
Abstract—Heavy loads increase the risk of musculoskeletal 
injury for foot soldiers and first responders. Continuous 
monitoring of load carriage in the field has proven difficult.  We 
propose an algorithm for estimating load from a single body-
worn accelerometer. The algorithm utilizes three different 
methods for characterizing torso movement dynamics, and maps 
the extracted dynamics features to load estimates using two 
machine learning multivariate regression techniques. The 
algorithm is applied to two field collections of soldiers and 
civilians walking with varying loads. The effect of load on 
features is analyzed and the feature utility in conjunction with 
two regression techniques is assessed. Load estimation is done 
using a fixed set of machine learning parameters and leave-one-
subject-out cross-validation. Accurate load estimates are 
obtained, demonstrating robustness to changes in equipment 
configuration, walking conditions, and walking speeds. On 
soldier data with loads ranging from 45 to 89 lbs, load estimates 
result in mean absolute error (MAE) of 6.64 lbs and correlation 
of r = 0.81. On combined soldier and civilian data, with loads 
ranging from 0 to 89 lbs, results are MAE = 9.57 lbs and r = 0.91. 

Index Terms—Gait analysis, accelerometry, load estimation, 
regression, body sensors, walking dynamics, ambulation, 
correlation structure, musculoskeletal injury 

I. INTRODUCTION 
ilitary personnel commonly engage in training and 
operational activities where they carry heavy loads of 

35‒65 kg or more, subjecting them to increased risks of 
musculoskeletal injury (MSI) and excessive thermal-work 
strain [1]. Real-time continuous monitoring of load carriage 
would improve the ability to assess these risks. In addition, 
characterizing the effect of load on gait dynamics could 
provide for early detection of MSI or thermal-work strain 
based on unusual gait patterns. 

Commercially available wearable accelerometers have the 
potential to characterize important properties of gait beyond a 
laboratory setting. Our goal is practical monitoring of gait 
during natural walking, unencumbered by limited video field 
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of view and allowing natural stride period variations not 
possible on a treadmill. A large body of work assesses gait 
under laboratory or clinical conditions, using stationary 
equipment such as treadmills, force plates, or multi-camera 
video systems with fiducial markers [2‒4]. In contrast, using 
readily available sensors, we aim for a practical system for 
estimating load from a single torso-worn accelerometer. 
Challenges include non-uniform walking surfaces and speeds. 

Our specific approach is to estimate load based on three 
types of extracted features that characterize torso movement 
dynamics, in conjunction with two multivariate regression 
techniques that map the features to load estimates. We 
evaluate multiple combinations of feature types and regression 
techniques on two field data collections, finding that the best 
overall performance is obtained using all three feature types 
and both regression techniques.  This combined system results 
in an ability to quickly and accurately estimate load when 
evaluated on out-of-sample test subjects. 

II. METHODS 

A. Data Collection 
1) SBPE

The Soldier Protection Benchmark Evaluation (SPBE) study, 
consisting of 32 subjects (28 men and 4 women), was used to 
evaluate alternative protective equipment configurations [5]. 
All subjects provided informed consent and the study was 
authorized by both MIT and US Army institutional review 
boards. Acceleration data were collected at 25.6 Hz using the 
Equivital EQ-02 (Hidalgo Ltd., Cambridge, UK) physiological 
status monitor, positioned on the left side of the chest below 
the armpit.  The Equivital EQ-02 incorporates a 3-axis ± 3 g 
micro electro-mechanical systems (MEMS) based 
accelerometer. On each day of the study, each subject wore 
one of four different equipment configurations, A, B, C, and 
D.  Each configuration is associated with a different load 
level, due to the number of protection items it includes  (Fig. 
1).  Data were obtained from 32 subjects for configurations A, 
B, and C; and from 29 subjects for configuration  D. 

Our analysis focused on a 5 km march that occurred in the 
middle of the day, generally after lunch. An automatic 
procedure was used to segment the 5 km march.  As described 
in Section IIC, 60-second frames containing stable walking 
were automatically selected for analysis. Statistics on loads 
and data durations for each configuration are shown in Table I.  
The total march duration across all trials varies between 40 
and 68 minutes. However, a smaller amount of data is 
automatically selected for analysis using the walking detection 
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algorithm described in Section IIC. The duration of analyzed 
data ranges between 14 and 56 minutes for all trials except for 
one trial that yielded only four minutes of data. The primary 
reason for automatic rejection of data frames was that they 
contained running data.  

  

 
 

Fig.  1. Four equipment configurations worn in SPBE data collection. 
 

TABLE I 
SPBE DATA COLLECTION. STATISTICS DESCRIBING LOADS AND DURATIONS OF 

5 KM MARCH DATA USED FOR ANALYSIS.  

 
2) MIT-LL:  

In a study approved by the MIT Committee on the Use of 
Humans as Experimental Subjects, a total of 31 volunteers (19 
men and 12 women) between the ages of 18 and 65 wore the 
Equivital EQ-02 during natural walking.  For 26 of these 
subjects, a single trial of unloaded walking data was compiled 
from multiple indoor and outdoor walking segments.  The 
outdoor walking was on a looped 0.4 km gravel path that 
includes uneven terrain and an 8 meter elevation change.  For 
five subjects, only outdoor walking was done, with loads of 0 
lbs, 20 lbs, and (for one subject) 41 lbs.  Loads were induced 
using a weighted backpack. Table II summarizes the statistics 
of the MIT-LL data collection. 
 

TABLE II 
MIT-LL DATA COLLECTION, CONSISTING OF 31 SUBJECTS.  MULTIPLE LOADS 

WERE RECORDED FOR FIVE OF THE SUBJECTS. 
 

Load 
(lbs). # Trials Duration (min) 

Min Max Mean 
0 31 12 112 55 

20 5 14 24 21 
41 1 20 20 20 

 

B. Data Collection 

A block diagram of the system for load estimation is shown 
in Fig. 2.  The first processing step is feature extraction.  There 
are three feature extraction algorithms, each of which 
produces summary statistics over fixed duration data frames 
that characterize movement dynamics.  All three algorithms 

automatically compensate for stride duration, and therefore are 
insensitive to changes in walking speed.  Also, because they 
make use of summary statistics derived over long-duration 
data frames, the algorithms are practical for use in real-time 
physiological status monitoring systems. The time duration of 
the data frames used in this paper is 60 seconds, with 30 
second overlap between successive frames. 
 

 
Fig.  2. Block diagram of the system for automatically estimating load from 
walking data. PCA = principal component analysis. 
 

In Fig. 3 is shown acceleration data from a single SPBE 
subject bearing a moderate load of 45.2 lbs (left) and a heavy 
load of 84.2 lbs (right).  These are plots of 10 s of data after 
conversion within a 60 s frame to standard units (z-scoring), 
and with offsets for easy viewing.  In Fig. 4‒6 are shown 
feature examples from the three feature types obtained from 
these two data frames, in order to illustrate the general feature 
trends that are seen between moderate and heavy loads.  
 
1) Autocorrelation features 

Stride dynamics are captured using autocorrelations of the 
acceleration magnitude signals. Autocorrelation peaks have 
been used previously to characterize gait from a single 
accelerometer [6]. We consider a different approach using the 
entire autocorrelation function out to the first peak, which 
represents time-delay correlation coefficients spanning a 
single stride.  First, the autocorrelation value for accelerometer 
axis j in data frame i at time delay k is computed via 
 

(1) 
 
where bj is obtained by normalizing the accelerometer signal 
aj into standard units within the 60 s data frame. Next, time-
scaled autocorrelation patterns are formed, which span the 
average stride period in the data frame. This is done by 
selecting the peak in the longitudinal autocorrelation pattern, 
which is the 2nd accelerometer axis: argmaxi (c2,i). The range 
of possible stride durations is constrained to be between 0.8 
and 1.4 seconds, a range that easily encompasses all walking 
strides during this study. To obtain more precise estimates of 
the stride durations, cubic interpolation of the summed 
autocorrelation functions is used, sampled at 2.56 kHz to 
mitigate the effects of quantization. Time-scaling by gi is 
employed at all three acceleration axes to obtain  
autocorrelation patterns, sampled at 49 points, k, that span one 
stride period: 
 

(2) 
 
The three time-scaled autocorrelation vectors are plotted in 
Fig. 4, given the data frames from Fig. 3, showing strong 

SPBE 
Config. 

# 
Trials 

Load (lbs) Duration (min) 

Min Max Mean Min Max Mean 
A 32 45.2 45.8 45.4 4 46 30 
B 32 66.7 75.6 71.2 22 55 36 
C 32 76.2 86.6 81.3 17 56 39 
D 29 78.8 89.2 83.9 27 53 41 
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differences in the Longitudinal and Lateral axes. Time-scaled 
autocorrelation patterns such as these have previously been 
used to assess gait asymmetries based on dynamics from foot-
worn accelerometers [7]. 
 

 
 
Fig.  3. Acceleration signals from the same SPBE subject with a load of 45.2 
lbs (left) and 84.2 lbs (right).  Signals are z-scored within 60 s frames, and 
offset for easy viewing. 
 

 

 
 
Fig.  4.  Time-scaled autocorrelation patterns for the three axes, based on the 
data frames illustrated in Fig. 3. The Longitudinal and Lateral axes show the 
largest changes between the moderate and heavy loads. 
 
2) Correlation structure features  

The autocorrelation features described above characterize 
dynamics properties within each acceleration axis.  
Correlation structure features characterize the structure of 
correlation both within and across the acceleration axes. These 
features are insensitive to precise phase relations between 
channels, encoding instead a multidimensional measure of the 
levels of correlation. This approach is motivated by the 
observation that auto- and cross-correlations of measured 
signals can reveal hidden parameters in the stochastic-
dynamical systems that generate the time series. 

This multivariate feature construction approach has been 
applied to analysis of EEG signals for prediction of epileptic 
seizures [8,9], analysis of cardiorespiratory signals for 
prediction of infant apnea [10,11], analysis of speech signals 
for prediction of  depression scores, [12,13], estimation of 
cognitive performance associated with dementia [14], and 
detection of changes in cognitive performance associated with 
mild traumatic brain injury [15].  It has also been extended to 
analysis of video-derived facial action unit signals for 
prediction of depression [11]. These previous applications all 
involve analysis of broadband signals, containing power 

across a wide range of frequencies.  In this paper, the 
technique is applied for the first time to quasiperiodic signals 
in which most of the power is in a narrow frequency band that 
corresponds to stride frequency. 

The correlation structure features are obtained from a 
channel-delay correlation and covariance matrix computed in 
each 60 s frame. Each matrix contains the product set of 
correlation or covariance coefficients between the three 
acceleration axes (channels) at 50 time delays.  The delays are 
spaced at every 0.02 s using cubic interpolation of the 
acceleration signals. The 100 largest rank-ordered eigenvalues 
from the channel-delay correlation matrix compose the feature 
vector. Two additional feature elements are obtained from the 
channel delay covariance matrix. These are 1) the logarithm of 
the trace, and 2) the logarithm of the determinant of the 
covariance matrix. These features encode the overall power 
and entropy of the non-normalized acceleration signals, 
respectively. A detailed description of the correlation structure 
approach is in [9]. 

In Fig. 5 is illustrated the channel-delay matrices obtained 
from the moderate load data frame (left) and the heavy load 
frame (right).  Below these matrices are plotted the 
eigenspectra for these two cases.  The reduced power in lower 
eigenvalues (i.e., eigenvalue indices 20‒100) for the heavy 
load reflects the general trend that heavy loading reduces 
dynamical complexity. 

 

 

 
 
Fig.  5. Channel-delay correlation matrix for moderate load (top left) and for 
heavy load (top right). Eigenvalue spectrum from the two matrices shows 
reduced power in smaller eigenvalues for heavy load. 
 
3) Phase map features  

Phase map features were introduced in [1], where a 2-D (10 
× 10) histogram was created in each data frame from the joint 
distribution of the vertical and longitudinal acceleration 
signals. We modify this approach by using overlapping 
Gaussian kernels instead of disjoint histogram bins. The 
Gaussian kernels provide a more effective representation, 
presumably due to reduced bin quantization noise.  
Specifically, we use a 5 × 5 array of kernels, with means 
centered at {-2,-1,0,1,2}, and diagonal covariance matrices 
with variance = 0.25.  The acceleration signals were first 
normalized (z-scored) in each axis within each data frame. 



The feature value for each of the 25 kernels is the sum, over 
the data frame, of its posterior probabilities given each data 
sample. Fig. 6 illustrates the phase map features applied to the 
moderate and severe load examples, which contain 1,536 data 
samples per frame.  
 

 
 
Fig.  6.  Phase map features for moderate load (left) and heavy load (right), 
based on 60 s frames containing 1,536 data samples. 
C. Walking Detection 

To obtain accurate load estimates during walking, a key 
step is detecting frames that are composed of stable walking 
data. To do this, we use a procedure adapted from [7], in 
which k-means clustering with two clusters is first used to 
separate initial outliers, and then outlier frames from the 
dominant cluster are iteratively removed based on the distance 
of their time-scaled autocorrelation patterns (for the 
longitudinal and vertical acceleration axes) from the remaining 
patterns in that cluster.  The walking detection algorithm is run 
independently in each trial, and only features from the 
detected, valid walking frames are used. 

D. Mutivariate Regression 
Our next step involves mapping the multivariate features 

described above into load estimates.  Two methods are used 
for this.  The first is the Gaussian Staircase (GS) method 
[12,13], which uses principal component analysis (PCA) to 
obtain lower dimensional feature vectors, then performs 
multivariate fusion using Gaussian mixture models (GMMs), 
and finally maps the GMM outputs into load estimates using 
univariate regression.  The second is the partial least squares 
(PLS) technique, which directly maps the original high-
dimensional feature vectors into load estimates. 

 
1) Gaussian Staircase (GS) 

GS involves three sequential processing steps.  The first is 
dimensionality reduction of the high dimensional feature 
vectors obtained from the feature techniques described above. 
Table III lists the dimensionality reduction parameters used 
for the three feature types. Normalization via z-scoring is done 
of the correlation structure features in feature set 2 before 
PCA is applied. These features vary widely in magnitude, with 
high discriminability often found in the lower magnitude 
features. This motivates the need to normalize these features 
prior to PCA, so that all features are on the same playing field. 
With the feature set 1 autocorrelation features and the feature 
set 3 phase map features, on the other hand, normalization was 
found to be disadvantageous, as the natural level of variability 
of the features tends to covary with their discriminability. 

For each feature type, the same number of principal 
components is used in all experiments described in Section III 
(Table III). The number of components was chosen 

empirically based on load estimation performance and is 
sufficient to explain a similar percentage (96-98%) of the 
variance of each feature set on the combined SPBE/MIT-LL 
data sets. During each fold of leave-one-subject-out cross-
validation, the normalization and PCA coefficients are 
independently derived from the training set and then applied to 
the test data.  

 
TABLE III 

FEATURE SET DIMENSIONALITY AND PCA PARAMETERS USED BY GAUSSIAN 
STAIRCASE 

 

Feature Set # Features z-score? # PCA Fraction 
variance 

Autocorrelation 147 no 13 0.98 
Corr. Struct. 102 yes 6 0.96 
Phase Map 25 no 10 0.97 

 
Next, GMMs are constructed from an ensemble of Gaussian 

classifiers [12,13]. The ensemble is derived by partitioning the 
load data into two classes, low and high, but doing this with 
multiple partition thresholds (5, 10, 15, …, 85 lbs).  A separate 
Gaussian classifier is defined for each partition.  Then, the 
ensemble of Gaussians for each class comprises the GMM for 
that class.  For the SPBE data set, in which loads range 
between 45.2 and 89.2 lbs, this results in 8 Gaussians per 
GMM.  For the combined SBPE and MIT-LL data set, in 
which loads range between 0.0 and 89.2 lbs, it results in 17 
Gaussians per GMM. The Gaussian staircase partitioning 
results in a single, highly regularized GMM classifier, with 
feature densities that smoothly increase in the direction of 
decreasing load levels (Class 1) or of increasing load levels 
(Class 2). 

A separate GMM is constructed for each feature type.  The 
output of each GMM is the ratio of the log of the mean 
likelihoods, computed across all data frames in a trial, for its 
class.  For fusion of different feature types, GMM outputs for 
the different feature classes are weighted according to their 
load estimation accuracy, which is defined by the Pearson 
correlation, r, of its load estimates with the true loads (see 
Tables IV and V).  These weights are determined via [13]: 

 
(3) 

 
The final step is to map the GMM outputs into load estimates 
using a 2nd order univariate regression model, which is 
constructed from the training set. 
 
2) Partial Least Squares (PLS) 

PLS regression uses a projection of the independent feature 
variables and dependent load variables into a new space using 
latent factors, fitting a regression model in that new space.  
We use 50 latent factors and 2nd order regression.  Multiple 
feature types are fused by concatenating the feature vectors.  
Also, all features are normalized (z-scored) prior to regression. 
PLS produces a load estimate in each data frame.  These load 
estimates are combined across frames within the same trial 
using a median filter. 
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III. RESULTS  

A. Feature Distributions 
Before evaluating the ability of the prediction algorithm to 
estimate load, we first analyze the distribution of features in 
the combined SPBE/MIT-LL data set with respect to three 
coarse load categories: low (0 lbs), moderate (20-46 lbs), and 
heavy (66-89 lbs). In making this comparison, it is important 
to remember that the low load is comprised entirely of data 
from the MIT-LL dataset, the moderate load is comprised 
mostly of data from the SPBE dataset, and the heavy load is 
comprised entirely of data from the SPBE dataset. Because the 
two data sets were obtained from different populations in 
different behavioral contexts, it is interesting to see how well 
the features can capture, on average, any monotonic trends due 
to load changes across the two disparate datasets. 

Fig. 7 shows the average feature values in feature set 1 for 
low (blue), moderate (green), and heavy (red) loads.  
Specifically, the average autocorrelation feature values are 
plotted in the three acceleration axes. These plots can be 
compared to single trial results shown in Fig. 4. The notable 
findings are of monotonic changes for autocorrelation features 
in all three acceleration axes as loads progress from low to 
moderate to heavy. These load-based changes are smallest in 
the vertical axis and largest in the lateral axis.  
 

 

 
 
Fig.  7.  Average vertical, longitudinal, and lateral autocorrelation values in 
feature set 1 for subjects with low loads (blue), moderate loads (green), and 
heavy loads (red). 
 

Fig. 8 shows the average normalized feature values in 
feature set 2 for low, moderate, and heavy loads.   
Normalization via z-scoring of these features is done because 
the features span a wide dynamic range, requiring their 
normalization prior to PCA (see Table III). Due to 
normalization, the distance between plots indicates the 
Cohen’s d effect size between the feature distributions. Fig. 8 
(left) shows the average correlation matrix eigenvalues, 
ordered left to right from largest to smallest. The monotonic 
reduction of power in the smaller eigenvalues (indices 3-100) 
indicates that heavier loads produce a loss of dynamical 
complexity in the torso dynamics as measured by the 3-D 
acceleration signal.   

The two other features from feature set 2, derived from the 
channel-delay covariance matrix, represent total entropy and 
power in all three acceleration axes. The entropy feature 
shows the same pattern as the correlation matrix eigenvalues, 
with a loss of entropy accompanying the progression from low 
to moderate to heavy loads. The power feature, on the other 
hand, shows a remarkably different pattern. The transition 
from heavy to moderate loads, consisting almost exclusively 
of trials from the SPBE dataset, shows an expected increase in 
power. However, the transition from moderate to low loads 
shows an unexpected decrease in power to a level below even 
that found for the heavy loads. This finding indicates that the 
power feature seems to work in a predictable way within the 
SPBE dataset (i.e., more power for lower load), but fails to 
generalize across the two datasets. The failure of this feature 
provides additional motivation for the use of features that 
characterizing acceleration dynamics based on relative 
acceleration values over time and across the three acceleration 
axes, as opposed to absolute acceleration values, which can be 
easily confounded across different subject populations and 
behavioral contexts. 

 

 
 
Fig.  8. Average normalized correlation structure values in feature set 2 for 
subjects with low loads (blue), moderate loads (green), and with heavy loads 
(red). Average correlation matrix eigenvalues (left), and average covariance 
matrix entropy and power feature (right). 
 

Fig. 9 shows the average normalized feature values in 
feature set 3 for low, moderate, and heavy loads.   Each set of 
five values corresponds to a row in the 2-D phase map (see 
Fig. 6). For some of these phase map features, there is a clear 
divergence only between low and moderate/heavy loads, 
whereas for others there is a clear divergence only between 
low/moderate and heavy loads. The lack of clear monotonic 
trends as seen in feature sets 1 and 2 raises questions about the 
ability of feature set 3 to reliably generalize across different 
data sets. 
 

 
 
Fig.  9.  Average phase map features in feature set 3 for subjects with no load 
(blue), moderate loads (green), and heavy loads (red). Each set of five features 
corresponds to a row of the 2-D phase map (see Fig. 6). 
 



B. Estimating Load from Field Data   
The load estimation algorithm was first applied to the SPBE 

data set alone.  The algorithm was tested on each of the 32 
subjects using training data from the remaining 31.  Each 
feature set was evaluated separately using each regression 
method.  In Table IV are shown the mean absolute error, 
MAE, and Pearson correlation, r, of the load estimates using 
estimates from GS alone, PLS alone, and the two methods 
fused.  These results are shown for each feature set alone 
(rows 1‒3), and for feature set combinations (rows 4‒5). 
Fusion of the regression methods is done such that the more 
accurate method is weighted more highly [13], with weights 
based on the correlations of their load estimates when used 
alone, 

 
(4) 

 
The best results are obtained using feature types 1,2,3 for GS 
and 1,2 for PLS (bottom row).   In Fig. 10 (left) is plotted the 
estimated loads as a function of true load for the SPBE trials, 
using the combined system (highlighted in blue in Table IV). 
 

TABLE IV 
LOAD ESTIMATION RESULTS ON SPBE DATA SET. 

 
Feature 

Sets 

Gaussian Staircase Partial Least Sq. Combined System 
MAE 
(lbs) r MAE 

(lbs) r MAE 
(lbs) r 

1 7.36 0.76 8.75 0.73 7.44 0.77 
2 7.89 0.73 8.49 0.73 7.64 0.76 
3 8.42 0.70 9.88 0.68 8.45 0.73 

1,2 6.73 0.80 8.22 0.75 6.86 0.79 
1,2,3 6.46 0.82 8.22 0.75 6.64 0.81 
 
The SPBE data involves loads between 45 and 89 lbs.  A 

natural question that arises is how well the algorithm would 
extend to smaller loads. To investigate this question, we 
augmented the SPBE data set with additional data collected 
from a different set of subjects at MIT-LL.  Table V 
summarizes the results.  The algorithm extends successfully to 
the loads ranging from 0 to 89 lbs, and shows a pattern of 
results similar to those obtained on SPBE alone.  Compared to 
those results, MAE and r are both larger due to the larger 
range of loads.  Fig. 10 (right) shows a scatter of true loads to 
estimated loads for this combined data set. 

 
TABLE V 

LOAD ESTIMATION RESULTS ON COMBINED SPBE, MIT-LL DATA SET. 
 

Feature 
Sets 

Gaussian Staircase Partial Least Sq. Combined System 
MAE 
(lbs) r MAE 

(lbs) r MAE 
(lbs) r 

1 11.60 0.85 11.87 0.87 10.96 0.89 
2 13.78 0.79 13.82 0.80 13.25 0.81 
3 18.32 0.65 14.78 0.74 14.80 0.77 

1,2 10.65 0.88 10.05 0.90 9.59 0.91 
1,2,3 10.42 0.88 10.05 0.90 9.57 0.91 
 
 
 

 
 
Fig.  10. Estimated load as a function of true load for the 125 SBPE trials 
(left) and 125 SPBE trials combined with 37 MIT-LL trials (right).  Results 
are obtained using combined system. For SPBE, MAE = 6.64 lbs.  For SPBE 
and MIT-LL, MAE = 9.57 lbs.  Linear fits are plotted in red. 

 

C. Detecting Load from Field Data 
For some applications it may be more important to derive 

broad load classifications from the estimates [1]. To 
investigate the effectiveness for our load estimates for 
classification, we constructed receiver operating characteristic 
(ROC) curves.  For the SPBE data set, we investigated 
classification of moderate (45-46 lbs) versus heavy (66-89 lbs) 
loads.  For the combined SPBE and MIT-LL data set, we 
assessed classification of low (0 lbs) versus moderate/heavy 
(20-92 lbs) loads.  The resulting ROC curves for the combined 
system using all three feature sets are shown in Fig. 11, with 
areas under the curve (AUC) of 0.96 and 0.99, respectively.  
The ROC curves indicate excellent sensitivity and specificity 
in load detection. In Table VI are shown the AUC values for 
the combined system given different feature type 
combinations. 

 

 
 
Fig.  11. Receiver operating characteristic (ROC) curves for classifying 
moderate versus heavy loads on SPBE data (left) and low versus moderate or 
heavy loads on combined SPBE, MIT-LL data (right), using three features 
sets and combined regression system.  
 

TABLE VI 
AREA UNDER ROC CURVES FOR COMBINED SYSTEM ON SPBE AND COMBINED 

SPBE, MIT-LL DATA SETS. 
 

Feature 
Sets 

Area Under ROC Curve (AUC) 
SPBE Data SPBE, MIT-LL Data 

1 0.95 0.98 
2 0.95 0.95 
3 0.93 0.95 

1,2 0.95 0.99 
1,2,3 0.96 0.99 

 

D. Convergence of Load Estimates 
Another practical consideration is how quickly the algorithm 
reaches accurate load estimates.  Load estimates are obtained 
every 30 s after the first 60 s of walking data.  To investigate 
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the effect of data duration, we selected from each test trial 50 
randomly placed contiguous data segments of varying 
durations.  In Fig. 12 are shown MAE results from the SPBE, 
MIT-LL data set, given varying segment durations, for GS 
alone, PLS alone, and the combined system.  With only one 
minute of data (a single data frame), the combined system 
achieves good performance (MAE = 11.61 lbs), which 
continues to improve as the data duration increases. 

 
 
Fig.  12. MAE as a function of test data duration for each regression method 
and for the combined system. 

E. Treadmill Study  
All of the results presented thus far are obtained by training 

on one set of subjects and testing on a novel subject.  A 
substantial fraction of the error may be due to inter-subject 
variability, which could be reduced by adapting the regression 
models to the test subject.  Effective individualization may be 
possible with only unloaded training data from the test subject. 
To investigate individualization, we tested the algorithm on 
additional load data from a single MIT-LL subject for whom 
the field test load estimates were highly biased (estimated 
loads were 26.2 and 37.2 lbs given true loads of 0 and 20 lbs, 
respectively).  We collected treadmill data at 3 mph for several 
different load levels.  The order of loads was randomized, and 
two minutes of data were used for each load.  Additionally, 
two unloaded conditions were evaluated, one without a 
backpack and one with an unloaded backpack.   

In Fig. 13 the true loads are plotted in red, in order of load, 
and the estimated loads are plotted in blue.  The estimates are 
obtained using all three feature sets and the combined system, 
with the regression models trained on the other subjects. The 
load estimates have similar biases as the previous field results, 
with an average bias of 23.3 lbs (28.2 lbs for loaded cases).  
The consistency of bias and the linear trend with increased 
load lend support to the idea of individualized bias removal. 

 
Fig.  13. Load estimates from treadmill data of single subject.  Trials are two 
minutes duration each, and trials are ordered by load level. 

IV. CONCLUSION 
We demonstrate rapid, accurate estimation of load from field 
data collections using out-of-sample testing.  The results 
indicate robustness to variations in body types, equipment 
configurations, walking conditions, and walking speeds.  
Future work will involve validation of the algorithms on larger 
and more controlled data sets, with more extensive coverage 
of load levels.  Another exciting direction is individualization, 
in which feature variability due to different body types can be 
accounted for.  We expect that the multidimensional feature 
techniques introduced in this paper, by characterizing 
complementary properties of movement dynamics, will prove 
useful for other gait monitoring applications, such as early 
detection of musculoskeletal injury, detection of excessive 
thermal work strain, and monitoring of physical fatigue. 

Another notable finding in this paper is that the progression 
from low to moderate to high loads induces monotonic 
changes in the feature distributions for feature sets 1 and 2. 
The changes found in the autocorrelation patterns of feature 
set 1 provide clear and strong signatures of load, particularly 
in the lateral and longitudinal acceleration axes. The changes 
in eigenvalue distributions of feature set 2 provide signatures 
indicating a loss of multivariate complexity across the three 
dimensions (axes) of the acceleration signal. The same 
correlation structure approach has been widely used as a 
predictor of change in neurological state from EEG and speech 
(audio and video) [8-15]. Accordingly, we plan to use the gait 
feature techniques described in this paper to explore the effect 
of cognitive stress, fatigue, and neurological disorders on gait. 
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