
»

Threat-Based Risk
Assessment for Enterprise
Networks

Richard P. Lippmann and James F. Riordan

Protecting enterprise networks requires continuous risk assessment that automatically

identifies and prioritizes cybersecurity risks, enables efficient allocation of cybersecurity

resources, and enhances protection against modern cyberthreats. Lincoln Laboratory

developed a foundational network security maturity model to guide development of

such risk assessments and has developed practical risk metrics for the most important

cyberthreats. These metrics can be computed automatically and continuously from

security-relevant network data.

Computer networks are under constant cyberattack. In 2013, in one of the

most historically devastating insider attacks, Edward Snowden exfiltrated 1.7

million documents from the National Security Agency [1]. That same year,

the security company Mandiant released a report on the likely Chinese

government–sponsored cyber espionage group APT 1 (for advanced persistent threats),

who stole 100s of terabytes of proprietary information from at least 141 organizations by

maintaining a long-term presence in the victims’ networks [2]. More recently, the

widespread Heartbleed [3] and Shellshock [4] attacks exploited vulnerabilities in

common Internet web and encryption services, and the U.S. Office of Personnel

Management announced the theft of sensitive information, including the Social Security

numbers of 21.5 million individuals, from the background investigation databases for

persons seeking government clearances [5].

Instead of assessing important security risks at large enterprises to make sure that risks

from all current threats are addressed, many organizations adopt a best-practices

approach by installing popular baseline security controls, such as antivirus software and

email spam filters, and scanners that find and patch software vulnerabilities. Because

this approach is not tailored to meet the unique security needs of individual

organizations, resources may be wasted on implementing unnecessary controls while

important threats go unaddressed. Metrics that results from this approach (e.g., counts

of files scanned or of high-severity vulnerabilities) are difficult to interpret because their

relationship to risk from modern threats is unknown.

This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

Distribution A: Public Release

Many organizations also perform some type of qualitative risk assessment in which a list

of threats is considered and the likelihood and impact of each threat is rated on an

ordinal scale from low to high. Threat management involves addressing those threats for

which the likelihood and impact are both high. This approach can be effective when

performed by skilled security practitioners who understand an enterprise network, can

enumerate all threats and their likelihoods, and can accurately assess the effectiveness of

controls against the threats and their expected impacts. Unfortunately, it is difficult to

find such trained practitioners and even skilled security experts can miss key threats or

misunderstand the impact of breaches.

Our goal is to automate and improve the current state of the art in risk assessment.

Using a list of important modern threats, we describe how to compute risk for each

threat and also how to specify the data required to compute risk. We provide an initial

list of threats that can be updated over time to capture recent threat types. The required

data can be gathered online in real time to provide continuous risk assessment. The

resulting risk values can be compared across threats, time, and different enterprises.

The accuracy of this approach should approach that of the best skilled security experts

because we provide a carefully selected list of threats and specify how to compute risk

objectively without relying on unsupported qualitative human judgements.

Modeling and Mitigating Modern Threats (heading level 1)
Recently, security experts from companies, government agencies, and academia joined

forces to create a set of security controls and adversary models specifically focused on

modeling and preventing advanced persistent threats and other current threats. Their

work led to the 20 critical security controls shown in Figure 1 and described in [6].

These controls are prioritized by their capability to provide a direct defense against

attacks. Sub-controls from the first four critical controls constitute most of the so-called

“five quick wins” that have the most immediate impact on preventing common

attacks [6]. The remaining controls provide addition protection against attacks. These

widely used controls are the most effective and specific set of technical measures

available to detect, prevent, respond to, and mitigate damage from current threats. We

have used these critical controls to prioritize the threats that should be addressed in

enterprise networks and to recommend and model controls that should be in place to

mitigate those threats. Metrics we have developed focus on automatically computing

risk for the most important critical control threats, and they directly model the

effectiveness of critical controls that should be in place.

Table 1. 20 Critical Security Controls

Security Metrics (heading level 1)
Lincoln Laboratory has developed 11 security metrics, each of which is associated with a

specific cyberthreat and critical control(s) from the critical controls document [6]. Table 2

lists these metrics, the threat each metric addresses, and the control(s) from Figure 1 that

mitigate each threat. Each metric is assigned a Lincoln Risk (LR) number ranging from

LR-1 to LR-11. The LR-3 metric, for example, is concerned with attackers who search for

and exploit known software vulnerabilities in a network. The risk of these attacks is

reduced when the durations of software vulnerabilities (i.e., the time between when a

vulnerability is first published to when it is removed) are shortened. These durations

can be shortened by performing continuous vulnerability assessment and remediation as

suggested by critical control 4, which includes detecting and patching vulnerabilities

more frequently. The LR-3 metric is discussed further in the “Two Example Metrics”

section.

Table 2. Lincoln Laboratory Security Metrics

Lincoln Risk Threat Mitigating

(LR) number Critical Control(s)

LR-1 Attackers compromise
unauthorized devices

1

LR-2 Attackers compromise
unauthorized or prohibited

software

2, 5, 11

LR-3 Attackers exploit known
software vulnerabilities

4

LR-4 Attackers exploit insecure
configurations

3, 7, 11

LR-5 Attackers launch insider attacks 9, 13, 15, 16

LR-6 Attackers steal credentials and
exploit weak authentication

7, 10, 12, 13, 16

LR-7 Attackers exploit account and
physical access privileges

3, 12

LR-8 Users perform actions that
enable attacks

9

LR-9 Attackers penetrate network
boundaries; sensitive

information exits network
boundaries

7, 11, 13

LR-10 Attackers employ physical
attacks

3

LR-11 Attackers exploit weak or
missing encryption capabilities

6, 7, 13, 15, 17

The first four metrics we developed (LR-1 to LR-4) focus on the same management areas

as the “five quick wins” mentioned above. These metrics prevent common attacks, such

as gaining access to devices via well-known default passwords and accessing computers

remotely by using previously published exploits. They also support higher-numbered

metrics by providing important baseline observations concerning the presence and

characteristics of devices, software, and configurations that exist in a network. Detailed

descriptions of LR-1 to LR-4 are available in Lippmann et al. [7]. The next three metrics

(LR-5 to LR-7) focus on users’ roles, credentials, and accounts, and they cover insider

attacks, credential theft, and attacks that require physical access to victim devices. LR-8

concerns user behaviors that enable attacks, such as providing passwords over the

phone or in response to an unverified email. LR-9 to LR-11 address the boundaries

added to networks to prevent outside attacks, physical attacks against devices, and

access to data on stolen or compromised devices. These 11 metrics cover the highest-

priority attacks and controls listed in [6] that can be automated and computed using

continuous measurements..

Metrics Development (heading level 2)

To develop security metrics, we first develop simple but realistic attack models to guide

the four steps of the processing loop shown in Figure 1. Attack models establish

1. what security conditions must be observed to determine the risk of an attack;

2. how to compute the risk of an attack on the basis of observed security conditions;

3. how to prioritize the risk of an attack across network entities, such as persons,

devices, and accounts; and

4. how to design the network so it is easy for network administrators to take actions

that mitigate risk and to eliminate security conditions that enable attacks.

FIGURE 1. A processing loop required to measure and reduce risk for the threat from each LR metric
requires four steps: (1) observe relevant network security conditions, (2) compute the risk of threats to the
network in its current state, (3) prioritize risks and decide on actions to mitigate risks, and (4) take action to
mitigate risks or improve the risk computation and mitigation processes. Attack models provide the
foundation for each of these steps.

The first step of the processing loop in Figure 1 is to observe relevant security conditions

in a network. For managing software vulnerabilities (LR-3), network vulnerability

scanners could be used to find vulnerable servers. Observation techniques for managing

persons (LR-5 to LR-8) include accessing personnel records for logins (and attempted

logins) and for screening, indoctrination, and training to determine granted trust levels

and user roles.

The second step of the processing loop is to use these observations to compute risk. For

LR-3, this step involves determining the duration of known vulnerabilities and the

probability that attackers observe and exploit these vulnerabilities to compromise

devices. For managing trust (LR-5), this step consists of analyzing user trust levels, role

assignments, accounts, and approaches that improve the security of user authentication

(such as two-factor authentication) to compute the overall systemic risk of insider

attacks.

The third step of the processing loop is to prioritize risks according to their risk values

calculated in step two and to prioritize mitigation actions on the basis of their

effectiveness and other practical concerns (e.g., the cost of the mitigations). Finding the

most effective approach to mitigate risk involves performing offline analyses using the

risk computation capability of step two to compare the effectiveness of different actions.

Mitigations range from immediate rapid fixes, such as patching software, to longer-term

changes, such as adding separation of duties in which two persons are required to

complete a task that provides access to a high-value asset (e.g., a bank vault).

The fourth step of the processing loop is to mitigate the risks prioritized in step three.

Mitigations can be displayed on a local dashboard containing counts of defects or

security conditions that must be remediated to reduce risk. In addition, specifications,

such as lists of computers allowed on a network, may have to be refined because of the

deployment of new computers. Similarly, observations, such as lists of computers

actually on a network, may have to be corrected as a result of inaccurate automated

measurements.

A Maturity Model with Three Metric Components (heading

level 1)

The maturity model shown in Figure 2 is essential to our overall approach of improving

enterprise security. This model allows (1) the gradual introduction and use of processes

and tools required to assess risk, (2) the capability to observe security-relevant data, and

(3) the capability to estimate risk and apply mitigations to reduce risk. The security

metrics listed in Table 2 can only be used to accurately compute risk after the first two

levels of metric development shown in Figure 2 are completed.

FIGURE 2. The notional curve in this security maturity model suggests that network security increases (and
risk of attacks decreases) as a particular metric is further developed.

For each metric in Table 1, we develop three metric components during three maturity

metric phases as seen in Figure 2. In the Level 1 maturity phase, foundational or checklist

metric components are developed. These components determine whether all essential

tools and procedures are in place to support continuous monitoring. During this phase,

system administrators develop an understanding of their systems and the most

potentially damaging threats. They begin to implement security control processes as

described in Figure 1, add tools to gather data, and develop mitigations. For LR-3,

administrators would continuously monitor all devices and identify known software

vulnerabilities on those devices. A control process, such as patching, would be initiated

to eliminate the vulnerabilities. Even if security measures are not directly implemented

in this stage, there is a significant security impact because improved network hygiene

improves administrators’ understanding of the network topology and enhances their

visibility of network security conditions.

In the Level 2 maturity phase, capability metric components are developed. These

components determine whether the coverage, frequency, and accuracy of observations

are sufficient to estimate risk. Specifications, such as lists of the types of software

allowed on each device or of the correct configurations of each device, are also created in

this phase. Until the values of capability metrics are low (indicating good capabilities),

risk cannot be computed accurately. Security improves slowly during this stage, as

indicated by the slope of the graph in Figure 2. This slow progression is due to further

discovery and repair of security issues as coverage improves across the entire network,

specifications are developed, previously missed short-duration security conditions are

identified because of more frequent observations, and security conditions are accurately

measured.

In the final maturity phase, Level 3, operational risk metric components are developed.

These components compute the actual risk associated with a given threat. They can be

used to determine which devices, software packages, misconfigurations, vulnerabilities,

persons, or other security conditions are responsible for the greatest increase in risk.

With this information, network personnel can take actions that reduce risk. Operational

risk metrics continuously assess the risk of the most important threats in real time by

estimating the impact caused by attackers directly compromising assets (e.g.,

proprietary information, hardware, services).

The risk score for any threat is calculated by multiplying the value of assets under attack

by the probability that an insider or outsider attack succeeds (see equations in “A Metric

for Software Vulnerabilities” section). In cases of fraud and theft, the asset value is easy

to assign because it is simply the total value of money or goods stolen. In most cases,

however, the asset value is assigned subjectively and is related to how an attack would

impact the performance of an organization or persons that rely on or are affected by that

organization. Values must be assigned for attacks that compromise an asset’s

confidentiality, integrity, or availability. To achieve low operational risk scores, critical

assets must be assigned high values and be provided with strong protective controls.

For example, the confidentiality of details supplied by persons to obtain Top Secret

clearances might be violated by foreign governments who exfiltrate this information and

use it to identify undercover U.S. agents posted to their countries [8]. Databases

containing such details should qualitatively be assigned a high value because stolen data

could compromise an agent’s usefulness or life. In other cases, network services should

be assigned a high value. Denial-of-service attacks are often used to render network

services inaccessible. The Department of Veterans Affairs, the Social Security

Administration, the Federal Emergency Management Agency, and other agencies that

provide government services directly to citizens need to implement strong protective

controls against these attacks to ensure that network services can be accessed, especially

during emergencies.

Metric Components Design Guidelines (heading level 2)

Three key principles guide metric development: each metric must (1) be simple to

understand and implement, (2) practically estimate the risk of one specific important

threat, and (3) motivate actions to reduce the risk of that threat.

Maintaining simplicity and practicality and estimating the risk of a specific threat are

fairly straightforward tasks. Simple risk prediction models that utilize existing security

tools to gather data are used when possible. The order in which we develop the metrics

is chosen with practicality and effectiveness in mind: earlier metrics provide situation

awareness and baseline information, such as lists of devices and their software, required

by later metrics. For example, metric LR-1 provides a device list that is used by all other

higher-numbered metrics; LR-2 provides a device software list used by metrics LR-3 and

LR-4.

To motivate system administrators to improve security controls, metrics must be

objective, well defined, and visible to all involved in the security process so the metric

scores can be understood to be fair. We adopted the convention that high scores for

metrics are bad and low scores (near 0%) are good; when continuous vulnerability

monitoring was implemented at the U.S. Department of State, this scoring system was

shown to be more likely to encourage administrators to improve their performance than

the 0% (bad) to 100% (best) test scoring traditionally used in schools [7]. Two other

motivating features are (1) incremental improvements in security controls lead to

incremental improvements in metrics and (2) the overall difficulty of obtaining a low

(good) metric score increases slowly over time as metric parameters change. Initially, it

can be relatively easy to get a good score; however, as an enterprise’s capabilities

improve and as response times to mitigate insecure conditions shorten, obtaining a good

score can become more difficult. Slowly increasing the difficulty of obtaining a low

metric score should lead to long-term overall security improvements because system

administrators will have to continually improve security controls and processes in order

to maintain a low score.

Two Example Metrics (heading level 1)

The following sections provide detailed examples of two metric types. One metric (LR-3)

focuses on attackers who detect and exploit known software vulnerabilities. The risk of

attack that the metric computes could, at least conceptually, be reduced to zero if all

known vulnerabilities are immediately patched. Obtaining good low scores for this

metric requires continuously observing all known vulnerabilities and eliminating them

as soon as possible. The second metric (LR-5) focuses on insider attackers who use

allowed privileges to exfiltrate data. The risk of insider attacks can never be eliminated

because any person can decide to act maliciously at any time. Obtaining good low scores

for this metric involves monitoring security screenings, roles, and privileges for all

persons with access to a network and then computing the expected risk. This

computation takes into account security measures, such as compartmentalization (a

network is broken into separate “compartments” that can be accessed by users only on a

need-to-know basis) and separation of duties.

A Metric for Software Vulnerabilities (heading level 2)

LR-3 is concerned with managing known software vulnerabilities. Figure 3 shows the

two attack models that we developed for this metric. In server-side attacks, external

attackers scan for vulnerabilities in web, database, email, and other servers open to the

Internet. Once found, these vulnerabilities are exploited by attackers to gain control of

the servers. In the more common client-side attacks, attackers embed malware in

webpages, images, documents, movies, or other content and place that content on

websites or transmit it via email or social media networks. When users visit websites

infected with malware or view content with embedded malware, their computers are

compromised because of vulnerabilities in the client-side software used to display the

remote content. Persons can be lured to malicious websites owned by attackers (spear-

phishing attacks), or attackers can infect websites that persons are known to visit

(watering-hole attacks).

FIGURE 3. Attack models for server- and client-side attacks were developed in support of the LR-3 metric.
In a server-side attack (left), remote attackers find and compromise internal servers with known
vulnerabilities. In a client-side attack (right), users download remote content with embedded malware
(often from a website) and view the content with a browser or other client software with known
vulnerabilities that are exploited by the malware.

Client-side attacks depend on the occurrence of client-side vulnerabilities in web

browsers and other client software used to view remote content. The risk of attacks is

reduced when windows of vulnerability (i.e., the durations the vulnerabilities are

present) are minimized. This minimization can be accomplished by patching

vulnerabilities whenever a patch is released or by rapidly detecting vulnerabilities and

performing targeted patching of those vulnerabilities. Figure 4 illustrates the large

number of client-side vulnerabilities in a popular PDF viewer (Acroread) and web

browser (Firefox) that were discovered between 2007 and 2012. Persons browsing the

Internet during this time could have been vulnerable to compromise if they encountered

malware exploiting vulnerabilities that had not been rapidly detected and patched by

defenders. In general, there are fewer server-side vulnerabilities per year because server-

side software is generally more mature and less complex than are modern browsers and

other content-viewing client software.

FIGURE 4. These cumulative five-year histograms plot the client-side vulnerabilities for the popular PDF
viewer Acroread (left) and the web browser Firefox (right). Per year, there were roughly 40 to 60
vulnerabilities in each software product. Each vulnerability is represented by a unique horizontal line, the
length of which represents the time interval from when the vulnerability is publicly announced to when a
patch is made available by the software developer. Longer horizontal lines indicate instances when
vulnerabilities are announced without patches, but a patch is subsequently made available. Narrow vertical
lines correspond to vulnerabilities that are simultaneously announced with patches.

The foundational and capability metric components of LR-3 are low when all devices,

client software, and servers are identified and when there is an up-to-date mechanism

for rapidly detecting and then mitigating vulnerabilities. Instead of providing detailed

equations for foundational and capability metric components, we instead focus on the

operational metric and assume defenders know precisely when vulnerabilities are first

present and when they are eliminated. As noted above, the operational or risk metric for

LR-3 requires that each device be assigned an asset value related to the impact of a

successful attack on that device. The operational metric (OM) for each device is then the

product of the asset value (AV) times the probability that the device is compromised

over a specified time window (PDeviceCompromised):

 (1)

Focusing only on server-side vulnerabilities for simplicity, we say the probability that a

device with a single vulnerability 𝑣 is compromised is equal to the probability that the

vulnerability is observed or discovered by an adversary (PObserved) times the probability

that the device is compromised by the adversary, given that the vulnerability is

observed when the adversary has an exploit for that vulnerability, as shown in Equation

(2):

 (2)

We assume the probability that a device with vulnerability 𝑣 is compromised is related

to the Common Vulnerability Scoring System (CVSS) score [9] assigned by the National

Institute of Standards and Technology to each vulnerability listed in the National

Vulnerability Database [10]. Specifically, we assume the probability that an attacker

compromises a device with an observed vulnerability v is equal to the squared value of

the CVSS score for that vulnerability, which ranges from 0.0 (low severity) to 10.0 (high

severity), after it is normalized to range from 0 to 1:

 (3)

Because the low range of CVSS scores is not frequently used, this computation leads to a

more uniform and realistic distribution of compromise probabilities than the

distribution obtained by simply normalizing CVSS scores. We understand that the CVSS

score was not intended for this purpose, but it is the only widely available measure

available across vulnerabilities, and the single highest-weighted term used to compute

each CVSS score does, in fact, directly assesses the exploitability of each vulnerability [9].

The probability that an attacker observes a vulnerability 𝑣 present on a server for a

window of duration 𝑤 depends on how often the attacker scans the server. If attackers

scan a server every Δ days with exponential Poisson1 interarrival times, then the

probability that a vulnerability is observed is given by Equation (4) and shown in Figure

5. This probability is low when the average interarrival times between scans are large

relative to the vulnerability window and increases to 1.0 as the average interarrival

times become much smaller than the vulnerability window.

 (4)

1
 More formally, we assume that attacker observations form a Poisson process in which (1) the time between

each pair of consecutive observations has an exponential distribution with parameter and (2) each

interarrival time is independent of all the others. This assumption is true of many internet phenomena, such

as the times between user-initiated bursts of requests from a web browser and between requests for a

particular document at a web server.

https://en.wikipedia.org/wiki/Exponential_distribution

FIGURE 5. The probability that an attacker who scans server software every Δ days with exponential
Poisson interarrival times detects a vulnerability present for w days increases slowly to 1.0 as the average
interval between scans becomes much less than the duration of the vulnerability.

Equation (2) can be used to compute the probability of device compromise only when

there is one vulnerability on a server. Computing the probability of device compromise

when multiple vulnerabilities are present, as is often the case, requires an extended

attacker model that specifies the number of exploits an attacker has attempted and

successfully implemented. In the stealthy attacker model, an attacker attempts to exploit

only the vulnerability with the highest probability of compromise (i.e., the vulnerability

with the highest CVSS score). Another attacker model is a noisy attacker who tries an

exploit for every vulnerability on the device until an exploit succeeds. We can compute

risk for both of these attacker models and variations of them. If we assume that a noisy

attacker tries an exploit for every vulnerability on a device and that the probabilities of

success for every exploit are independent of each other, then the probability of

compromising a device with multiple vulnerabilities (Vulns) is given by Equation (5).

This probability rises as the number of vulnerabilities increases and as the probability of

device compromise for individual vulnerabilities increases.

 (5)

Equations (1) through (5) support the computation of the LR-3 operational metric for

server-side attacks on one device. Across a network, the operational metric is simply the

sum of the individual operational metrics for each device on the network. Computations

are similar for client-side attacks, except the observation interval is the interval between

exposures to client-side exploits, and the equations use client-side instead of server-side

vulnerabilities.

A simulation experiment demonstrated the effect of rapid patching on the LR-3

operational metric. The simulation contained 100 hosts, each with an asset value

arbitrarily set to 1.0 and running only the Firefox web browser. We made the rather

pessimistic assumptions that persons browse an infected website once every 30 days and

that every infected website contains exploits for all known Firefox vulnerabilities. We

also assumed that attackers require one week after the publication of a vulnerability to

develop an exploit and place the exploit on websites. We used actual vulnerabilities

announced in 2012 [10], including their dates and CVSS scores, to populate the

simulation. The results of the simulation are shown in Figure 6; each plot shows the

windows for all vulnerabilities. Vulnerabilities in the left plot are for an enterprise in

which all current Firefox patches are applied every 5 days, while those in the right plot

are for an enterprise in which patches are applied only every 30 days. The vertical bars

represent several vulnerabilities that were announced on the same day, with the width

of the bars indicating the vulnerability window. The operational risk metric represents

the expected number of hosts compromised during 2012 and can be calculated by

applying Equations (1) to (5) to client-side vulnerabilities as described in [7]. When

patches are applied every 5 days, the expected number of hosts compromised is 4.9 over

the year. Because each host is valued as 1, the operational risk metric has the low value

of 4.9. When patches are applied only every 30 days, the expected number of hosts

compromised is 98.6, a very high value. These results illustrate how sensitive LR-3’s

operational risk metric is to vulnerability windows and patching frequency.

FIGURE 6. The LR-3 operational risk metric was computed with 5-day (left) and 30-day (right) patching
policies for vulnerabilities announced in 2012. As indicated by the width of the vertical bars, the
vulnerability windows are much larger when patches are applied only every 30 days as opposed to every 5.

A Metric for Insider Attacks (heading level 2)

Metric LR-5 computes the intrinsic risk of insider attacks, given trust levels granted to

individuals, role assignments, and the controls in place to restrict access to assets.

Computing LR-5 requires an estimate of the intrinsic condition of a person’s

untrustworthiness, which cannot be detected by security tools but can be modeled. We

assume that organizations create roles, set granted trust levels to persons, assign persons

to roles, and assign privileges (to access assets) to roles as shown in Figure 7. Roles

simplify management of privileges because privileges are assigned to roles rather than

to individual persons and persons are assigned to roles rather than directly to privileges.

For example, in Figure 7, person A is assigned to both role 1 and role 3, person B is

assigned to only role 2, and person C is assigned to only role 3. These roles can be

hierarchical (roles with higher trust levels inherit all the privileges from lower levels).

FIGURE 7. Three users (A, B, and C) have been granted trust levels of high, medium, and low. Each person
is assigned different roles (which also have required trust levels) that provide access to assets of varying
value. Two users (A and B) are required in order for either to obtain access to asset 1 because of a
separation-of-duties rule.

Each person has a granted trust level. A person with a low level of trust should not be

assigned to a role that comes with privileges to access assets of high value. Figure 7

provides an example of an appropriate role assignment: person C has low granted trust

and is assigned to role 3, which provides access to an asset of relatively low value (asset

2 with a value = $5), while persons A and B have higher trust levels and thus together

can access an asset of much higher value. The dotted box in Figure 7 indicates that there

is a separation-of-duties rule for roles 1 and 2: to access asset 1, two different persons

have to separately perform roles 1 and 2. In this example, person A and person B must

simultaneously assume roles 1 and 2, respectively, to access asset 1 (akin to a double-key

lock or double-password system). This multiperson procedure makes it more difficult

for one malicious insider to access the highly valued asset 1.

FIGURE 8. A Markov process is used to calculate how persons become untrustworthy or trustworthy over
time. The timelines (top to bottom) show examples of a person who (1) is always trustworthy; (2) is initially
trustworthy but becomes untrustworthy; and (3) is untrustworthy from the start and leaves an organization
after launching an insider attack.

To compute the risk from insider attacks, we need to model how persons become

untrustworthy. We model persons using a Markov process with two states, trustworthy

and untrustworthy, as shown in Figure 8. This model assumes that persons are either

trustworthy and will never perform an insider attack or that they are untrustworthy and

will perform an insider attack. After an initial screening, a fraction of persons are

untrustworthy (PUntrust) and the remainder are trustworthy (1 − PUntrust). Over time,

negative life events, such as incurring a large debt or being demoted, can cause a person

to become untrustworthy (∆Neg). Positive life events, such as receiving a raise or

recognition at work, can cause an untrustworthy person to become trustworthy (∆Pos).

The timelines in Figure 8 show some examples of how persons are trustworthy or

untrustworthy over time. Using the Markov model, we compute the long-term steady-

state probabilities of persons being trustworthy and untrustworthy to compute the

probability that persons with different granted trust levels are untrustworthy.

Computing insider attack risk can be extremely complex in large enterprises because

there are so many combinations of user roles, ways users can be untrustworthy, and

instances of separation of duties. Here, we will use a simple example to illustrate some

of the important aspects of risk computation and the ways in which mitigations can

reduce risk. Consider a small company started by one person who has been given access

to a university professor’s intellectual property valued at $1000. If this person has a 0.05

probability of performing an insider attack and stealing the intellectual property in one

year, then the expected insider attack risk is $1000 × 0.05, or $50. If the company grows

to 10 employees and the probability any one of the employees is untrustworthy is again

0.05, then the expected loss per year is roughly $400, assuming the employees operate

independently (Figure 9). This amount will certainly lead to loss of the intellectual

property after a few years.

FIGURE 9. All 10 employees in an organization can access the total intellectual property worth $1000.

Compartmentalization is one approach that can reduce the risk of insider attacks (Figure

10). It involves breaking resources into separate components that are each only accessed

by one user or role. Compartmentalization is possible if individuals’ roles only require

access to parts of a high-value resource. With compartmentalization, the $400 risk can be

reduced back down to $50 per year—the same risk as that when only one person

accesses the total resource value.

As shown in Figure 11, separation of duties is another approach that can reduce the risk

of insider attacks. It involves requiring approval from multiple users to access a high-

value resource, such as administrative access to a central database, to all computers in a

company, or to a machine capable of writing data to a USB storage key or DVD disk.

Separation of duties can also be used to reduce the $400 risk to roughly $50 per year. In

this figure, access to the resource can only be provided when two persons agree to give

permission, preventing a single insider from gaining unauthorized access. Separation of

duties is often used to reduce fraud but is also being applied in networks because of

heightened concerns about insider attacks and data exfiltration.

FIGURE 10. Compartmentalization of resources can reduce risk of an insider attack. Persons use only the
part of the resource necessary to perform their roles and no single user accesses the resource in its entirety.

FIGURE 11. Separation of duties can reduce risk of untrustworthy individuals gaining access to a high-
value resource. In this example, users are separated into two groups (A and B), each containing five persons.
One person from Group A who can access Role 1 and one person from Group B who can access Role 2 must
be present to obtain Permission A, which is needed to access the resource.

Future Directions (heading level 1)
Vulnerability risk analysis needs to expand to include the analysis of complex

multistage attacks and of approaches that can be used to discover the most effective

network-wide defensive strategies. Attack graphs can help in the analysis of multistage

attacks, in which attackers gain an initial foothold on the network and proceed to take

over the entire network by compromising more and more devices. We have already

developed tools that perform attack graph analysis on large enterprise networks (e.g.,

[11]) and have begun to construct attack graphs with data from LR-1 to LR-4 metrics.

Such analyses can identify key insecure network conditions that enable attacks and be

used to explore the effectiveness of defensive measures.

Further work needs to model the reduction in risk provided by the ability to discover

and recover from successful breaches using approaches described in critical controls 8,

and 18-20. We also need an approach that simultaneously estimates the overall risk from

all types of attacks and accurately determines the effectiveness of complex defense

strategies. Network simulations that model multiple types of defenses and attacks have

been initiated. So far, we have modeled only a few attacks and mitigations. Our goal is

to scale this modeling until all important attacks and mitigations are included in the

network simulations and it is possible to estimate overall risk over long time intervals

and to study dynamic attacker and defender models. Such simulations can inform

strategic decisions in a rapidly varying adversarial environment.

Acknowledgments
We would like to thank Kimberly Watson, George Moore, and John Streufert for their

support and insights into cybersecurity. We would also like to thank the many Lincoln

Laboratory staff members who have contributed to this effort, including David Bigelow,

Thomas Hobson, Robert Lychev, Sebastian Neumayer, Shannon Roberts, Era Vuksani,

Neal Wagner, David Weller-Fahy, and Tamara Yu.

References

1. G. Greenwald, No Place to Hide: Edward Snowden, the NSA, and the U.S.
Surveillance State. London: Hamish Hamilton, 2014.

2. “APT1: Exposing One of China's Cyber Espionage Units,” Mandiant

Intelligence Center Report, 2013, pp. 1–74.

3. H. Kelly, “The ‘Heartbleed’ Security Flaw That Affects Most of the Internet,”
CNN website, 9 Apr. 2014, available at
www.cnn.com/2014/04/08/tech/web/heartbleed-openssl/.

4. N. Perlroth, “Companies Rush to Fix Shellshock Software Bug as Hackers

Launch Thousands of Attacks,” The New York Times, 26 Sept. 2014, available at
www.bits.blogs.nytimes.com/2014/09/26/companies-rush-to-fix-shellshock-
software-bug-as-hackers-launch-thousands-of-attacks/?_r=0.

5. U. S. Office of Personnel Management, “Cybersecurity Resource Center,

Cybersecurity Incidents”, available at
https://www.opm.gov/cybersecurity/cybersecurity-incidents/.

6. “The Critical Security Controls for Effective Cyber Defense,” version 5.0,

Council of CyberSecurity, SANS Institute, available at
www.sans.org/media/critical-security-controls/CSC-5.pdf.

7. R.P. Lippmann, J.F. Riordan, T.H. Yu, and K.K. Watson, “Continuous Security
Metrics for Prevalent Network Threats: Introduction and First Four Metrics,”
MIT Lincoln Laboratory Project Report IA-3, 22 May 2012, available at
https://www.ll.mit.edu/mission/cybersec/publications/publication-
files/full_papers/2012_05_22_Lippmann_TechReport_FP.pdf.

8. M. Mazzetti and D.E. Sanger, “U.S. Fears Data Stolen by Chinese Hacker
Could Identify Spies,” The New York Times, 24 July 2015, available at
http://www.nytimes.com/2015/07/25/world/asia/us-fears-data-stolen-by-
chinese-hacker-could-identify-spies.html.

9. P. Mell, K. Scarfone, and S. Romanosky, “CVSS: A Complete Guide to the

Common Vulnerability Scoring System Version 2.0,” National Institute of
Standards and Technology, June 2007, pp. 1–23, available at
www.first.org/cvss/cvss-v2-guide.pdf.

10. “National Vulnerability Database,” National Institute of Standards and

Technology, 2015, available at https://nvd.nist.gov/.

11. K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling Modern
Network Attacks and Countermeasures Using Attack Graphs,” Proceedings of
the Annual Computer Security Applications Conference, 2009, pp. 117–126.

http://bits.blogs.nytimes.com/2014/09/26/companies-rush-to-fix-shellshock-software-bug-as-hackers-launch-thousands-of-attacks/?_r=0
http://bits.blogs.nytimes.com/2014/09/26/companies-rush-to-fix-shellshock-software-bug-as-hackers-launch-thousands-of-attacks/?_r=0
http://www.nytimes.com/2015/07/25/world/asia/us-fears-data-stolen-by-chinese-hacker-could-identify-spies.html
http://www.nytimes.com/2015/07/25/world/asia/us-fears-data-stolen-by-chinese-hacker-could-identify-spies.html

About the Authors

Richard P. Lippmann is a Lincoln Laboratory Fellow working in the Cyber

Analytics and Decision Systems Group. He joined Lincoln Laboratory in 1981.

His research interests include aids for the hearing impaired, speech recognition,

pattern classification, neural networks, and cybersecurity. He has taught three

courses on machine learning; has been an IEEE Distinguished Lecturer; won

the first IEEE Signal Processing Magazine Best Paper Award for an early article

on neural networks; and has authored or coauthored more than 100 papers on

topics including speech recognition, machine learning, and cybersecurity. He

served as the program chair of the Research in Attacks, Intrusions, and Defenses workshop; the

Neural Information Processing Systems (NIPS) annual conference; and the NIPS workshop on

Machine Learning in Adversarial Environments. He has participated in four national-level

government studies on cybersecurity. He received a bachelor’s degree in electrical engineering

from the Polytechnic Institute of Brooklyn in 1970 and a doctoral degree in electrical engineering

from MIT in 1978.

James F. Riordan is a technical staff member in the Cyber Analytics and

Decision Systems Group. His research interests include operational security,

applied cryptography, risk assessment, resilient computing, and the semantic

web. Prior to joining the Laboratory in 2009, he was a researcher at the IBM

Research Laboratory in Zurich, Switzerland, for 12 years. During this time, he

led numerous security-related projects on topics ranging from mobile

computing to intrusion detection to web-centric trust enhancement, was

named an IBM Master Inventor, and served on the executive board of the

European Union’s Resilient Computing Network of Excellence. He received a bachelor’s degree

in mathematics from the University of Massachusetts at Amherst in 1990 and a doctoral degree in

mathematics from the University of Minnesota in 1997. While pursuing his doctoral studies, he

was a member of the Architecture, Research, and Technology Group at the Secure Computing

Corporation and a consultant to Counterpane Internet Security.

.

