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Protecting enterprise networks requires continuous risk assessment that automatically 

identifies and prioritizes cybersecurity risks, enables efficient allocation of cybersecurity 

resources, and enhances protection against modern cyberthreats. Lincoln Laboratory 

developed a foundational network security maturity model to guide development of 

such risk assessments and has developed practical risk metrics for the most important 

cyberthreats. These metrics can be computed automatically and continuously from 

security-relevant network data.  

Computer networks are under constant cyberattack. In 2013, in one of the 

most historically devastating insider attacks, Edward Snowden exfiltrated 1.7

million documents from the National Security Agency [1]. That same year, 

the security company Mandiant released a report on the likely Chinese 

government–sponsored cyber espionage group APT 1 (for advanced persistent threats), 

who stole 100s of terabytes of proprietary information from at least 141 organizations by 

maintaining a long-term presence in the victims’ networks [2]. More recently, the 

widespread Heartbleed [3] and Shellshock [4] attacks exploited vulnerabilities in 

common Internet web and encryption services, and the U.S. Office of Personnel 

Management announced the theft of sensitive information, including the Social Security 

numbers of 21.5 million individuals, from the background investigation databases for 

persons seeking government clearances [5]. 

Instead of assessing important security risks at large enterprises to make sure that risks 

from all current threats are addressed, many organizations adopt a best-practices 

approach by installing popular baseline security controls, such as antivirus software and 

email spam filters, and scanners that find and patch software vulnerabilities. Because 

this approach is not tailored to meet the unique security needs of individual 

organizations, resources may be wasted on implementing unnecessary controls while 

important threats go unaddressed. Metrics that results from this approach (e.g., counts 

of files scanned or of high-severity vulnerabilities) are difficult to interpret because their 

relationship to risk from modern threats is unknown. 
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Many organizations also perform some type of qualitative risk assessment in which a list 

of threats is considered and the likelihood and impact of each threat is rated on an 

ordinal scale from low to high. Threat management involves addressing those threats for 

which the likelihood and impact are both high. This approach can be effective when 

performed by skilled security practitioners who understand an enterprise network, can 

enumerate all threats and their likelihoods, and can accurately assess the effectiveness of 

controls against the threats and their expected impacts. Unfortunately, it is difficult to 

find such trained practitioners and even skilled security experts can miss key threats or 

misunderstand the impact of breaches. 

 

Our goal is to automate and improve the current state of the art in risk assessment.  

Using a list of important modern threats, we describe how to compute risk for each 

threat and also how to specify the data required to compute risk. We provide an initial 

list of threats that can be updated over time to capture recent threat types. The required 

data can be gathered online in real time to provide continuous risk assessment. The 

resulting risk values can be compared across threats, time, and different enterprises.  

The accuracy of this approach should approach that of the best skilled security experts   

because we provide a carefully selected list of threats and specify how to compute risk 

objectively without relying on unsupported qualitative human judgements.  

 

Modeling and Mitigating Modern Threats (heading level 1) 
Recently, security experts from companies, government agencies, and academia joined 

forces to create a set of security controls and adversary models specifically focused on 

modeling and preventing advanced persistent threats and other current threats. Their 

work led to the 20 critical security controls shown in Figure 1 and described in [6].  

These controls are prioritized by their capability to provide a direct defense against 

attacks.  Sub-controls from the first four critical controls constitute most of the so-called 

“five quick wins” that have  the most immediate impact on preventing common 

attacks [6]. The remaining controls provide addition protection against  attacks. These 

widely used controls are the most effective and specific set of technical measures 

available to detect, prevent, respond to, and mitigate damage from current threats. We 

have used these critical controls to prioritize the threats that should be addressed in 

enterprise networks and to recommend and model controls that should be in place to 

mitigate those threats. Metrics we have developed focus on automatically computing 

risk for the most important critical control threats, and they directly model the 

effectiveness of critical controls that should be in place.  

 
 
 
 



 
 
 
 
 

Table 1. 20 Critical Security Controls  
 

 
 

 

Security Metrics (heading level 1) 
Lincoln Laboratory has developed 11 security metrics, each of which is associated with a 

specific cyberthreat and critical control(s) from the critical controls document [6]. Table 2 

lists these metrics, the threat each metric addresses, and the control(s) from Figure 1 that 

mitigate each threat. Each metric is assigned a Lincoln Risk (LR) number ranging from 

LR-1 to LR-11. The LR-3 metric, for example, is concerned with attackers who search for 

and exploit known software vulnerabilities in a network. The risk of these attacks is 

reduced when the durations of software vulnerabilities (i.e., the time between when a 

vulnerability is first published to when it is removed) are shortened. These durations 

can be shortened by performing continuous vulnerability assessment and remediation as 

suggested by critical control 4, which includes detecting and patching vulnerabilities 

more frequently. The LR-3 metric is discussed further in the “Two Example Metrics” 

section. 

 

Table 2. Lincoln Laboratory Security Metrics 

Lincoln Risk Threat Mitigating  



(LR) number Critical Control(s) 

LR-1 Attackers compromise  
unauthorized devices 

1 

LR-2 Attackers compromise 
unauthorized or prohibited 

software 

2, 5, 11 

LR-3 Attackers exploit known 
software vulnerabilities 

4 

LR-4 Attackers exploit insecure 
configurations 

3, 7, 11 

LR-5 Attackers launch insider attacks 9, 13, 15, 16 

LR-6 Attackers steal credentials and 
exploit weak authentication 

7, 10, 12, 13, 16 

LR-7 Attackers exploit account and 
physical access privileges 

3, 12 

LR-8 Users perform actions that 
enable attacks 

9 

LR-9 Attackers penetrate network 
boundaries; sensitive 

information exits network 
boundaries 

7, 11, 13 

LR-10 Attackers employ physical 
attacks 

3 

LR-11 Attackers exploit weak or 
missing encryption capabilities 

6, 7, 13, 15, 17 

 

The first four metrics we developed  (LR-1 to LR-4) focus on the same management areas 

as the “five quick wins” mentioned above. These metrics prevent common attacks, such 

as gaining access to devices via well-known default passwords and accessing computers 

remotely by using previously published exploits. They also support higher-numbered 

metrics by providing important baseline observations concerning the presence and 

characteristics of devices, software, and configurations that exist in a network. Detailed 

descriptions of LR-1 to LR-4 are available in Lippmann et al. [7]. The next three metrics 

(LR-5 to LR-7) focus on users’ roles, credentials, and accounts, and they cover insider 

attacks, credential theft, and attacks that require physical access to victim devices. LR-8 

concerns user behaviors that enable attacks, such as providing passwords over the 

phone or in response to an unverified email. LR-9 to LR-11 address the boundaries 

added to networks to prevent outside attacks, physical attacks against devices, and 

access to data on stolen or compromised devices. These 11 metrics cover the highest-

priority attacks and controls listed in [6] that can be automated and computed using 

continuous measurements..  

Metrics Development (heading level 2) 

To develop security metrics, we first develop simple but realistic attack models to guide 

the four steps of the processing loop shown in Figure 1. Attack models establish 



1. what security conditions must be observed to determine the risk of an attack;  

2. how to compute the risk of an attack on the basis of observed security conditions;  

3. how to prioritize the risk of an attack across network entities, such as persons, 

devices, and accounts; and  

4. how to design the network so it is easy for network administrators to take actions 

that mitigate risk and to eliminate security conditions that enable attacks. 

 

 
FIGURE 1. A processing loop required to measure and reduce risk for the threat from each LR metric 
requires four steps: (1) observe relevant network security conditions, (2) compute the risk of threats to the 
network in its current state, (3) prioritize risks and decide on actions to mitigate risks, and (4) take action to 
mitigate risks or improve the risk computation and mitigation processes. Attack models provide the 
foundation for each of these steps. 

 
The first step of the processing loop in Figure 1 is to observe relevant security conditions 

in a network. For managing software vulnerabilities (LR-3), network vulnerability 

scanners could be used to find vulnerable servers. Observation techniques for managing 

persons (LR-5 to LR-8) include accessing personnel records for logins (and attempted 

logins) and for screening, indoctrination, and training to determine granted trust levels 

and user roles.  

 

The second step of the processing loop is to use these observations to compute risk. For 

LR-3, this step involves determining the duration of known vulnerabilities and the 

probability that attackers observe and exploit these vulnerabilities to compromise 

devices. For managing trust (LR-5), this step consists of analyzing user trust levels, role 

assignments, accounts, and approaches that improve the security of user authentication 

(such as two-factor authentication) to compute the overall systemic risk of insider 

attacks.  

 



The third step of the processing loop is to prioritize risks according to their risk values 

calculated in step two and to prioritize mitigation actions on the basis of their 

effectiveness and other practical concerns (e.g., the cost of the mitigations). Finding the 

most effective approach to mitigate risk involves performing offline analyses using the 

risk computation capability of step two to compare the effectiveness of different actions. 

Mitigations range from immediate rapid fixes, such as patching software, to longer-term 

changes, such as adding separation of duties in which two persons are required to 

complete a task that provides access to a high-value asset (e.g., a bank vault).  

 

The fourth step of the processing loop is to mitigate the risks prioritized in step three. 

Mitigations can be displayed on a local dashboard containing counts of defects or 

security conditions that must be remediated to reduce risk. In addition, specifications, 

such as lists of computers allowed on a network, may have to be refined because of the 

deployment of new computers. Similarly, observations, such as lists of computers 

actually on a network, may have to be corrected as a result of inaccurate automated 

measurements.  

A Maturity Model with Three Metric Components (heading 

level 1) 
 
The maturity model shown in Figure 2 is essential to our overall approach of improving 

enterprise security. This model allows (1) the gradual introduction and use of processes 

and tools required to assess risk, (2) the capability to observe security-relevant data, and 

(3) the capability to estimate risk and apply mitigations to reduce risk. The security 

metrics listed in Table 2 can only be used to accurately compute risk after the first two 

levels of metric development shown in Figure 2 are completed. 

 
 
FIGURE 2. The notional curve in this security maturity model suggests that network security increases (and 
risk of attacks decreases) as a particular metric is further developed.  

 
For each metric in Table 1, we develop three metric components during three maturity 

metric phases as seen in Figure 2. In the Level 1 maturity phase, foundational or checklist 



metric components are developed. These components determine whether all essential 

tools and procedures are in place to support continuous monitoring. During this phase, 

system administrators develop an understanding of their systems and the most 

potentially damaging threats. They begin to implement security control processes as 

described in Figure 1, add tools to gather data, and develop mitigations. For LR-3, 

administrators would continuously monitor all devices and identify known software 

vulnerabilities on those devices. A control process, such as patching, would be initiated 

to eliminate the vulnerabilities. Even if security measures are not directly implemented 

in this stage, there is a significant security impact because improved network hygiene 

improves administrators’ understanding of the network topology and enhances their 

visibility of network security conditions. 

 

In the Level 2 maturity phase, capability metric components are developed. These 

components determine whether the coverage, frequency, and accuracy of observations 

are sufficient to estimate risk. Specifications, such as lists of the types of software 

allowed on each device or of the correct configurations of each device, are also created in 

this phase. Until the values of capability metrics are low (indicating good capabilities), 

risk cannot be computed accurately. Security improves slowly during this stage, as 

indicated by the slope of the graph in Figure 2. This slow progression is due to further 

discovery and repair of security issues as coverage improves across the entire network, 

specifications are developed, previously missed short-duration security conditions are 

identified because of more frequent observations, and security conditions are accurately 

measured.  

 

In the final maturity phase, Level 3, operational risk metric components are developed. 

These components compute the actual risk associated with a given threat. They can be 

used to determine which devices, software packages, misconfigurations, vulnerabilities, 

persons, or other security conditions are responsible for the greatest increase in risk. 

With this information, network personnel can take actions that reduce risk. Operational 

risk metrics continuously assess the risk of the most important threats in real time by 

estimating the impact caused by attackers directly compromising assets (e.g., 

proprietary information, hardware, services).  

 

The risk score for any threat is calculated by multiplying the value of assets under attack 

by the probability that an insider or outsider attack succeeds (see equations in “A Metric 

for Software Vulnerabilities” section). In cases of fraud and theft, the asset value is easy 

to assign because it is simply the total value of money or goods stolen. In most cases, 

however, the asset value is assigned subjectively and is related to how an attack would 

impact the performance of an organization or persons that rely on or are affected by that 

organization. Values must be assigned for attacks that compromise an asset’s 

confidentiality, integrity, or availability. To achieve low operational risk scores, critical 



assets must be assigned high values and be provided with strong protective controls. 

For example, the confidentiality of details supplied by persons to obtain Top Secret 

clearances might be violated by foreign governments who exfiltrate this information and 

use it to identify undercover U.S. agents posted to their countries [8]. Databases 

containing such details should qualitatively be assigned a high value because stolen data 

could compromise an agent’s usefulness or life. In other cases, network services should 

be assigned a high value. Denial-of-service attacks are often used to render network 

services inaccessible. The Department of Veterans Affairs, the Social Security 

Administration, the Federal Emergency Management Agency, and other agencies that 

provide government services directly to citizens need to implement strong protective 

controls against these attacks to ensure that network services can be accessed, especially 

during emergencies.   

Metric Components Design Guidelines (heading level 2) 

 
Three key principles guide metric development: each metric must (1) be simple to 

understand and implement, (2) practically estimate the risk of one specific important 

threat, and (3) motivate actions to reduce the risk of that threat.  

 

Maintaining simplicity and practicality and estimating the risk of a specific threat are 

fairly straightforward tasks. Simple risk prediction models that utilize existing security 

tools to gather data are used when possible. The order in which we develop the metrics 

is chosen with practicality and effectiveness in mind: earlier metrics provide situation 

awareness and baseline information, such as lists of devices and their software, required 

by later metrics. For example, metric LR-1 provides a device list that is used by all other 

higher-numbered metrics; LR-2 provides a device software list used by metrics LR-3 and 

LR-4. 

 

To motivate system administrators to improve security controls, metrics must be 

objective, well defined, and visible to all involved in the security process so the metric 

scores can be understood to be fair. We adopted the convention that high scores for 

metrics are bad and low scores (near 0%) are good; when continuous vulnerability 

monitoring was implemented at the U.S. Department of State, this scoring system was 

shown to be more likely to encourage administrators to improve their performance than 

the 0% (bad) to 100% (best) test scoring traditionally used in schools [7]. Two other 

motivating features are (1) incremental improvements in security controls lead to 

incremental improvements in metrics and (2) the overall difficulty of obtaining a low 

(good) metric score increases slowly over time as metric parameters change. Initially, it 

can be relatively easy to get a good score; however, as an enterprise’s capabilities 

improve and as response times to mitigate insecure conditions shorten, obtaining a good 

score can become more difficult. Slowly increasing the difficulty of obtaining a low 



metric score should lead to long-term overall security improvements because system 

administrators will have to continually improve security controls and processes in order 

to maintain a low score. 

 

Two Example Metrics (heading level 1) 

The following sections provide detailed examples of two metric types. One metric (LR-3) 

focuses on attackers who detect and exploit known software vulnerabilities. The risk of 

attack that the metric computes could, at least conceptually, be reduced to zero if all 

known vulnerabilities are immediately patched. Obtaining good low scores for this 

metric requires continuously observing all known vulnerabilities and eliminating them 

as soon as possible. The second metric (LR-5) focuses on insider attackers who use 

allowed privileges to exfiltrate data. The risk of insider attacks can never be eliminated 

because any person can decide to act maliciously at any time. Obtaining good low scores 

for this metric involves monitoring security screenings, roles, and privileges for all 

persons with access to a network and then computing the expected risk. This 

computation takes into account security measures, such as compartmentalization (a 

network is broken into separate “compartments” that can be accessed by users only on a 

need-to-know basis) and separation of duties.  

A Metric for Software Vulnerabilities (heading level 2)  

LR-3 is concerned with managing known software vulnerabilities. Figure 3 shows the 

two attack models that we developed for this metric. In server-side attacks, external 

attackers scan for vulnerabilities in web, database, email, and other servers open to the 

Internet. Once found, these vulnerabilities are exploited by attackers to gain control of 

the servers. In the more common client-side attacks, attackers embed malware in 

webpages, images, documents, movies, or other content and place that content on 

websites or transmit it via email or social media networks. When users visit websites 

infected with malware or view content with embedded malware, their computers are 

compromised because of vulnerabilities in the client-side software used to display the 

remote content. Persons can be lured to malicious websites owned by attackers (spear-

phishing attacks), or attackers can infect websites that persons are known to visit 

(watering-hole attacks).  

 



 
 
FIGURE 3. Attack models for server- and client-side attacks were developed in support of the LR-3 metric. 
In a server-side attack (left), remote attackers find and compromise internal servers with known 
vulnerabilities. In a client-side attack (right), users download remote content with embedded malware 
(often from a website) and view the content with a browser or other client software with known 
vulnerabilities that are exploited by the malware. 
 

Client-side attacks depend on the occurrence of client-side vulnerabilities in web 

browsers and other client software used to view remote content. The risk of attacks is 

reduced when windows of vulnerability (i.e., the durations the vulnerabilities are 

present) are minimized. This minimization can be accomplished by patching 

vulnerabilities whenever a patch is released or by rapidly detecting vulnerabilities and 

performing targeted patching of those vulnerabilities. Figure 4 illustrates the large 

number of client-side vulnerabilities in a popular PDF viewer (Acroread) and web 

browser (Firefox) that were discovered between 2007 and 2012. Persons browsing the 

Internet during this time could have been vulnerable to compromise if they encountered 

malware exploiting vulnerabilities that had not been rapidly detected and patched by 

defenders. In general, there are fewer server-side vulnerabilities per year because server-

side software is generally more mature and less complex than are modern browsers and 

other content-viewing client software. 

 



 
FIGURE 4. These cumulative five-year histograms plot the client-side vulnerabilities for the popular PDF 
viewer Acroread (left) and the web browser Firefox (right). Per year, there were roughly 40 to 60 
vulnerabilities in each software product. Each vulnerability is represented by a unique horizontal line, the 
length of which represents the time interval from when the vulnerability is publicly announced to when a 
patch is made available by the software developer. Longer horizontal lines indicate instances when 
vulnerabilities are announced without patches, but a patch is subsequently made available. Narrow vertical 
lines correspond to vulnerabilities that are simultaneously announced with patches. 

 
The foundational and capability metric components of LR-3 are low when all devices, 

client software, and servers are identified and when there is an up-to-date mechanism 

for rapidly detecting and then mitigating vulnerabilities. Instead of providing detailed 

equations for foundational and capability metric components, we instead focus on the 

operational metric and assume defenders know precisely when vulnerabilities are first 

present and when they are eliminated. As noted above, the operational or risk metric for 

LR-3 requires that each device be assigned an asset value related to the impact of a 

successful attack on that device. The operational metric (OM) for each device is then the 

product of the asset value (AV) times the probability that the device is compromised 

over a specified time window (PDeviceCompromised):  

 

  

            (1)  

 

Focusing only on server-side vulnerabilities for simplicity, we say the probability that a 

device with a single vulnerability 𝑣 is compromised is equal to the probability that the 

vulnerability is observed or discovered by an adversary (PObserved) times the probability 

that the device is compromised by the adversary, given that the vulnerability is 

observed when the adversary has an exploit for that vulnerability, as shown in Equation 

(2): 

 



                (2) 

 
We assume the probability that a device with vulnerability 𝑣 is compromised is related 

to the Common Vulnerability Scoring System (CVSS) score [9] assigned by the National 

Institute of Standards and Technology to each vulnerability listed in the National 

Vulnerability Database [10]. Specifically, we assume the probability that an attacker 

compromises a device with an observed vulnerability v is equal to the squared value of 

the CVSS score for that vulnerability, which ranges from 0.0 (low severity) to 10.0 (high 

severity), after it is normalized to range from 0 to 1: 

    (3) 

 
Because the low range of CVSS scores is not frequently used, this computation leads to a 

more uniform and realistic distribution of compromise probabilities than the 

distribution obtained by simply normalizing CVSS scores. We understand that the CVSS 

score was not intended for this purpose, but it is the only widely available measure 

available across vulnerabilities, and the single highest-weighted term used to compute 

each CVSS score does, in fact, directly assesses the exploitability of each vulnerability [9].  

 

The probability that an attacker observes a vulnerability 𝑣 present on a server for a 

window of duration 𝑤 depends on how often the attacker scans the server. If attackers 

scan a server every Δ days with exponential Poisson1 interarrival times, then the 

probability that a vulnerability is observed is given by Equation (4) and shown in Figure 

5. This probability is low when the average interarrival times between scans are large 

relative to the vulnerability window and increases to 1.0 as the average interarrival 

times become much smaller than the vulnerability window. 

       (4)  

 

 

                                                      
1
 More formally, we assume that attacker observations form a Poisson process in which (1) the time between 

each pair of consecutive observations has an exponential distribution with parameter  and (2) each 

interarrival time is independent of all the others. This assumption is true of many internet phenomena, such 

as the times between user-initiated bursts of requests from a web browser and between requests for a 

particular document at a web server.  

https://en.wikipedia.org/wiki/Exponential_distribution


 
FIGURE 5. The probability that an attacker who scans server software every Δ days with exponential 
Poisson interarrival times detects a vulnerability present for w days increases slowly to 1.0 as the average 
interval between scans becomes much less than the duration of the vulnerability. 

 
Equation (2) can be used to compute the probability of device compromise only when 

there is one vulnerability on a server. Computing the probability of device compromise 

when multiple vulnerabilities are present, as is often the case, requires an extended 

attacker model that specifies the number of exploits an attacker has attempted and 

successfully implemented. In the stealthy attacker model, an attacker attempts to exploit 

only the vulnerability with the highest probability of compromise (i.e., the vulnerability 

with the highest CVSS score). Another attacker model is a noisy attacker who tries an 

exploit for every vulnerability on the device until an exploit succeeds. We can compute 

risk for both of these attacker models and variations of them. If we assume that a noisy 

attacker tries an exploit for every vulnerability on a device and that the probabilities of 

success for every exploit are independent of each other, then the probability of 

compromising a device with multiple vulnerabilities (Vulns) is given by Equation (5). 

This probability rises as the number of vulnerabilities increases and as the probability of 

device compromise for individual vulnerabilities increases. 

 

   (5) 

 
Equations (1) through (5) support the computation of the LR-3 operational metric for 

server-side attacks on one device. Across a network, the operational metric is simply the 

sum of the individual operational metrics for each device on the network. Computations 

are similar for client-side attacks, except the observation interval is the interval between 

exposures to client-side exploits, and the equations use client-side instead of server-side 

vulnerabilities. 

 



A simulation experiment demonstrated the effect of rapid patching on the LR-3 

operational metric. The simulation contained 100 hosts, each with an asset value 

arbitrarily set to 1.0 and running only the Firefox web browser. We made the rather 

pessimistic assumptions that persons browse an infected website once every 30 days and 

that every infected website contains exploits for all known Firefox vulnerabilities. We 

also assumed that attackers require one week after the publication of a vulnerability to 

develop an exploit and place the exploit on websites. We used actual vulnerabilities 

announced in 2012 [10], including their dates and CVSS scores, to populate the 

simulation. The results of the simulation are shown in Figure 6; each plot shows the 

windows for all vulnerabilities. Vulnerabilities in the left plot are for an enterprise in 

which all current Firefox patches are applied every 5 days, while those in the right plot 

are for an enterprise in which patches are applied only every 30 days. The vertical bars 

represent several vulnerabilities that were announced on the same day, with the width 

of the bars indicating the vulnerability window. The operational risk metric represents 

the expected number of hosts compromised during 2012 and can be calculated by 

applying Equations (1) to (5) to client-side vulnerabilities as described in [7]. When 

patches are applied every 5 days, the expected number of hosts compromised is 4.9 over 

the year. Because each host is valued as 1, the operational risk metric has the low value 

of 4.9. When patches are applied only every 30 days, the expected number of hosts 

compromised is 98.6, a very high value. These results illustrate how sensitive LR-3’s 

operational risk metric is to vulnerability windows and patching frequency.  

 

 

 
FIGURE 6. The LR-3 operational risk metric was computed with 5-day (left) and 30-day (right) patching 
policies for vulnerabilities announced in 2012. As indicated by the width of the vertical bars, the 
vulnerability windows are much larger when patches are applied only every 30 days as opposed to every 5. 

 

A Metric for Insider Attacks (heading level 2) 

Metric LR-5 computes the intrinsic risk of insider attacks, given trust levels granted to 

individuals, role assignments, and the controls in place to restrict access to assets. 



Computing LR-5 requires an estimate of the intrinsic condition of a person’s 

untrustworthiness, which cannot be detected by security tools but can be modeled. We 

assume that organizations create roles, set granted trust levels to persons, assign persons 

to roles, and assign privileges (to access assets) to roles as shown in Figure 7. Roles 

simplify management of privileges because privileges are assigned to roles rather than 

to individual persons and persons are assigned to roles rather than directly to privileges. 

For example, in Figure 7, person A is assigned to both role 1 and role 3, person B is 

assigned to only role 2, and person C is assigned to only role 3. These roles can be 

hierarchical (roles with higher trust levels inherit all the privileges from lower levels).  

 

 
FIGURE 7.  Three users (A, B, and C) have been granted trust levels of high, medium, and low. Each person 
is assigned different roles (which also have required trust levels) that provide access to assets of varying 
value. Two users (A and B) are required in order for either to obtain access to asset 1 because of a 
separation-of-duties rule.  

 
Each person has a granted trust level. A person with a low level of trust should not be 

assigned to a role that comes with privileges to access assets of high value. Figure 7 

provides an example of an appropriate role assignment: person C has low granted trust 

and is assigned to role 3, which provides access to an asset of relatively low value (asset 

2 with a value = $5), while persons A and B have higher trust levels and thus together 

can access an asset of much higher value. The dotted box in Figure 7 indicates that there 

is a separation-of-duties rule for roles 1 and 2: to access asset 1, two different persons 

have to separately perform roles 1 and 2. In this example, person A and person B must 

simultaneously assume roles 1 and 2, respectively, to access asset 1 (akin to a double-key 

lock or double-password system). This multiperson procedure makes it more difficult 

for one malicious insider to access the highly valued asset 1. 

 



 
FIGURE 8.  A Markov process is used to calculate how persons become untrustworthy or trustworthy over 
time. The timelines (top to bottom) show examples of a person who (1) is always trustworthy; (2) is initially 
trustworthy but becomes untrustworthy; and (3) is untrustworthy from the start and leaves an organization 
after launching an insider attack.  

 
To compute the risk from insider attacks, we need to model how persons become 

untrustworthy. We model persons using a Markov process with two states, trustworthy 

and untrustworthy, as shown in Figure 8. This model assumes that persons are either 

trustworthy and will never perform an insider attack or that they are untrustworthy and 

will perform an insider attack. After an initial screening, a fraction of persons are 

untrustworthy (PUntrust) and the remainder are trustworthy (1 − PUntrust). Over time, 

negative life events, such as incurring a large debt or being demoted, can cause a person 

to become untrustworthy (∆Neg). Positive life events, such as receiving a raise or 

recognition at work, can cause an untrustworthy person to become trustworthy (∆Pos). 

The timelines in Figure 8 show some examples of how persons are trustworthy or 

untrustworthy over time. Using the Markov model, we compute the long-term steady-

state probabilities of persons being trustworthy and untrustworthy to compute the 

probability that persons with different granted trust levels are untrustworthy.  

 

Computing insider attack risk can be extremely complex in large enterprises because 

there are so many combinations of user roles, ways users can be untrustworthy, and 

instances of separation of duties. Here, we will use a simple example to illustrate some 

of the important aspects of risk computation and the ways in which mitigations can 

reduce risk. Consider a small company started by one person who has been given access 

to a university professor’s intellectual property valued at $1000. If this person has a 0.05 

probability of performing an insider attack and stealing the intellectual property in one 

year, then the expected insider attack risk is $1000 × 0.05, or $50. If the company grows 

to 10 employees and the probability any one of the employees is untrustworthy is again 

0.05, then the expected loss per year is roughly $400, assuming the employees operate 

independently (Figure 9). This amount will certainly lead to loss of the intellectual 

property after a few years. 

 



 
 

FIGURE 9. All 10 employees in an organization can access the total intellectual property worth $1000.   
 
Compartmentalization is one approach that can reduce the risk of insider attacks (Figure 

10). It involves breaking resources into separate components that are each only accessed 

by one user or role. Compartmentalization is possible if individuals’ roles only require 

access to parts of a high-value resource. With compartmentalization, the $400 risk can be 

reduced back down to $50 per year—the same risk as that when only one person 

accesses the total resource value.  

 

As shown in Figure 11, separation of duties is another approach that can reduce the risk 

of insider attacks. It involves requiring approval from multiple users to access a high-

value resource, such as administrative access to a central database, to all computers in a 

company, or to a machine capable of writing data to a USB storage key or DVD disk. 

Separation of duties can also be used to reduce the $400 risk to roughly $50 per year. In 

this figure, access to the resource can only be provided when two persons agree to give 

permission, preventing a single insider from gaining unauthorized access. Separation of 

duties is often used to reduce fraud but is also being applied in networks because of 

heightened concerns about insider attacks and data exfiltration. 

 

 
FIGURE 10. Compartmentalization of resources can reduce risk of an insider attack. Persons use only the 
part of the resource necessary to perform their roles and no single user accesses the resource in its entirety.  

 
 



 
FIGURE 11. Separation of duties can reduce risk of untrustworthy individuals gaining access to a high-
value resource. In this example, users are separated into two groups (A and B), each containing five persons. 
One person from Group A who can access Role 1 and one person from Group B who can access Role 2 must 
be present to obtain Permission A, which is needed to access the resource.  

 

Future Directions (heading level 1) 
Vulnerability risk analysis needs to expand to include the analysis of complex 

multistage attacks and of approaches that can be used to discover the most effective 

network-wide defensive strategies. Attack graphs can help in the analysis of multistage 

attacks, in which attackers gain an initial foothold on the network and proceed to take 

over the entire network by compromising more and more devices. We have already 

developed tools that perform attack graph analysis on large enterprise networks (e.g., 

[11]) and have begun to construct attack graphs with data from LR-1 to LR-4 metrics. 

Such analyses can identify key insecure network conditions that enable attacks and be 

used to explore the effectiveness of defensive measures.  

 

Further work needs to model the reduction in risk provided by the ability to discover 

and recover from successful breaches using approaches described in critical controls 8, 

and 18-20. We also need an approach that simultaneously estimates the overall risk from 

all types of attacks and accurately determines the effectiveness of complex defense 

strategies. Network simulations that model multiple types of defenses and attacks have 

been initiated. So far, we have modeled only a few attacks and mitigations. Our goal is 

to scale this modeling until all important attacks and mitigations are included in the 

network simulations and it is possible to estimate overall risk over long time intervals 

and to study dynamic attacker and defender models. Such simulations can inform 

strategic decisions in a rapidly varying adversarial environment. 
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