial subspace system (CNT3) used DNN 
posteriors and language class posteriors jointly. 

3.2.2. Statistics based system 

This system (STATS) follows the description for BNF2 but 
uses the 4199 senone posteriors along with the 56-dimensional 
shifted-delta-ceptral (SDC) features [5] to extract the first and 
second order statistics for i-vector extraction.  

3.3. Bayesian Unit Discovery (BAUD) 

The BAUD system is also a BNF system but it uses a different 
approach to determine the units by which the initial DNN 
targets are trained. In this case, instead of training the DNN 
using senone targets from the tri4a step of the Kaldi SWB 
recipe [2], this system trained its bottleneck features using 
targets from an unsupervised unit discovery process detailed 
below. The architecture for the DNN is the same as that for 
BNF2. 
 

The unsupervised unit discovery process is based on the work 
in Lee [6], but was subsequently re-implemented in Kaldi with 
a few simplifications to make the computation more tractable 
[7] The main idea is to learn phone-like units on speech 
without parallel text data. Each unit is represented by a 3-state 
HMM that emits acoustic feature vectors via a GMM. In Lee 
[6], everything was formulated in a Bayesian manner to take 
advantage of its self-regularizing model-selection properties, 
and inference was done via Gibbs sampling. In the faster re-
implementation, we used a more heuristic initialization, which 
included specifying the number of units to learn, and 
accumulated GMM statistics via maximum likelihood. 
 
We learned 100 units on all of the provided training data. This 
resulted in a large set of "phone sequences" from which we 
could train a speech recognizer in Kaldi. Carrying through to 
the tri2 step of the SWB recipe resulted in an acoustic model 
containing 2604 senones modeled using 30,000 Gaussians. 
The frame-level alignments for these senones were used to 
train the DNN for bottleneck feature extraction. 

3.4. Conventional SDC features system 

One system was included that used conventional SDC features 
in an i-vector framework [8]. This system is similar to the 
system submitted in LRE 2011 and used an 7-1-3-7 SDC 
feature set along with static cepstra for a 56-dimensional 
vector. Processing of the speech signal is also described in [9]. 

3.5. Pitch features 

Two systems that included pitch information were considered 
for this evaluation. The first pitch based system (PITCH1) 
used pitch stacked with SDC features using the system 
described in Section 3.4, and the second system (PITCH2) 
added pitch as input to the BNF2 system. The pitch features 
were generated on a per-cut basis. Praat [10] was used to 
calculate F0 and the corresponding voicing decision using a 10 
millisecond frame rate, and with the F0 range set to 65-400 
Hz. To mitigate the effects of pitch doubling and pitch having, 
the highest and lowest 3% of F0 values were removed. The log 
of F0 was computed and its mean over the voiced frames of 
the cut was subtracted. Linear interpolation of log(F0) was 
performed through the unvoiced frames and those with the 
most extreme F0 values were removed. Delta-log(F0) was 
calculated as the difference between the log(F0) value 3 
frames forward and 3 frames back in time. The values of 
log(F0) and delta-log(F0) were stacked with the corresponding 
SDC frames, producing a 58 dimensional feature vector for the 
PITCH1 system. The PITCH2 system used values of log(F0) 
and delta-log(F0) stacked with the BNF2 system features. 

3.6. Multi-lingual DNN 

All the systems described in Sections 3.1-3.5 were developed 
in the context of the fixed condition. In addition to those 
systems we also developed an additional bottleneck system for 
the open condition. The multi-lingual DNN system (MLBNF) 
developed for the open condition was inspired by the work in 
[11], where a multi-task DNN was trained using data from 5 
IARPA Babel languages (Cantonese, Pashto, Turkish, 
Tagalog, Vietnamese) as shown in Table 3. The DNN was 
trained used 60 hours of data randomly selected from each 
language for a total of 300 hours of data. The inputs for the 
DNN were the same stacked features used for the BNF2 



system. The DNN architecture is also similar to the BNF2 
system in that it has 7 layers of 1024 nodes each where the 
second to last layer is a 64 node linear bottleneck. However, 
for the multi-lingual DNN the last hidden layer is different for 
each of the five languages. Stochastic gradient descent training 
for the multi-lingual DNN proceeds by loading a mini-batch 
with data from each language in sequence until the average 
validation cost across all languages no longer decreases. 
 

Language  IARPA Build Pack 

Cantonese  IARPA‐babel101b‐v0.4c 

Pashto  IARPA‐babel104b‐v0.bY 

Turkish  IARPA‐babel105b‐v0.4 

Tagalog  IARPA‐babel106b‐v0.2g 

Vietnamese  IARPA‐babel107b‐v0.7 

TABLE 3 Babel languages used for training a multi-
lingual BNF. 

3.7. Fusion/Calibration 

As in previous evaluations [9], the backend stage consisted of 
a per-system calibration component that included duration 
normalization. The calibration stage is then followed by a 
linear fusion with a zero offset. The calibration stage used a 
discriminatively-trained (MMI) Gaussian with shared 
covariance for each system, followed by a multiclass logistic 
regression across systems to produce the final score. With the 
limited amount of data in the evaluation, the submitted system 
was trained on a combination of the train and development 
scores. 

To select the primary system we used a greedy approach to 
choose from among a maximum of 16 possible systems for 
the final system combination. System combinations were 
evaluated in three consecutive stages starting with a subset of 
the systems and then dropping and adding systems at each 
stage to select the best combination. 

4. Results and Discussion 

This section presents the results for the primary systems 
submitted for the 2015 NIST LRE, including both the open 
and fixed condition systems. 

4.1. Official NIST Submission 

Results for the fixed condition primary system are shown in 
Figure 1. The figure shows results for the primary system 
along with each of the individual systems that made it into the 
primary submission and the optimal (oracle) fusion. The 
submission consisted of a fusion of five systems: BAUD, 
CNT1, BNF1, PITCH1 and STATS systems. This fusion was 
obtained by sweeping over all the systems developed for the 
evaluation and choosing the best compromise between 
performance and possible overtraining risk. The overall 
performance for the primary system had an average cost Cavg 
of 0.176. Figure 1 shows two performance bars: the 
performance of the submission across all six clusters (blue) 
and the performance of the system with the French cluster 
excluded. Additional comments on the performance of the 

system and the issues with the French cluster are included in 
Section 5. 
 
There are a number of observations of interest to be made 
about these results. First, the submission choice was very close 
to the optimal performance possible given the developed 
systems. This result demonstrates that although the 
development set was not very good about predicting 
performance on the evaluation, the fusion strategy was a good 
predictor of which systems to combine. Second, the BNF1 
system results in the best performance out of the five systems 
submitted with the BAUD system resulting in a close second. 
 

 

FIGURE 1. Fixed task performance breakout. 

The open set condition submission performance breakout is 
shown in Figure 2, once again with average performance 
across all six clusters shown in blue with the performance with 
the French cluster excluded presented in red. For this 
condition, candidates included all systems considered for the 
fixed task along with the multi-lingual DNN bottleneck 
features system MLBNF. The performance for our submission 
resulted in an actual average cost of 0.169. As in the case of 
the fixed condition, the performance of the primary 
submission is on par with the optimal possible combination of 
systems. Another observation of interest is that for the open 
task submission the multilingual BNF system MLBNF is the 
best performing system and replaces the BAUD system. 
 

 

FIGURE 2. Open task system performance breakout. 

5. Discussion 

In this section we discuss some of the results obtained for the 
evaluation along with some of our observations and lessons 
learned. Topics include system development, duration 
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analysis, performance on the French cluster, and our 
experience with the open set condition. 

5.1. Development Results 

First, we describe our development results to motivate some of 
the decisions discussed earlier. Figure 3 presents the results 
obtained on our development set for both the fixed and open 
set conditions. 
 

 

FIGURE 3. Fixed and open system results on 
development data. 

The results demonstrate that the system development process 
predicted good performance for all six clusters with English 
expected to be the cluster with the easiest discrimination task 
and Chinese and Iberian expected to be the hardest 
discrimination tasks. This result contrasts with those obtained 
by our systems on the evaluation data where French was the 
worst performing cluster followed by the Iberian and Chinese 
cluster. Our analysis to date suggests that most of the 
differences are related to unexpected channel mismatch 
compared to the development set including among limited 
representation of the evaluation channels on the development 
data for the most difficult clusters.  

5.2. French cluster performance 

Figure 4 shows the performance of our fixed primary 
submission system across each of the language clusters, 
French being of particular interest as the performance of our 
system is very poor and well below expectations. As shown in 
Table 1, the French cluster was composed of Haitian Creole 
and West African French. Anecdotally, the performance on 
this task was expected to be difficult but not random. 
 
Upon further investigation, we discovered that one of the main 
issues driving the performance degradation on the French 
cluster was the channel differences. During our system 
development process the data available for these classes had 
limited cross channel representation while the data used on the 
evaluation resulted in a large cross channel testing scenario. 
To further clarify this point the data for the French cluster is 

projected into two dimensions in Figure 5,

 
 

FIGURE 4. Per language cluster performance for fixed 
set condition. 

 

 

FIGURE 5. French male data cluster projection into 
two-dimensional space. 

which demonstrates that there is likely a strong mismatch 
between the available training/development data and the 
evaluation data. In the figure the data that comes from 
conversational telephone speech (CTS) clusters together with 
the data originating from broadcast news (BNBS) sources also 
clustering together. Looking at the CTS and BNBS clusters it 
is clear that very limited language discriminability is to be 
expected.  
 
In contrast, we show in Figure 6 two-dimensional projections 
for the Slavic cluster, which was selected because it comprised 
two language classes that were readily distinguished. We can 
observe a very different situation to that of Figure 5. In this 
case, we can observe a very clear differentiation of the two 
languages (Polish and Russian) and see that the clusters can be 
separated by channel but can also be separated by the language 
class. 



 

 

FIGURE 6. Slavic male data cluster projection into two-
dimensional space. 

5.3. Impact of duration 

In previous language evaluations NIST had explicitly included 
duration as part of the evaluation. In 2015 NIST did not 
include duration as a main factor to consider and provided the 
evaluation data as a single set with durations in the (nominal) 
3-30 second range. Figure 7 presents the performance 
observed across the different clusters (French is excluded). It 
is worth observing that, as expected, performance on current 
systems improves as the duration of the cut increases, with the 
saturation area around 15 seconds for most clusters. 
 

 

FIGURE 7. Performance as a function of duration 
across all six clusters (including average 
performance). 

5.4. Open set system 

The open set condition resembles the core condition of 
previous evaluations. One of the main observations from the 
development of the open condition systems in LRE 2015 was 
that adding additional data to the system training resulted in 
minor gains in performance compared to what had been our 
experience from previous evaluations. In fact adding all 
training data to our training resulted in some performance 
degradation. After additional experiments we tried to isolate 

the cases under which additional data produced performance 
improvements. Our experiments showed that adding data, one 
language at a time, improved performance for only the cases 
where data was added for Brazilian Portuguese, British 
English and Modern Standard Arabic. 
 
After submission of system we revisited the open condition 
training on the evaluation data. Surprisingly, and in contrast to 
the development results, using all available training data does 
result in improved performance on the evaluation set. The 
average cost for the submitted system for the open condition 
was 0.168, while the post-evaluation system trained on all 
available data results in an average cost of 0.117. 
 
In addition to the improved performance obtained on the post-
eval system two other interesting observations are noted. First, 
contrary to the results obtained on the submitted system, 
performance on the French cluster improves substantially in 
the post-eval system. This improvement is possibly due to the 
additional diversity in channels available on the augmented 
data set. Although the French cluster accounts for most of the 
improvement, the performance on other clusters also 
improves. A second observation is that PLDA scoring 
performs better than both WCCN and conventional cosine 
scoring. This result also differs from that obtained during the 
system development phase on both the fixed and open 
conditions. 

5.5. Overall system performance  

Another analysis explored the performance of our system 
using a 20-way closed set classification metric rather than 
Cavg as for the 2015 NIST LRE. Figure 8 shows the 
performance of our primary system as a 20-way classification 
task. The axes show the 20 classes in the evaluation grouped 
by cluster. 
 
The structure on the plot in Figure 8 shows that the confusions 
appear in roughly rectangular shapes about the diagonal. This 
is expected as the majority of confusions for this data happen 
within individual language clusters. 
 

 

FIGURE 8. Bubble plot of confusion matrix from 
MITLL system. 

 



5.6. Historical LID performance 

As in previous evaluations, Figure 9 shows the historical 
performance trend for MITLL language identification 
submissions to NIST evaluations. The reader should keep in 
mind that the values shown demonstrate the performance of 
the systems using the technology at the time of submission and 
does not reflect the performance that could be obtained on this 
data with state-of-the-art systems. 
 
The performance observed for the 2015 LRE is slightly higher 
than that obtained on recent evaluations. We hypothesize that 
the difference in performance can be due to the choice of 
target classes and the channel mismatch in some of the classes. 
 

6. Conclusion 

In this paper we have described the MITLL submission to the 
2015 NIST Language Recognition Evaluation. MITLL 
submissions included both a fixed condition submission and 
an open set submission. The submissions were mainly based 
on systems using an i-vector framework and resulted in an 
average cost of 0.173 and 0.168 on the fixed and open tasks, 
respectively. In the future we intend to conduct additional 
analysis and listening to better understand the cluster 
confusions. 
 
This evaluation relied heavily on systems based on Deep 
Neural Networks and bottleneck features. In the future we 
expect the issue of channel robustness to be central to 
performance and anticipate that future work will focus on 
using the new techniques that have recently emerged that 
exploit DNN approaches for channel compensation. 
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Figure 9. Historical performance trend on NIST LREs from 
1996-2015. 
 
 


