
Enforced Sparse Non-Negative Matrix Factorization

Brendan Gavin∗†, Vijay Gadepally†, Jeremy Kepner†

∗University of Massachusetts, Amherst
†MIT Lincoln Laboratory

January 23, 2016

Abstract—Non-negative matrix factorization (NMF) is
a dimensionality reduction algorithm for data that can
be represented as an undirected bipartite graph. It has
become a common method for generating topic models of
text data because it is known to produce good results,
despite its relative simplicity of implementation and ease of
computation. One challenge with applying the NMF to large
datasets is that intermediate matrix products often become
dense, thus stressing the memory and compute elements
of the underlying system. In this article, we investigate a
simple but powerful modification of the alternating least
squares method of determining the NMF of a sparse matrix
that enforces the generation of sparse intermediate and
output matrices. This method enables the application of NMF
to large datasets through improved memory and compute
performance. Further, we demonstrate, empirically, that this
method of enforcing sparsity in the NMF either preserves or
improves both the accuracy of the resulting topic model and
the convergence rate of the underlying algorithm.

I. Introduction
A common analyst challenge is searching through large
quantities of text documents to find interesting pieces of
information. With limited resources, analysts often employ
automated text-mining tools that highlight common terms
or topics. The machine learning and natural language
processing communities often refer to this as topic mod-
eling. Topic modeling is a vast field in which there have
been many fundamental contributions. For example, latent
dirichlet allocation (LDA) [1] uses Bayesian networks to
model how a mixture of topics constitutes a document.
Other common methods for topic modeling include the
following: latent semantic analysis (LSA) [1], probabilistic
latent semantic analysis (PLSA) [2], and term frequency-
inverse document frequency (TF-IDF) [3] analysis. More
recently, non-negative matrix factorization (NMF) [4]–[7]
is used as a technique for document classification and topic
modeling. The NMF has also been used for graph cluster-
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ing [8], graph embedding [9] and graph regularization [10].
As we described in [11], the NMF is quite amenable to
computation via the GraphBLAS kernels.

A set of definitions for terms and variables
used throughout the article are given below:
Definitions

NMF: Non-negative matrix factorization, i.e., A = UV T

A: Term/document biadjancency/data matrix
U: Term/topic biadjacency/data matrix
V: Document/topic biadjacency/data matrix
Topic: A cluster of related documents or terms. Columns of U

are term topics and columns of V are document topics.
ALS: Alternating least squares; an algorithm for finding the

NMF.
Residual: Relative norm of the difference between U matrices at

subsequent iterations of ALS.
Error: Relative norm of the difference between data matrix A

and its NMF approximation UV T

NNZ: Number of nonzeros

The NMF operates on data sets that have a natural
interpretation as undirected bipartite graphs. For text pro-
cessing, collections of text documents are often stored in
a ”Bag of Words” data matrix A, where each element aij
is a count of how many times term i occurs in document
j. The data matrix A is then the biadjacency matrix of a
bipartite graph, where one partition of nodes represents the
terms present in the documents in the collection, and the
other partition of nodes represents the documents in the
collection.

NMF approximately factorizes the data matrix A into
a product of two other matrices.

A ≈ UV T (1.1)

A ∈ Rn×m, U ∈ Rn×k, V ∈ Rm×k

A ≥ 0, U ≥ 0, V ≥ 0

The rank k of the new matrices is often chosen heuris-
tically to be much smaller than the rank of the original
data matrix, thereby reducing the dimensionality of the
data. However, while information is lost in this process,
the expectation is that the most important relationships in



the data will be retained.
Importantly, the factor matrices U and V are calcu-

lated such that their entries are non-negative. This allows
the resulting matrix factorization to be naturally intepreted
as another undirected, bipartite graph whose biadjacency
matrix is given by

Anmf =

[
U
V

]
(1.2)

Figure 1 illustrates the difference between the graph corre-
sponding to the initial data A and the graph corresponding
to Anmf .

If the original edge weights aij are interpreted as
as a count of the number of paths from node i to node
j in the original graph, then the matrix factorization
aij =

∑
n uinvjn calculates the number of paths from

node i to node j as being the sum of the number of paths
from node i to node j when passing through a new set of
intermediate nodes that are indexed by n. In the context of
text analysis and topic modeling, these intermediate nodes
are referred to as “topics”. If the number of topics is chosen

Figure 1. Illustration of the action of non-negative matrix factorization
on a ”Bag of Words” text data set. NMF takes as input the original data
A (a) and produces as output a new data set Anmf (b) that has new
set of intermediate nodes (i.e. ”topics”) that indicate clusters of related
terms and related documents.

to be small enough, then there can be many fewer edges in
the new graph given by Anmf than in the original graph
given by A.

The intermediate topic nodes are interpreted to define
clusters of nodes in the original graph. When the NMF
is used in text analysis, terms and documents that are
connected to the same topic node are interpreted as being a
part of the same cluster of related ideas. Further, the edge
weights of the connections to that topic are interpreted
as being proportional to the probability of membership
in the corresponding cluster. Text analysis is performed
by finding the NMF of the original data set and then
examining the edge connections with the largest weights
for each topic node in order to determine which terms and
which documents are most closely associated with each
other.

The NMF is found by solving a minimization problem
that makes the factorization UV T as close to the original
data matrix as possible, thereby preserving the number
of shortest paths aij between the term nodes and the
document nodes in the corresponding graph:

min
U,V
||A− UV T ||, s.t. U ≥ 0, V ≥ 0 (1.3)

There are a variety of ways to approach this problem as
described in [12]. Perhaps the most common method is to
use the multiplicative update rules of Lee and Seung [6].
The benefit of these update rules is that they are simple
to implement and that analytical results can be estab-
lished about the convergence properties of updates. Other
methods include gradient descent algorithms (of which the
multiplicative update rules of [6] are an example) and
the alternating non-negativitity constrained least squares
(ANLS) method. In ANLS, alternating least squares prob-
lems are solved by using optimization methods to enforce
the non-negativity constraint [13] in Equation (1.3). Many
of these algorithms have analytical results regarding their
convergence properties and have proven to be effective in
practice; however, they tend to be slow to converge.

II. Calculating NMF via Alternating Least Squares
In the method we describe in this article, we have chosen to
solve Equation (1.3) by using the conventional alternating
least squares (ALS) algorithm combined with a projection
step, as described in [12]. In ALS, we hold one of the
matrices U or V constant, and then solve for the other
by using linear least squares. By repeating this process
many times, alternating back and forth between solving
for U and solving for V , we hope to converge to a good
approximation of the NMF.

The projection step enforces the non-negativity con-
straint of Equation (1.3) by setting all the negative entries
of U and V to zero at each iteration, rather than by
using constrained optimization methods as ANLS does.
Because this is a projection onto the space of non-negative
solutions, it is sometimes called projected alternating least
squares and is described in Algorithm 1. While there are no
analytic results regarding the convergence properties of the
ALS algorithm, in practice, the projected ALS algorithm
consistently produces good results.

We prefer to use projected ALS because it is the
fastest of the available methods for finding the NMF, and
it can be implemented by using only basic linear algebra
operations (specifically matrix-vector multiplication). This
makes it ideal for systems that are designed to perform
fast matrix operations in order to support specifications
for graph algorithms such as the GraphBLAS [11], [14],
[15].

Projected ALS does, however, have the drawback that,



Algorithm 1 Projected Alternating Least Squares
Input: data matrix A ∈ Rn×m, initial guess U0 ∈ Rn×k

Output: Approximation UV T ≈ A, U ∈ Rn×k,
V ∈ Rm×k

START: Set U = U0

Do until convergence:
1. Find V using V = ATU(UTU)−1, and

set negative entries of V to zero.
2. Find U using U = AV (V TV )−1, and

set negative entries of U to zero.
end do

Output U , V

END

as stated in Algorithm 1, it does not preserve sparsity in
the matrix factorization that it produces. In most natural
data sets the original data matrix A tends to be very sparse,
whereas the U and V matrices in the resulting NMF are not
necessarily sparse. Figure 2 describes a few such examples.
This can result in excessive memory use and computation
time when using sparse matrix storage formats, posing a
bottleneck for performing calculations on very large data
sets.

Reuters-21578

Matrix Sparsity
A 99.65%
U 61.0%
V 61.0%

UV T 4.15%

Wikipedia

Matrix Sparsity
A 99.6%
U 45.0%
V 41.0%

UV T 11.0%
Figure 2. Tables showing the change in sparsity from the original data
matrix A to the NMF approximation of it, UV T , using two different
data sources. Sparsity is measured as the fraction of a matrix’s entries
that are exactly equal to zero.

In the following Section, we describe our approach
for modifying Algorithm 1 so it can be used to produce
sparse intermediate and output matrices, allowing it to take
advantage of the performance benefits of sparse matrix
storage formats. In Section IV, we apply the resulting en-
forced sparsity NMF algorithm to several example datasets.
We further show that the modified algorithm converges at
least as well as Algorithm 1 and that it produces NMF
topics that are empirically and qualitatively as accurate as
those produced by the unmodified ALS algorithm. We also
demonstrate a drawback of producing NMF matrices that
are extremely sparse, and in Section V we discuss methods
that can be used to alleviate this problem. We conclude in
Section VI.

III. Sparcity Enforced ALS NMF
There have been many studies that have looked at pro-
ducing sparse matrices through the NMF [13], [16]–[19].
Some studies use NMF to produce sparse matrices by
adding sparsity constraints to the minimization problem
(Equation 1.3), and others do so by adding terms to the
minimization problem that penalize having larger numbers
of nonzeros in the factorization. Some popular methods for
ensuring sparsity include using Hoyer’s sparsity measure
[17] or the L1 norm of U or V [13] as either constraints or
penalty terms in the minimization problem (Equation 1.3).
These approaches work well, but they require the use of
algorithms for NMF that are slower than the projected ALS
algorithm.

Our goal is to maintain good performance in finding
the NMF, and we take the least computationally–expensive
approach for maintaining sparsity: at each iteration of
ALS, in order to ensure that either of the U or V matrices
has exactly t nonzero entries in it, we set all the entries
in that matrix to zero except for the t largest ones.
The resulting modification of Algorithm 1 is shown in
Algorithm 2.

Algorithm 2 Enforced Sparsity ALS
Input: matrix A ∈ Rn×m, initial guess U0 ∈ Rn×k,
maximum NNZ(U) tu and maximum NNZ(V) tv
Output: Approximation UV T ≈ A, U ∈ Rn×k,
V ∈ Rm×k

START: Set U = U0

Do until convergence:
1. Find V using V = ATU(UTU)−1, and

set negative entries of V to zero.
2. Sort nonzero entries of V , keep only tv

largest nonzeros in V
3. Find U using U = AV (V TV )−1, and

set negative entries of U to zero.
4. Sort nonzero entries of U , keep only tu

largest nonzeros in U .
end do

Output U , V

END

Herein, this algorithm is referred to as the enforced
sparsity ALS, because we are producing sparse matrices by
enforcing sparsity at each iteration of the ALS algorithm.
In this method, we keep the t largest entries of a given
matrix by finding the magnitude of the tth largest entry
and then setting all the entries with magnitudes lower
than that of the tth largest entry to zero. This method
requires slightly more computation than a simpler method



of enforcing sparsity, which is to set all entries of a matrix
that fall below an arbitrary threshold to zero; however, it
has the benefit of allowing us to consistently set exactly the
amount of sparsity that we want, regardless of the scaling
of the matrices that we are working with.

This method of enforcing sparsity also synergizes well
with sparse matrix storage formats: it requires only the use
of list sorting algorithms, which operate naturally on one-
dimensional lists of numbers, which is how sparse matrices
are stored. While relatively simple, the Algorithm of 2
qualitatively works well.

We claim that, in practice, Algorithm 2 does in-
deed converge, and that it consistently produces results
of equal quality to those of Algorithm 1, despite its
heuristic method of preserving sparsity. In Section IV we
demonstrate convergence by examining several empirical
measures of convergence, using a few example data sets.

IV. Sparcity Enforced ALS NMF Results
We illustrate the results of using Algorithm 2 by applying
it to data matrices that are derived from several different
real datasets of text documents. For each of these datasets,
we produce a term-document data matrix A, where each
column represents a single document, each row represents
a single term, and each entry aij is the number of times
that term i occurs in document j. We discard very common
terms from each document by using a stop word list, and
we also discard terms that appear only once in a particular
dataset. We divide each row of the data matrix by the
number of nonzero entries in that row in order to prevent
our results from being biased by commonly used terms.
All of the matrices that we use to produce our results are
stored in the MATLAB sparse matrix storage format.

In each example case, we produce an NMF with a
number of topics that seem appropriate for illustrating the
effect that we are discussing. In practical applications, the
choice of the number of topics (k) depends entirely on
the data set and on the user’s needs, and can range from
being very small (i.e. 3) to being very large (hundreds or
thousands).

A. Convergence Behavior: First, we examine the effect
of sparsity enforcement on the convergence of ALS by
examining the relative error and the relative residual of
the NMF UV T at each iteration of ALS in Algorithm 2.

The relative error is given by

E = ||A− UV T ||/||A|| (4.4)

and measures the difference between our original matrix
A and the factorization of UV T and then normalized by
the norm of A. As the rank of U and V is increased, the
error is reduced. Since there is no way of knowing a priori
what the lowest possible error is for a given rank, this is

generally an unreliable measure of convergence.
The relative residual, given by

R = ||Ui − Ui−1||/||Ui||, (4.5)

measures the difference between our current solution for
U and our solution for U at the previous iteration. The
relative residual indicates the amount our solution changes
with each iteration and a low value will indicate close prox-
imity to a stable point in the iterations. The residual is thus
considered to be a more natural measure of convergence.

Empirically, as measured by the relative residual, we
find that the sparse NMF using Algorithm 2 converges as
fast as, or faster than the dense NMF using Algorithm 1.
As an example, Figures 3 and 4 describe results of using
projected ALS, with and without sparsity enforcement,
to find a five-topic NMF of a data matrix derived from
the Reuters-21578 dataset (provided by [20]) using 1,985
documents with 6,424 different terms. Figure 3 shows the
relative residual and the relative approximation error at
each iteration of Algorithm 2.

In Figure 3, when the NMF is generated using the
enforced sparsity ALS, the term/topic matrix U is forced
by Algorithm 2 to have only 55 nonzeros (in order to
maintain sparsity); in the dense case, U is allowed by
Algorithm 1 to have any number of nonzeros. In this
example, the experiment with a sparse U converges quicker
than the fully dense version (as measured by the relative
residual), and finishes with a higher relative L2 error.

NMF With and Without Sparsity Enforcement:
Convergence
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Figure 3. Example NMF with and without sparsity enforcement. The
plots show the relative error and relative residual at each ALS iteration
when using sparsity enforcement on the term/topic matrix U and when
allowing it to be fully dense.

Figure 4 shows the five terms with the largest mag-
nitudes for each topic in the NMF that was generated for
making Figure 3. Sparse NMF produces topic terms that
are qualitatively as coherent as those produced by the dense
NMF, although the topics produced by each are somewhat
different.



Sparsity Enforced U Matrix (55 nonzeros for 5 topics):
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

miles risk coffee repurchase yen
load contracts quotas motors firms

factor paper ico class plaza
revenue proposals crop spending currencies

passenger futures colombia buyback movements

Fully Dense U Matrix:
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

miles paper coffee iran senate
load risk crop crude baker

factor proposals quotas opec legislation
revenue england ico iraq vote

passenger yen producer iranian surplus

Figure 4. Example NMF with and without sparsity enforcement. The
tables show the five terms with the largest magnitudes for each resulting
topic.

The results described in Figures 3 and 4 are represen-
tative of the empirical behavior of Algorithm 2 in produc-
ing solutions that converge and provide good results.

The distribution of nonzeros amongst the column
vectors of U and V change depending on which matrices
are being made sparse. When we force one or both of
U and V to be sparse (particularly when making them
very sparse), the nonzeros in either matrix tend to end
up unevenly distributed among the matrix’s columns. As
a result, some topics will have more terms or documents
allocated to them, and other topics will have fewer.

For example, allowing 50 nonzero entries in the
term/topic matrix U of a five-topic NMF typically does
not result in having 10 nonzero entries in each column of
that matrix. Instead, some columns will have very many
nonzeros, and other columns will have very few. The table
in Figure 5 shows an example of the topic terms that are
produced in this situation. The dataset used to produce this
table is derived from the first 12,439 pages of the monthly
Wikipedia database dump, with a total of 143,462 unique
terms after stop words are filtered out.

Nonzeros Distributed Unevenly from Sparsity
Enforcement

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government league electrons album jewish
party electron band jews
war atoms albums judaism

elections hydrogen israel
president isotopes hebrew

Figure 5. Top five terms in each of five topics produced by NMF
as applied to Wikipedia data, with term/topic matrix U forced to have
only 50 nonzeros. Nonzero entries are distributed unevenly amongst the
columns of U as a result.

The skew of the distribution of nonzeros in the column
vectors of U or V is most severe when both the U and the
V matrices are made very sparse. In this case, this skew

may result in all of the nonzeros being concentrated in a
single column in each matrix.

The skew in the number of nonzeros per column of
the U and V matrices may indicate that topics with fewer
nonzeros are less significant in the original data source than
topics with more nonzeros. In that sense this effect can be
informative. However, it prevents the user from being able
to examine the actual content of a given topic, and in that
sense it can constitute a problem, depending on one’s goal
in using NMF. In Section V, we discuss two methods for
addressing this problem.

B. Clustering Accuracy: An empirical measure of doc-
ument clustering accuracy can be used to examine the
effect of sparsity enforcement. This way we can validate
the assertion that our method of sparsity enforcement
produces output of the same quality as dense NMF.

To do so, we use a corpus of documents that consists
of the abstracts of papers from five PubMed academic
journals: BioMed Central (BMC) Bioinformatics, BMC
Genetics, BMC Medical Education, BMC Neurology, and
BMC Psychiatry. The resulting corpus, after stop words
are removed, consists of 20,112 unique terms and 7,510
documents.

We can devise a measure of the accuracy of an NMF
topic model for this dataset by considering each journal as
defining an empirical topic by assuming that an academic
journal is a cluster of related documents. We believe that
it is a reasonable assumption to say that a clustering
algorithm, when applied to the abstracts of papers from
academic journals, produces accurate clusters if it groups
abstracts from the same journals (provided that the subject
matter of each journal is sufficiently different from the
subject matters of the others). Our choice of particular
journals was made, in part, because they cover different
and distinct topics.

We measure the accuracy of each topic by counting
the number of pairs of documents that belong to a topic and
that are from the same journal, and then by dividing that
number by the total number of possible pairs of documents.
For each topic in the NMF of this dataset, we consider a
document as “belonging” to a topic if its corresponding
entry in the V matrix is nonzero. We consider a topic from
the NMF to be perfectly accurate if all the documents that
belong to that topic are from the same journal, in which
case the number of same-journal document pairs is equal
to the number of all possible pairs. On the other hand, a
topic has the lowest possible accuracy if the documents that
belong to it are uniformly distributed among the journals
in the dataset. In that case, many of the pairs of documents
belong to different journals, and the ratio of the number
of same-journal pairs to the number of total possible pairs
will be small.



We use the following expression for this measure of
the accuracy of an NMF document topic:

Acc =

∑nD−1
i=1

∑nD

k=i+1 Jnl(i, k)

β − α
− α

β − α
(4.6)

Where α and β are given by

α = bnD/nJc
(
nJ(bnD/nJc − 1)

2
+ nD(mod nJ)

)
β =

nD(nD − 1)

2
(4.7)

The parameter nD is the number of documents that belong
to the topic whose accuracy we are measuring (i.e., the
number of nonzero entries in that column of the matrix
V ), nJ is the number of journals that was used to make
our dataset, and Jnl(i, k) returns 1 if document i comes
from the same journal as document k and 0 otherwise.
The value of α is the number of same-journal pairs of
documents when the documents belonging to a topic are
uniformly distributed amongst all of the journals in the
dataset; this will be the case when that topic’s accuracy
is the lowest. The value of β is the maximum possible
number of pairs of documents.

The values α and β scale and offset the measure (4.6)
so that it is equal to 1 when all of the documents in a topic
come from the same journal, and it is equal to 0 when they
are perfectly uniformly distributed amongst the journals in
the corpus. For cases in which a topic has only one or zero
documents belonging to it, we set Acc = 1.

Figure 6 shows the results of applying the measure in
Equation (4.6) to the NMF of the PubMed journal dataset.
For these results, we perform 50 iterations of Algorithm 2
in order to find a five-topic NMF (that is the largest
number of correct topics that the NMF should find for five
journals). As before, we calculate the NMF when enforcing
various levels of sparsity for either the U matrix, the V
matrix, or both the U and V matrices.

We find that the accuracy is, in general, higher for
sparser U and V matrices, with the accuracy being the low-
est for the fully dense conventional NMF. This result is not
surprising since we consider a document as “belonging” to
a topic if it has any nonzero value in the corresponding
entry of the V matrix. Further, we don’t take into account
the fact that many of the entries for each document in
a given topic have small magnitudes, indicating that they
probably do not belong to that topic despite the fact that
their value is nonzero.

This measure is still useful, however, in allowing us
to compare the accuracy of dense NMF to the accuracy of
the proposed enforced sparse NMF. We can measure the
accuracy of a topic from dense NMF by defining some
threshold value below which we would consider the entries

Document Clustering Accuracy vs. NNZ
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Figure 6. Average document clustering accuracy versus number of
nonzeros when using sparsity enforcement for finding the NMF of a
data matrix derived from the abstracts of papers from PubMed journals.
Accuracy for each individual topic is measured by using equation (4.6),
and averaged over each of the topics in a 5 topic NMF. We show the
results when enforcing sparsity for just the U matrix, just the V matrix,
and both the U and V matrices.

Document Clustering Accuracy: Dense NMF vs.
Enforced Sparsity NMF
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Figure 7. Average document clustering accuracy, as measured by using
Equation (4.6), versus the number of nonzeros in the U and V matrices.
The plot curve labeled “Enforce Sparsity during ALS” shows the accuracy
of the NMF produced by using Algorithm 2, and the plot curve labeled
“Enforce Sparsity after ALS” shows the accuracy of the NMF produced
by using Algorithm 1, where we have made the final NMF matrices
sparse by enforcing sparsity only after the NMF has been calculated. By
this measure, Algorithm 2 typically produces NMF document clusters
that are at least as accurate as those produced by Algorithm 1.

of V to be zero, and then applying the accuracy measure in
Equation (4.6) to the newly sparse V . To use Equation (4.6)
with dense matrices, we enforce sparsity after completing
ALS iterations when finding the NMF, instead of enforcing
sparsity during each ALS iteration. Figure 7 shows the
result of measuring the document clustering accuracy for
the NMF of the PubMed dataset when we enforce sparsity
during each iteration of ALS, as is done in Algorithm 2,
and when we enforce sparsity only after we have finished
all our ALS iterations using Algorithm 1.

The accuracy of the document clustering is approxi-
mately the same, regardless of whether we enforce sparsity
during ALS or after finishing ALS. This result is encourag-
ing because it suggests that we are producing equally good
topics by enforcing sparsity at each iteration, but it raises
an additional question: if we can make our final NMF just
as sparse, and just as accurate, by enforcing sparsity only
once after we have already calculated the NMF, why do it
at each iteration? The reason is because we want to reduce
the maximum memory footprint during the entire runtime



of the NMF algorithm, not just just the memory footprint
of the final ouput.

C. Memory footprint: The reason for enforcing sparsity
at each iteration is that we would like to keep our matrices
as sparse as possible at all times when computing the
NMF, in order to reduce the memory footprint of both
the final result matrices and the intermediate matrices that
are generated while calculating the NMF. By enforcing
sparsity at each iteration, we can reduce our memory
footprint considerably throughout the calculation.

Exactly how much we are able to reduce the memory
footprint throughout our calculation depends on the level of
sparsity enforced, and on the level of sparsity in our initial
guess. Figure 8 shows the maximum number of nonzeros
in U and V combined when we enforce sparsity for both
matrices during the calculation of the NMF for the PubMed
dataset. We show the results for various levels of sparsity in
the initial guess U0. Unsurprisingly, the maximum number
of nonzeros that we need to store during our calculations is
determined by the sparsity of the initial guess when we are
forcing U and V to have very small numbers of nonzeros,
and it is determined by the level of sparsity that we enforce
in U and V when they are allowed to be more dense than
the initial guess.

This example demonstrates the memory benefits of
using sparsity enforcement at each iteration: we can reduce
the amount of memory that we need to use to store U and
V by more than an order of magnitude.

Maximum NNZ Stored When Calculating Sparse
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Figure 8. Plot curves showing the maximum number of nonzeros that
need to be stored for the U and V matrices combined when using
Algorithm 2 to calculate the NMF of the PubMed dataset. Results are
shown for several initial guesses with varying numbers of nonzeros.
Depending on the sparsity of the initial guess, the maxmimum memory
footprint can be reduced from the dense case by over an order of
magnitude.

V. The Sequential NMF
In Section IV-A we showed that, when using Algorithm
2, we may produce an NMF that has unevenly distributed
terms and documents among its topics. This problem is
typically only as severe as it is in the results in Figure 5
when forcing our matrices to be very sparse but, in our

opinion, the fact that Algorithm 2 can be used to produce
matrices of such extreme sparsity is one of its benefits,
and so we have considered two ways of alleviating this
problem.

One particularly straightforward method to ensure
even distribution of nonzeros among columns of our
matrices is to enforce sparsity for each column individually
rather than for the matrix as a whole. This procedure
results in convergence and produces good topic models,
but at the cost of reduced performance. This performance
reduction occurs because, for most sparse matrix storage
formats, addressing the entries in specific columns of
a matrix is slower than addressing the entries of that
matrix irrespective of which column they belong to. This
additional time to address the contents results in reduced
performance.

Another way to ensure an even distribution of nonze-
ros among the columns of our matrices is to find the NMF
topics sequentially by converging one topic at a time. We
can do this by considering the NMF using block matrices

A ≈ UV T = [U1 U2][V1 V2]
T = U1V

T
1 + U2V

T
2 (5.8)

where U1 and V1 are matrices whose column vectors
consist of previously converged NMF topics, and U2 and
V2 are single column vectors that represent the new topics
that we seek to find. We can derive the update rules for
finding U2 and V2 by rewriting the original minimization
problem using the matrix blocks:

min ||A− UV T ||22 = min ||A− U1V
T
1 − U2V

T
2 ||22 (5.9)

The solution for one of U2 or V2, while holding the other
constant, is then a modified least squares solution:

V2 = (ATU2 − V1UT
1 U2)(U

T
2 U2)

−1 (5.10)

U2 = (AV2 − U1V
T
1 V2)(V

T
2 V2)

−1 (5.11)

We can find a k-topic NMF using these update rules by
doing projected ALS k times; we store each new topic
that we generate as additional columns of the matrices U1

and V1 and then find the next topic by doing projected
ALS again using Equations (5.10) and (5.11). We call this
procedure sequential ALS because we are finding our NMF
as a sequence of individual topics rather than as a block
of topics. The full algorithm for sequential ALS is given
in Algorithm 3.

A similar procedure was previously proposed in [21],
where the author uses it as part of a method for generating
a high-rank NMF in order to reconstruct missing data.
The article in [21] does not use any means of ensuring
sparsity in the resulting NMF, however, which would be
necessary for the proposed algorithm to be used success-
fully on realistically large data sets. Sequential NMF is
also similar to the Hierachical Alternating Least Squares
(HALS) procedure [22], which was developed in order to



Algorithm 3 Sequential ALS NMF
Input: data matrix A ∈ Rn×m, initial guess U0 ∈ Rn×k2 ,
maximum NNZ(U) tu and maximum NNZ(V) tv , topics
per block k2, number of blocks η (total number of topics
k = η × k2)
Output: Approximation UV T ≈ A, U ∈ Rn×k,
V ∈ Rm×k

START: Find U1 ∈ Rn×k2 and V1 ∈ Rm×k2 such that
U1V

T
1 ≈ A using Algorithm 2, using U0 as initial guess.

For i = 2 to η
Set U2 = U0

Do until convergence:
1. Find V2 using Equation (5.10), and set

negative entries of V2 to zero.
2. Sort nonzero entries of V2, keep only tv

largest nonzeros in V2
3. Find U2 using Equation (5.11), and set

negative entries of U2 to zero.
4. Sort nonzero entries of U2, keep only tu

largest nonzeros in U2

end do
Append the column vectors of U2 and V2 to the
matrices U1 and V1 respectively, increasing their
rank by k2: U1 = [U1 U2], V1 = [V1 V2].

end for

Output U = U1, V = V1
END

improve convergence by iterating on columns of U and V
individually.

Figure 9 shows the results of enforcing sparsity col-
umn by column and the results of using sequential NMF
for the same Wikipedia data matrix that was used to
produce the table in Figure 5. Both methods produce an
even distribution of nonzero entries among the columns
of our matrices. Column-wise sparsity enforcement yields
good topic terms, and sequential ALS yields good topic
terms with the exception of topic 4. This behavior is
consistent with what we have observed for the sequential
ALS algorithm. While the algorithm often produces good
topic terms, it is less robust than the typical projected ALS
is. Figure 10 shows the accuracy of the NMF document
topics when we use sequential ALS and column by column
sparsity enforcement on the PubMed dataset, as measured
by using Equation (4.6). By this measure, both methods
produce document clusters that are approximately as accu-
rate as the document clusters produced when we use the
unmodified Algorithm 2.

In order to compare the performance of sequential
NMF and column-wise sparsity enforcement, Figure 11

Sparsity Enforcement with Even Nonzero Distribution

Enforce Sparsity by Column
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government proteins electrons album jewish
party protein electron band jews
war cells atoms music judaism

president cell atom albums hebrew
election dna hydrogen songs torah

Enforce Sparsity with Sequential ALS
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government city album film game
war population band church games

party airport music empire players
military census albums country team
soviet county songs united league

Figure 9. Top five terms for each of five topics from Wikipedia data.
This time we enforce sparsity for each column individually or by using
sequential topic generation, with a limit of 10 nonzero entries per topic
(for a total of 50 nonzero entries in the U matrix). Compare with the
table in Figure 5; here our topic terms are evenly distributed.

Document Clustering Accuracy with Sequential and
Column-wise Topic Sparsity

NNZ Allowed in U and V
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Figure 10. Mean document clustering accuracy as measured by Equation
(4.6) when calculating a five-topic NMF of the PubMed dataset by using
either Algorithm 3 or Algorithm 2 with sparsity enforced for each column
of U and V individually.

shows the time required for 100 ALS iterations for finding
a five-topic NMF for the PubMed journal dataset, using
normal projected ALS NMF with sparsity enforcement,
projected ALS NMF with column-wise sparsity enforce-
ment, and sequential ALS. Enforcing sparsity for each
column individually takes longer than doing so for the
entire matrix at once, as we would expect when using
sparse matrix formats. Sequential ALS is quite a bit faster
than the other two methods. This result is not surprising, as
sequential ALS does not require the use of a matrix inverse
when U2 and V2 of Equations (5.10) and (5.11) have rank
1, as they do here; in that case, the inverse amounts to
floating point division. Despite indications that sequential
ALS provides less coherent term topics than the regular
ALS NMF, this improvement in runtime suggests that it
bears further investigation.

VI. Discussion and Conclusion
In this article, we described a method to enforce sparsity
in the computation of the NMF of a potentially large
dataset. By setting the level of sparsity in our matrices



Time Scaling for Sparsity Enforcement
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Figure 11. Time required for 100 ALS iterations when finding a 5
topic NMF for the PubMed dataset. Results are shown using sparsity
enforcement for the whole U and V matrices at once, for each column
of U and V individually, and for columns of U and V generated
sequentially. For the normal and column-wise NMF results, 100 projected
ALS iterations are performed. For the Sequential ALS NMF, 20 iterations
are performed for each of 5 topics that are generated, for a total of 100
ALS iterations.

that we desire at each iteration of alternating least squares,
we can substantially reduce the memory resources that
are required to compute NMF without sacrificing addi-
tional compute resources. In spite of the simplicity of
the proposed approach, our experiments indicate that the
algorithm converges at least as quickly and reliably as
regular, dense projected ALS and that the NMF topic
models that it produces are similarly accurate.

Using the methods described in this article, we can
produce an NMF with matrices of fairly extreme sparsity,
relatively inexpensively. In doing so we find that we
produce NMF topic models with very unevenly distributed
terms and documents among the topic clusters. We can
produce topic models with perfectly evenly distributed
topic terms and documents by enforcing sparsity for each
topic individually. If we do this directly by enforcing
sparsity for each column of U and V individually, then we
find that we produce good term topics at the cost of sacri-
ficing performance resulting from the slowdown caused by
accessing sparse matrix formats column by column. If we
do this by converging each topic sequentially, we produce
quality term topics less reliably but with a considerable
improvement in speed. Improving these techniques so that
we do not have to sacrifice computation time or topic
quality is a subject of continuing research.

We believe that these methods of sparse NMF are
amenable to implementation using the GraphBLAS ker-
nels. The dense ALS algorithm uses the GraphBLAS
kernels of SpRef/SpAsgn, SpGEMM, Scale, SpEWiseX
and Reduce kernels. To enforce sparsity, a user defined
functions that sets an element to zero if it is greater
than a particular threshold applied either matrix wide for
Algorithm 2 or column-by-column for Algorithm 3 on in-
termediate products can ensure memory and computational
efficiency.
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