
The MITLL NIST LRE 2015 Language Recognition System

Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson,
Stephen Shum*, Elliot Singer, and Doug Sturim

Massachusetts Institute of Technology
Lincoln Laboratory

{ptorres,elizabeth.godoy,dar,frichard,es,sturim}@ll.mit.edu

*Computer Science and Artificial Intelligence Laboratory
{najim,sshum}@csail.mit.edu

Abstract

In this paper we describe the most recent MIT Lincoln
Laboratory language recognition system developed for the
NIST 2015 Language Recognition Evaluation (LRE). The
submission features a fusion of five core classifiers, with most
systems developed in the context of an i-vector framework.
The 2015 evaluation presented new paradigms. First, the
evaluation included fixed training and open training tracks for
the first time; second, language classification performance
was measured across 6 language clusters using 20 language
classes instead of an N-way language task; and third,
performance was measured across a nominal 3-30 second
range. Results are presented for the average performance
across the 6 language clusters for both the fixed and open
training tasks. On the 6-cluster metric the Lincoln system
achieved average costs of 0.173 and 0.168 for the fixed and
open tasks respectively.

1. Introduction and Task

The National Institute of Science and Technology (NIST) has
conducted formal evaluations of language detection
algorithms since 1994. In previous evaluations, NIST has
explored issues related to language recognition ranging from
closed-set language detection to confusable language pairs in
the 2011 evaluation. In 2015 NIST pursued a different task
and a new paradigm. The task for the NIST 2015 language
recognition evaluation (LRE) was to determine the average
performance of systems when classification within six
predefined language clusters is considered. Additionally, the
(mandatory) core condition for the 2015 campaign was a fixed
training data task where all the data used for system
development was provided by NIST. The evaluation also
included a second optional condition where developers could
construct their systems using any data that they had available.

The classification metric Cavg is defined as the average cost
over the six clusters. As mentioned earlier, in contrast to
previous evaluations, the 2015 LRE focused on classifying
target classes within six language clusters. The language
clusters included Arabic, Chinese, English, French, Slavic and
Iberian. The breakdown of these language clusters is
presented in Table 1.

Distribution A: Public Release.This work was sponsored by the
Department of Defense under Air Force contract F19628-05-C-0002.

 Opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by the
United States Government.

ࢍ࢜ࢇ࡯ ൌ
૚
ࡸࡺ

ቐ቎࢙࢙࢏࢓࡯ ∗ ࢚ࢋࢍ࢘ࢇ࢚ࡼ ∗෍࢙࢙࢏ࡹࡼሺࢀࡸሻ
ࢀࡸ

቏

൅
૚

ࡸࡺ െ ૚
቎࡭ࡲ࡯ ∗ ൫૚ െ ൯࢚ࢋࢍ࢘ࢇࢀࡼ

∗෍෍࡭ࡲࡼሺࢀࡸ, ሻࡺࡸ
ࢀࡸࡺࡸ

቏ቑ

Cluster Target Classes
Arabic Egyptian, Iraqi, Levantine, Maghrebi,

Modern Standard
Chinese Cantonese, Mandarin, Min, Wu
English British, General American, Indian
French West African, Haitian Creole
Slavic Polish, Russian
Iberian Caribbean Spanish, European Spanish, Latin

American Spanish, Brazilian Portuguese

TABLE 1. Language clusters for NIST LRE 2015.

The overall performance measure, Cavg, was computed for all
submissions for both the fixed and open development tasks
following the NIST LRE 2015 evaluation plan. [1]

The organization of this paper is as follows: Section 2
describes the partitioning of the data used for the MITLL
submissions. Section 3 presents a description and the score
fusion technique used on the submitted systems. Section 4
presents system performance on the NIST 2015 LRE task and
a discussion of the results, with Section 5 presenting
conclusions and suggestions for future work.

2. Development Data

The development data description covers two areas: data
handing for the fixed condition and data used for the open
condition. First, we will describe some of the commonalities
covering both data sets and then discuss specific elements for
each data set.

For both of these sets the Lincoln system used a common test
set using the data provided NIST for the fixed condition. This
test set consisted of segments generated by conducting speech
activity detection on the files provided and extracting
segments of duration no shorter than 3 seconds and no longer
than 30 seconds. The duration of the files extracted was

uniformly distributed on the 3-30 seconds range to emulate the
expected distribution of the evaluation segments. This test set
covered roughly 40% of the total files provided by NIST for
development. For languages where a large amount of data was
provided and the duration of the provided files was longer than
5 minutes, the amount of files generated was limited to 10 files
to reduce the possibility of biasing the performance of the
system towards these languages. Table 2 describes the amount
of data provided by NIST for each class.

LANGUAGE Cuts
Speech
(hrs)

Iraqi (ara-acm) 420 43.44
Levantine (ara-apc) 450 47.43
Modern Standard (ara-arb) 406 3.65
Maghrebi (ara-ary) 414 42.69
Egyptian (ara-arz) 440 97.27
British English (eng-gbr) 47 0.51
Indian English (eng-sas) 418 7.82
American English (eng-usg) 428 100.37
Haitian Creole (fre-hat) 323 2.51
West African French (fre-waf) 34 3.88
Brazilian Portuguese (por-brz) 47 0.75
Polish (qsl-pol) 487 31.25
Russian (qsl-rus) 470 18.44
Caribbean Spanish (spa-car) 120 29.84
European Spanish (spa-eur) 38 4.03
Latin American Spanish (spa-lac) 30 4.38
Min (zho-cdo) 41 5.27
Mandarin (zho-cmn) 438 74.62
Wu (zho-wuu) 45 5.07
Cantonese (zho-yue) 23 2.56

TABLE 2. Development data distribution as provided
by NIST. The NIST language codes are in parentheses.

2.1. Fixed Condition

For the fixed condition, the remaining 60% of the data
provided by NIST was used for training. The data available for
some of the languages was very limited as observed in Table
2. To help reduce the impact of this data limitation in our
system, multiple data augmentation techniques were
considered ranging from simply reusing the same data by
using both full files and segments generated from these files
(effectively letting the systems use the same data file twice) to
modifying the speech signal via warping and tempo
modification. The only technique that showed consistent gains
on contrastive experiments for our systems was the data reuse
into both full files and segments.

2.2. Open Condition

As described earlier, the open condition allowed for
development of the systems using any data sources and
amounts deemed necessary by the system developers. For this
condition, data was used for development from sources
including:

 Telephone data from previous LREs (2007, 2009,
2011), OHSU, OGI-22, Fisher, CallFriend, Babel,

Ahumada, MI5-UK, Appen, Qatar-Dialect, and
Kalaka

 Narrowband segments from VOA broadcasts.

sources of data were considered, during development it was
observed that using the additional data hurt performance on
our initial experiments. Additional experiments showed that
judiciously adding data to some specific classes helped
improve performance. This issue will be discussed in more
detail in Section 4.

3. Classifiers

As in previous LREs, the Lincoln language recognition system
consisted of the fusion of multiple classifiers. For LRE 2015,
systems developed were largely based on the i-vector
framework [8]. In this section, we describe the different
classifiers and the fusion/calibration strategy.

3.1. Bottleneck features Classifiers

Eleven systems were considered, with ten of them based on
the i-vector framework and with many of the systems using
bottleneck features in some form.

3.1.1. Bottleneck features

The bottleneck features (BNF) used for the various systems
are obtained by training a Deep Neural Network (DNN) using
a seven hidden layer architecture. On these systems, all hidden
layers have 1024 nodes except for the sixth layer which has
either 64 or 80 nodes with a linear activation function that is
used for extracting the BNFs. The output layers have varying
compositions for the different systems and will be discussed
for each system separately. Other features that were common
across the systems include:

 Processing speech window of 20 ms length with 10 ms

shift. Mean subtraction is performed and low energy
dither added to the signal to avoid digital zeros.

 Mel-scale filterbank analysis is conducted over the
band 0-4000 Hz resulting in 24 log-filterbank energies.
RASTA filtering is applied to the log-energy filterbank
trajectories.

 Non-speech frames are gated out using speech activity
detection marks derived from a GMM-based
speech/non-speech detector.

 Feature vectors are normalized to zero mean, unit
variance by subtracting the mean and dividing by the
standard deviation computed from either a 3 second
window of speech frames or from the entire file.

 PLP features are computed with coefficients 0-12 kept
for processing.

 In the cases where SDC features are used, cepstral
coefficients 0-6 are used.

3.1.2. Conventional bottleneck feature systems

Two core bottleneck feature systems were developed
following the architecture described above. The first
bottleneck system, named BNF1, uses 1024 nodes in each
hidden layer and a bottleneck layer of dimension 80. This
DNN is trained using 90% of the Switchboard (SWB) phase 1
dataset. The training for this DNN uses the Kaldi toolkit [2] to
extract 4168 senone posteriors. The feature set used to train

the network uses a stack of 21-frames of dimension 39 which
includes 13 static cepstral coefficients plus both first and
second derivatives. The bottleneck feature vectors obtained are
normalized to follow a standard normal distribution and used
to train a GMM-UBM [3] and subsequently generate a set of
400-dimensional i-vectors. Additionally, this system employed
data augmentation techniques using the scheme proposed by
Ko [4] The augmented data set was used to train the linear
discriminant analysis (LDA) component and the within class
covariance normalization (WCCN) matrix. Scores for this
system were generated using cosine scoring.

A second BNF system (BNF2) was also trained using a
scheme similar to BNF1. In the case of BNF2, the DNN was
trained using a 100-hour subset of the SWB data set and the
bottleneck dimension was 64. In this case, the system training
resulted in the extraction of 4199 senone posteriors. The
architecture and parameters are the same as BNF1 with the
exceptions described.

3.2. DNN posteriors systems

Another group of systems was trained using DNNs for direct
computation of the sufficient statistics in lieu of using a
GMM-UBM system. In this case, the systems use the DNN
senone posteriors to compute sufficient statistics used to train
the i-vector extractor. Under this general approach we
considered four systems, all of which employ an i-vector
framework and cosine distance scoring.

3.2.1. Multinomial subspace systems

Three of the systems evaluated (CNT1, CNT2, and CNT3)
used the same framework as developed for the BNF1 system
with a difference in the DNN architecture. In this case,
although 4168 senones were also used, the architecture of the
system uses hidden layer dimensions alternating between 2048
and 1024 nodes. Posterior statistics are extracted for each
hidden layer. Additionally, the subpace multinomial model is
applied and an 800-dimensional space is ultimately used.

The first system (CNT1) modeled all 4168 posteriors while
the second system (CNT2) modeled 20 posteriors representing
the 20 classes of interest among the 6 language clusters. The
third multinomial subspace system (CNT3) used DNN
posteriors and language class posteriors jointly.

3.2.2. Statistics based system

This system (STATS) follows the description for BNF2 but
uses the 4199 senone posteriors along with the 56-dimensional
shifted-delta-ceptral (SDC) features [5] to extract the first and
second order statistics for i-vector extraction.

3.3. Bayesian Unit Discovery (BAUD)

The BAUD system is also a BNF system but it uses a different
approach to determine the units by which the initial DNN
targets are trained. In this case, instead of training the DNN
using senone targets from the tri4a step of the Kaldi SWB
recipe [2], this system trained its bottleneck features using
targets from an unsupervised unit discovery process detailed
below. The architecture for the DNN is the same as that for
BNF2.

The unsupervised unit discovery process is based on the work
in Lee [6], but was subsequently re-implemented in Kaldi with
a few simplifications to make the computation more tractable
[7] The main idea is to learn phone-like units on speech
without parallel text data. Each unit is represented by a 3-state
HMM that emits acoustic feature vectors via a GMM. In Lee
[6], everything was formulated in a Bayesian manner to take
advantage of its self-regularizing model-selection properties,
and inference was done via Gibbs sampling. In the faster re-
implementation, we used a more heuristic initialization, which
included specifying the number of units to learn, and
accumulated GMM statistics via maximum likelihood.

We learned 100 units on all of the provided training data. This
resulted in a large set of "phone sequences" from which we
could train a speech recognizer in Kaldi. Carrying through to
the tri2 step of the SWB recipe resulted in an acoustic model
containing 2604 senones modeled using 30,000 Gaussians.
The frame-level alignments for these senones were used to
train the DNN for bottleneck feature extraction.

3.4. Conventional SDC features system

One system was included that used conventional SDC features
in an i-vector framework [8]. This system is similar to the
system submitted in LRE 2011 and used an 7-1-3-7 SDC
feature set along with static cepstra for a 56-dimensional
vector. Processing of the speech signal is also described in [9].

3.5. Pitch features

Two systems that included pitch information were considered
for this evaluation. The first pitch based system (PITCH1)
used pitch stacked with SDC features using the system
described in Section 3.4, and the second system (PITCH2)
added pitch as input to the BNF2 system. The pitch features
were generated on a per-cut basis. Praat [10] was used to
calculate F0 and the corresponding voicing decision using a 10
millisecond frame rate, and with the F0 range set to 65-400
Hz. To mitigate the effects of pitch doubling and pitch having,
the highest and lowest 3% of F0 values were removed. The log
of F0 was computed and its mean over the voiced frames of
the cut was subtracted. Linear interpolation of log(F0) was
performed through the unvoiced frames and those with the
most extreme F0 values were removed. Delta-log(F0) was
calculated as the difference between the log(F0) value 3
frames forward and 3 frames back in time. The values of
log(F0) and delta-log(F0) were stacked with the corresponding
SDC frames, producing a 58 dimensional feature vector for the
PITCH1 system. The PITCH2 system used values of log(F0)
and delta-log(F0) stacked with the BNF2 system features.

3.6. Multi-lingual DNN

All the systems described in Sections 3.1-3.5 were developed
in the context of the fixed condition. In addition to those
systems we also developed an additional bottleneck system for
the open condition. The multi-lingual DNN system (MLBNF)
developed for the open condition was inspired by the work in
[11], where a multi-task DNN was trained using data from 5
IARPA Babel languages (Cantonese, Pashto, Turkish,
Tagalog, Vietnamese) as shown in Table 3. The DNN was
trained used 60 hours of data randomly selected from each
language for a total of 300 hours of data. The inputs for the
DNN were the same stacked features used for the BNF2

system. The DNN architecture is also similar to the BNF2
system in that it has 7 layers of 1024 nodes each where the
second to last layer is a 64 node linear bottleneck. However,
for the multi-lingual DNN the last hidden layer is different for
each of the five languages. Stochastic gradient descent training
for the multi-lingual DNN proceeds by loading a mini-batch
with data from each language in sequence until the average
validation cost across all languages no longer decreases.

Language IARPA Build Pack

Cantonese IARPA‐babel101b‐v0.4c

Pashto IARPA‐babel104b‐v0.bY

Turkish IARPA‐babel105b‐v0.4

Tagalog IARPA‐babel106b‐v0.2g

Vietnamese IARPA‐babel107b‐v0.7

TABLE 3 Babel languages used for training a multi-
lingual BNF.

3.7. Fusion/Calibration

As in previous evaluations [9], the backend stage consisted of
a per-system calibration component that included duration
normalization. The calibration stage is then followed by a
linear fusion with a zero offset. The calibration stage used a
discriminatively-trained (MMI) Gaussian with shared
covariance for each system, followed by a multiclass logistic
regression across systems to produce the final score. With the
limited amount of data in the evaluation, the submitted system
was trained on a combination of the train and development
scores.

To select the primary system we used a greedy approach to
choose from among a maximum of 16 possible systems for
the final system combination. System combinations were
evaluated in three consecutive stages starting with a subset of
the systems and then dropping and adding systems at each
stage to select the best combination.

4. Results and Discussion

This section presents the results for the primary systems
submitted for the 2015 NIST LRE, including both the open
and fixed condition systems.

4.1. Official NIST Submission

Results for the fixed condition primary system are shown in
Figure 1. The figure shows results for the primary system
along with each of the individual systems that made it into the
primary submission and the optimal (oracle) fusion. The
submission consisted of a fusion of five systems: BAUD,
CNT1, BNF1, PITCH1 and STATS systems. This fusion was
obtained by sweeping over all the systems developed for the
evaluation and choosing the best compromise between
performance and possible overtraining risk. The overall
performance for the primary system had an average cost Cavg
of 0.176. Figure 1 shows two performance bars: the
performance of the submission across all six clusters (blue)
and the performance of the system with the French cluster
excluded. Additional comments on the performance of the

system and the issues with the French cluster are included in
Section 5.

There are a number of observations of interest to be made
about these results. First, the submission choice was very close
to the optimal performance possible given the developed
systems. This result demonstrates that although the
development set was not very good about predicting
performance on the evaluation, the fusion strategy was a good
predictor of which systems to combine. Second, the BNF1
system results in the best performance out of the five systems
submitted with the BAUD system resulting in a close second.

FIGURE 1. Fixed task performance breakout.

The open set condition submission performance breakout is
shown in Figure 2, once again with average performance
across all six clusters shown in blue with the performance with
the French cluster excluded presented in red. For this
condition, candidates included all systems considered for the
fixed task along with the multi-lingual DNN bottleneck
features system MLBNF. The performance for our submission
resulted in an actual average cost of 0.169. As in the case of
the fixed condition, the performance of the primary
submission is on par with the optimal possible combination of
systems. Another observation of interest is that for the open
task submission the multilingual BNF system MLBNF is the
best performing system and replaces the BAUD system.

FIGURE 2. Open task system performance breakout.

5. Discussion

In this section we discuss some of the results obtained for the
evaluation along with some of our observations and lessons
learned. Topics include system development, duration

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o
st

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o
st

analysis, performance on the French cluster, and our
experience with the open set condition.

5.1. Development Results

First, we describe our development results to motivate some of
the decisions discussed earlier. Figure 3 presents the results
obtained on our development set for both the fixed and open
set conditions.

FIGURE 3. Fixed and open system results on
development data.

The results demonstrate that the system development process
predicted good performance for all six clusters with English
expected to be the cluster with the easiest discrimination task
and Chinese and Iberian expected to be the hardest
discrimination tasks. This result contrasts with those obtained
by our systems on the evaluation data where French was the
worst performing cluster followed by the Iberian and Chinese
cluster. Our analysis to date suggests that most of the
differences are related to unexpected channel mismatch
compared to the development set including among limited
representation of the evaluation channels on the development
data for the most difficult clusters.

5.2. French cluster performance

Figure 4 shows the performance of our fixed primary
submission system across each of the language clusters,
French being of particular interest as the performance of our
system is very poor and well below expectations. As shown in
Table 1, the French cluster was composed of Haitian Creole
and West African French. Anecdotally, the performance on
this task was expected to be difficult but not random.

Upon further investigation, we discovered that one of the main
issues driving the performance degradation on the French
cluster was the channel differences. During our system
development process the data available for these classes had
limited cross channel representation while the data used on the
evaluation resulted in a large cross channel testing scenario.
To further clarify this point the data for the French cluster is

projected into two dimensions in Figure 5,

FIGURE 4. Per language cluster performance for fixed
set condition.

FIGURE 5. French male data cluster projection into
two-dimensional space.

which demonstrates that there is likely a strong mismatch
between the available training/development data and the
evaluation data. In the figure the data that comes from
conversational telephone speech (CTS) clusters together with
the data originating from broadcast news (BNBS) sources also
clustering together. Looking at the CTS and BNBS clusters it
is clear that very limited language discriminability is to be
expected.

In contrast, we show in Figure 6 two-dimensional projections
for the Slavic cluster, which was selected because it comprised
two language classes that were readily distinguished. We can
observe a very different situation to that of Figure 5. In this
case, we can observe a very clear differentiation of the two
languages (Polish and Russian) and see that the clusters can be
separated by channel but can also be separated by the language
class.

FIGURE 6. Slavic male data cluster projection into two-
dimensional space.

5.3. Impact of duration

In previous language evaluations NIST had explicitly included
duration as part of the evaluation. In 2015 NIST did not
include duration as a main factor to consider and provided the
evaluation data as a single set with durations in the (nominal)
3-30 second range. Figure 7 presents the performance
observed across the different clusters (French is excluded). It
is worth observing that, as expected, performance on current
systems improves as the duration of the cut increases, with the
saturation area around 15 seconds for most clusters.

FIGURE 7. Performance as a function of duration
across all six clusters (including average
performance).

5.4. Open set system

The open set condition resembles the core condition of
previous evaluations. One of the main observations from the
development of the open condition systems in LRE 2015 was
that adding additional data to the system training resulted in
minor gains in performance compared to what had been our
experience from previous evaluations. In fact adding all
training data to our training resulted in some performance
degradation. After additional experiments we tried to isolate

the cases under which additional data produced performance
improvements. Our experiments showed that adding data, one
language at a time, improved performance for only the cases
where data was added for Brazilian Portuguese, British
English and Modern Standard Arabic.

After submission of system we revisited the open condition
training on the evaluation data. Surprisingly, and in contrast to
the development results, using all available training data does
result in improved performance on the evaluation set. The
average cost for the submitted system for the open condition
was 0.168, while the post-evaluation system trained on all
available data results in an average cost of 0.117.

In addition to the improved performance obtained on the post-
eval system two other interesting observations are noted. First,
contrary to the results obtained on the submitted system,
performance on the French cluster improves substantially in
the post-eval system. This improvement is possibly due to the
additional diversity in channels available on the augmented
data set. Although the French cluster accounts for most of the
improvement, the performance on other clusters also
improves. A second observation is that PLDA scoring
performs better than both WCCN and conventional cosine
scoring. This result also differs from that obtained during the
system development phase on both the fixed and open
conditions.

5.5. Overall system performance

Another analysis explored the performance of our system
using a 20-way closed set classification metric rather than
Cavg as for the 2015 NIST LRE. Figure 8 shows the
performance of our primary system as a 20-way classification
task. The axes show the 20 classes in the evaluation grouped
by cluster.

The structure on the plot in Figure 8 shows that the confusions
appear in roughly rectangular shapes about the diagonal. This
is expected as the majority of confusions for this data happen
within individual language clusters.

FIGURE 8. Bubble plot of confusion matrix from
MITLL system.

5.6. Historical LID performance

As in previous evaluations, Figure 9 shows the historical
performance trend for MITLL language identification
submissions to NIST evaluations. The reader should keep in
mind that the values shown demonstrate the performance of
the systems using the technology at the time of submission and
does not reflect the performance that could be obtained on this
data with state-of-the-art systems.

The performance observed for the 2015 LRE is slightly higher
than that obtained on recent evaluations. We hypothesize that
the difference in performance can be due to the choice of
target classes and the channel mismatch in some of the classes.

6. Conclusion

In this paper we have described the MITLL submission to the
2015 NIST Language Recognition Evaluation. MITLL
submissions included both a fixed condition submission and
an open set submission. The submissions were mainly based
on systems using an i-vector framework and resulted in an
average cost of 0.173 and 0.168 on the fixed and open tasks,
respectively. In the future we intend to conduct additional
analysis and listening to better understand the cluster
confusions.

This evaluation relied heavily on systems based on Deep
Neural Networks and bottleneck features. In the future we
expect the issue of channel robustness to be central to
performance and anticipate that future work will focus on
using the new techniques that have recently emerged that
exploit DNN approaches for channel compensation.

7. References

[1] 2015 Language Recognition Evaluation plan.
http://www.nist.gov/itl/iad/mig/upload/LRE15_EvalPlan_v23.

pdf
[2] D. Povey et al., “The kaldi speech recognition toolkit,” in
Proc. IEEE ASRU, 2011.
[3] Reynolds, D. A., Quatieri, T. F., Dunn, R. B., “Speaker
Verification Using Adapted Gaussian Mixture Models”,
Digital Signal Processing Review Journal, January 2000.
[4] Tom Ko, Vijayaditya Peddinti, Daniel Povey and Sanjeev
Khudanpur, "Audio Augmentation for Speech Recognition",
Proc. Interspeech, 2015.
[5] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A.,
Greene, R. J., Reynolds, D. A., and Deller Jr., J. R.,
“Approaches to Language Identification Using Gaussian
Mixture Models and Shifted Delta Cepstral Features”, In
Proc. International Conference on Spoken Language
Processing in Denver, Colorado, ISCA, pp. 33–36, 82–92,
September 2002.
[6] C. Lee and J. Glass, "A Nonparametric Bayesian Approach
to Acoustic Model Discovery," Proceedings of ACL, July 2012
[7] Thanks to David Harwath (SLS, MIT CSAIL) for
providing the code and support of his re-implementation of
BAUD in Kaldi
[8] N. Dehak, P. Torres-Carrasquillo, D. Reynolds, and R.
Dehak, "Language Recognition via Ivectors and
Dimensionality Reduction," Proc. Interspeech, pp. 857-860,
Florence, Italy, August, 2011

[9] E. Singer, P. Torres-Carrasquillo, D. Reynolds, A.
McCree, F. Richardson, N. Dehak, and D. Sturim, "The
MITLL NIST LRE 2011 Language Recognition System," Proc.
Odyssey, pp. 209-215, Singapore, June 2012.
[10] Paul Boersma & David Weenink (2013): Praat: doing
phonetics by computer [Computer program]. Version 5.3.51,
retrieved 2 June 2013 from http://www.praat.org
[11] R. Fer, P. Matejka, F. Grezl, O. Plchot and J. Cernock,
“Multilingual Bottleneck Features for Language
Recognition,” Proc. Interspeech, 2015

Figure 9. Historical performance trend on NIST LREs from
1996-2015.

