
Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Technical Report
1199

Knowledge Query Language (KQL)

S.K. Damodaran

Prepared for the Assistant Secretary of Defense for Research and Engineering (ASD R&E)
under Air Force Contracts No. FA8721-05-C-0002 and FA8702-15-D-0001.

Distribution A: Public Release; unlimited distribution

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and
development center operated by Massachusetts Institute of Technology. This material is based on
work supported by the Assistant Secretary of Defense for Research and Engineering (ASD R&E)
under Air Force Contracts No. FA8721-05-C-0002 and FA8702-15-D-0001. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of ASD R&E.

© (2016) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013
or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are
defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate any copyrights that exist
in this work.

Knowledge Query Language (KQL)

S.K. Damodaran
Group 59

TBD 2016

Massachusetts Institute of Technology

Lincoln Laboratory

Technical Report 1199

Lexington Massachusetts

This page intentionally left blank.

 iii

EXECUTIVE SUMMARY

Currently, queries for data retrieval from non-Structured Query Language (NoSQL) data stores are
tightly coupled to the specific implementation of the data store implementation, making portability of the
queries or query-dependent algorithms difficult. This report introduces an ontological declarative
approach that is independent of the storage content and format for querying NoSQL or relational data
stores. This approach uses address expressions (or A-Expressions) embedded in commonly used query
languages such as Structured Query Language (SQL). The declarative approach makes the queries
portable, and results in several advantages over the existing approaches to querying, especially when the
data is semi-structured, and when the data sources may change over time. Cyber event logs are examples
of such data sources. When the query is independent of the underlying physical data sources, having
provenance information on the query results becomes important to impart necessary context, and ensure
trust in the query results returned. This declarative approach is made possible through the use of a
knowledge registry. In this report, we discuss embedding A-Expressions in the widely used SQL,
resolving A-Expressions using the ontology implemented in a knowledge registry, and returning query
results with provenance information.

This page intentionally left blank.

 v

ACKNOWLEDGMENTS

The author would like to express his gratitude to Alexia Schulz for her continued support during the
development of A-Expressions and its exposition, Tamara Yu for initial collaboration on knowledge
registry in the context of LLCySA project, David O’Gwynn for implementing an early version of the
knowledge registry in the tool he developed, and Pedro Colon-Hernandez who, as an intern, completed a
reference implementation of KQL queries over a MongoDB data store. The author would also like to
thank Stephanie Mosely and Jerry Sniegocki for help with the editing of this document.

This page intentionally left blank.

 vii

TABLE OF CONTENTS

Page

Executive Summary iii	

Acknowledgments v	

List of Figures ix	

1. INTRODUCTION 1	

2. DETAILED DESCRIPTION 3	

2.1	 Registry Ontology 6	
2.2	 Dimension 7	
2.3	 Dimension Enumeration 8	
2.4	 Virtual Dimension 8	
2.5	 Dimension Set 9	
2.6	 Tags and Tag Schemes 9	
2.7	 Dimension Set Reachability through Data Operators 10	
2.8	 Address Expressions or A-Expressions 11	
2.9	 Components of A-Expressions and Their Evaluation 12	
2.10	 Examples of A-Expressions 13	
2.11	 Composing A-Expressions 15	
2.12	 Implementation of A-Expression Ontology 16	
2.13	 A-Expression Evaluation Algorithms 19	
2.14	 Qualifying by Time Period with . Operator 23	
2.15	 Reachability in A-Expressions 25	
2.16	 Using A-Expressions in Queries 26	

3. KQL QUERY 27	

3.1	 Provenance Recording 29	

4. ADDITIONAL A-EXPRESSION EXAMPLES 33	

4.1	 Dimension and * Operator 33	
4.2	 DimensionSet and / Operator 33	

 viii

TABLE OF CONTENTS
(Continued)

Page

4.3	 Tags and Tag Schemes 34	
4.4	 Reachability Operator 37	

5. CONCLUSION 39	

Appendix A: A-Expression Parsing Rules 41	

Bibliography 47	

 ix

LIST OF FIGURES

Figure Page
No.

1 Traditional query processing. 3

2 Knowledge registry-based querying. 4

3 Address expression-based querying. 4

4 Internal pocessing of AQP. 5

5 Registry ontology. 7

6 A concrete example. 8

7 Derived dimensions. 11

8 Table, field, dimension, dimension set, tag, tag scheme. 14

9 Parse tree for input A-Expression. 28

10 Parse tree for an output A-Expression. 28

11 Provenance example. 30

12 Netflow and proxy tables. 33

13 A single tag scheme. 34

14 Two tag schemes. 35

15 Another tag example with a single tag scheme. 35

16 Another tag example with two tag schemes. 36

17 Reachability operator example. 37

This page intentionally left blank.

 1

1. INTRODUCTION

An example of a modern distributed key/value store is Google’s BigTable [1]. Big Table is best
described as a sparse, distributed multidimensional sorted map. Unlike a relational database, BigTable has
no multicolumn primary keys or constraints. The lack of a table schema works well when storing and
retrieving unstructured data, such as documents. However, when semi-structured data such as event logs
are stored in key/value stores, the row-key of a table is used to retrieve data in string format from the
key/value store. Currently, queries for retrieval are tightly coupled to the specific implementation of the
key/value store implementation, making portability of the queries or query-dependent algorithms difficult.
The querying problem becomes much more complex when the data sources from which data is collected
are subject to change, as in the case of cyber data sources. For example, new data sources may be added
with only some of the fields of another data source log record. An approach for querying that is
independent of the storage content and format becomes necessary under these circumstances. Also, when
the query is independent of the underlying physical data sources, having provenance information on the
query results becomes important to ensure trust in the query results returned.

We describe in this report address expressions, or A-Expressions, for storage-independent
addressing of information stored in a data store, embedding A-Expressions in the widely used Structured
Query Language (SQL), resolving A-Expressions using an ontology, and returning query results with
provenance information. We describe in detail the mechanisms used by A-Expressions to resolve to
columns and tables in a data store. The address expression may be used in ad hoc queries or embedded
queries to retrieve contents from a key/value data store. Our addressing scheme offers several benefits
stemming from the independence of the addressing scheme from the storage content and format.

This page intentionally left blank.

 3

2. DETAILED DESCRIPTION

Figure 1 describes a simplified view of traditional query processing using data stores [2]. In circled
step 1, a query is passed from an Analytics Platform to a Query Parser, which processes the query, and
then passes the parsed query down to a Query Executor (step 2). Query Executor executes the queries
over a data store or a distributed platform of data stores (step 3), and returns the results to the Analytics
Platform (step 4).

Figure 1. Traditional query processing.

The query languages used in these queries can vary, and range from variations of SQL to
specialized languages such as PIG [3] and HIVE [4]. Often, custom program snippets in programming
languages such as Python that directly refer to the physical names of the underlying data store elements
are passed to the Query Parser, which in turn passes these to the Query Executor for execution over the
data store. This approach is very powerful but requires a highly skilled user who is well versed in the
physical data store implementation content and format.

An improved approach using a knowledge registry was proposed in [5]. A knowledge registry is
maintained by a knowledge engineer. In Figure 2, we show a pictorial summary of this approach. In
circled step 1, the query is passed to the Query Analyzer by the user directly, or through an Analytic
Application. In step 2, the query, specified in a custom query language, is analyzed using the contents of
the knowledge registry by Query Analyzer. This analysis consists of mapping the ontology elements in
the query to physical data store elements such as columns and column families in the data store. In step 3,
the mapped query is converted into executable program snippets by the Query Executor, and executed
over the data store. In step 5, the results of the execution are returned to the user.

 4

Figure 2. Knowledge registry–based querying.

In Figure 3, we describe an improved approach to what is depicted in Figure 2. The key aspect of
the improved approach is that the query structure itself is declarative, as opposed to program snippets, and
uses address expressions, or A-Expressions. Such expressions are also embedded in query languages such
as SQL.

Figure 3. Address expression-based querying.

Each circled step in Figure 3 is described below.

Datastore/Database

Knowledge
Registry

Query Analyzer

Query Executor

1

2

3

4

User

Analytics
Platform

5

 5

1. User submits a query with embedded address expressions to A-Expression Query Processor
(AQP).

2. AQP extracts the embedded A-Expressions from the query, and evaluates them using the
ontology stored in the registry, and records provenance information returned from the registry.

3. AQP generates an SQL query based on A-Expression evaluation, and submits to Query Parser.

4. Query Parser parses the query and passes to Query Executor.

5. Query Executor executes the query and returns the results or error(s) if the query cannot be
executed.

6. AQP receives the results, combines with provenance information.

7. AQP returns the results of the query with previously recorded provenance information to the
user for use in analytic application.

Figure 4, below, describes the internal processing within A-Expression Query Processor (AQP)
when some of the processing in Figure 3 occurs. Each numbered item in Figure 4 corresponds to a circled
processing step in Figure 3.

Figure 4. Internal processing of AQP.

 6

1. A query in a query language such as SQL with embedded A-Expressions is submitted by the
user through a Query/Analytics Platform.

2. The A-Expression Query Processor (AQP) checks each of the A-Expressions in the query for
syntactical and semantic validity. If there is any error, then AQP returns errors to the user. AQP
assigns to each A-Expression a unique identifier string, and records the A-Expression, the
corresponding query, tables and fields that would be substituted for the A-Expression in the
original query based on A-Expression evaluation using registry ontology, a unique identifier for
each such substitution or rewriting, and a provenance trail for the evaluation, as shown in
Figure 4. These activities correspond to Step 2 in Figure 3.

3. Rewrite the SQL query with resolved tables and fields from A-Expression evaluation with
registry (Step 2 in Figure 3), and submit the rewritten version of the query, which is a
syntactically correct SQL query, to a SQL query parser (Step 3 in Figure 3).

4. Parser parses the query and query is processed with Query Executor (not shown in Figure 4, but
corresponds to Step 4 in Figure 3).

5. Query Executor executes the query over the data store, and returns the query results to AQP
(not shown in Figure 4, but corresponds to Step 5 in Figure 3).

6. AQP combines the results and the provenance trail for each A-Expression in the query (Step 6
in Figure 3), and presents to the user (Step 7 in Figure 3).

In the following sections we will describe in detail how the processing steps described in Figure 3
and Figure 4 are implemented. In particular, we describe the registry ontology, its implementation, a
description of A-Expression and its evaluation over the ontology, and examples of embedding
A-Expressions in SQL queries.

2.1 REGISTRY ONTOLOGY

Figure 5 describes the registry ontology to support AQP processing described in Figure 3. We
describe here dimension, dimension set, operator, field, and table schema described in [6] that continue to
be used for AQP processing. We also define new ontology elements, tag, tag scheme, virtual dimension,
derived dimension set, and enumerated dimension that will be used to do AQP processing. We describe
below each of the ontology elements that are relevant to AQP processing in detail, including some of the
constraints. Instances of this registry ontology are created for all the data sources that are ingested. These
instances are used for query analysis. We collectively call the instances and the ontology schema
described in Figure 5 as registry ontology for convenience. In some implementations, the instances of
registry ontology are embedded in other components such as AQP, and they may not be explicitly stated.
In fact, the implementation we describe in later sections stores the instance of registry ontology in JSON
files.

 7

Throughout the rest of this report, we use the term field to refer to the physical column of a data
store. A field content is part of a row of storage in the data store. Since our area of application of these
technologies are for log file processing, a row of the data store corresponds to a log file record, and a field
corresponds to an element within the log, such as userid or hostname. We use the term table to describe a
collection of log records or their subsets. One or more column families can be considered tables since a
log record may be stored into a single column family or multiple ones, based on performance
considerations.

Figure 5. Registry ontology.

2.2 DIMENSION

Every field may be assigned a type, an immutable attribute of the field, which may have a specific
semantic interpretation or syntactic structure sensible for the domain in consideration. For example,
IPAddress is a type in cyber log files. We refer to this type as dimension to avoid confusion with data
types in programming languages. The type is used to identify and interpret a column entry. The dimension
of a field is assigned by a user, more specifically by a knowledge engineer, and this mapping between
fields and dimensions is stored in the knowledge registry. In key/value store implementations, in the
absence of any user-assigned dimension, a field may have a single default data type of string. If the data
is stored in relational databases, there may be additional options for default types, such as integer,
assigned to the fields. These data types are not considered dimensions.

Every field typically can have at most one dimension, and once assigned by the user, it is not
changed, though a field may be reinterpreted as a virtual dimension (see below). Multiple fields from the

 8

same or different tables can have the same dimension. For example, in Figure 6, Netflow.Field1 has
dimension Protocol, while Netflow.Field1 and Proxy.Field4 have dimension IPAddress.

Figure 6. A concrete example.

2.3 DIMENSION ENUMERATION

A dimension has an implied or explicit range of values that it can assume. For example, an
IPv4Address has a well-defined range of possible values. When the range of values a dimension can
assume needs to be explicitly enumerated, a dimension enumeration is used to define all such values. For
example, a field may have an ACTION dimension, and only two values (SEND or RECEIVE) can be
valid in this field. This means, if a field has a dimension of ACTION, there are two enumerations, SEND
and RECEIVE.

2.4 VIRTUAL DIMENSION

Often it becomes necessary to reinterpret the contents of a field with additional dimensions. To
address this situation, even though a field may already have an assigned dimension, we use the concept of
virtual dimension to address this requirement. Dimensions can be aggregated to another dimension that
we call virtual dimension. For example, in Figure 6, the URL aggregates to <Protocol, IPAddress, Port>.
This aggregation may be the result of a requirement to assign to a set of dimensions a sequential order.
The sequential ordering specified in virtual dimension is useful when parsing the contents of a new data
source, and parts of the data source content may be interpreted as one or more dimensions. Aggregation
or virtualization of a dimension may also occur due to reinterpretation of the content of a field into
additional dimensions at a later time. For example, in Figure 6, the URL field may previously had a
dimension URL that maps to a single field currently consisting of Field1, Field2, and Field3 in the
Netflow table. It is possible that a need to break the content of the field into Protocol, IPAddress, and

 9

Port, may have arisen subsequently, resulting in URL becoming the virtual dimension consisting of these
fields. However, all fields corresponding to dimensions in a virtual dimension must be in the same table.

The same dimension may be part of multiple virtual dimensions. For example, in Figure 6, the field
sequence <Protocol, IPAddress, Port> is a virtual dimension, URL, while <IPAddress, Port> can be
another virtual dimension, such as BindingAddress.

2.5 DIMENSION SET

Dimensions may be grouped together in a set without implying any sequential ordering among the
dimensions, in contrast to virtual dimensions. Such grouping is supported by the concept of dimension
sets. The concept of dimension set is useful for doing queries without regard to where its constituent
dimensions are stored. For example, in Figure 6, DimensionSet1 has dimensions of IPAddress, Port, and
Protocol with no implied order or physical contiguity of data corresponding to these dimensions. Note
that a dimension set may be defined corresponding to a virtual dimension, if needed.

As another example, consider how in Figure 8, DimensionSet1 has two dimensions, Dimension1
and Dimension2. DimensionSet2 consists of Dimension1 and Dimension3. Note that since Field4 and
Field5 have the same dimension, Dimension3, Dimension3 is only included once in DimensionSet2.

A dimension set does not need to correspond to any existing table. Dimensions in a dimension set
also need not correspond to dimensions of any existing fields in a table, though it may be convenient to
do so in the early stages of a development of a knowledge registry for a data store. Instead of making
dimension sets map to the existing fields in tables, the users can specify dimension sets that would make
sense from the point of view of the user who specifies queries within a specific domain. In addition, the
term DimensionSet itself may be different in different domains. For example, in the domain of Cyber
Events, these dimension sets may be called Events. House Listing and Apartment Listing may be
dimension sets in the domain of Real Estate.

2.6 TAGS AND TAG SCHEMES

Tags have been widely used as a means of categorizing and retrieving unstructured data. Personal
tags allow categorizing data in terms meaningful to a person. A tag is a keyword, or qualifier, assigned to
a piece of information. A tag is a kind of metadata that helps describe an item and allows it to be found
again by browsing, searching, or querying. A dimension is analogous to a noun, whereas a tag is
analogous to an adjective. Tags may be chosen informally by the item’s creator or by its viewer, or by the
knowledge engineer, depending on the system. Tags may also be standardized for a set of data items. One
key aspect of tags is that the same item may have multiple tags. A specific user may know of only a
subset of these tags. Tags may also be organized in tag schemes. Tag schemes may be created by
individual users to avoid conflicts with tag schemes created by others, and then shared with others, or
knowledge engineers who may create some standard tag schemes for an organization. Tags within a tag
scheme may have relationships among them, or have no relationships. A common organization of a tag is

 10

a tag cloud where the tags do not have any relationship with each other. Equivalence relationships may be
defined between individual tags, belonging to a single tag scheme or multiple tag schemes, allowing for
substitution of one tag for another in an A-Expression.

A field or table can be assigned tags from one or more tag schemes. When there are no tag schemes
defined in a particular implementation, we assume all tags belong to the same default tag scheme. The
same field or table may be assigned multiple tags from a single or multiple tag schemes. A tag scheme has
a set of tags that may have arbitrarily relationships among them. For example, in Figure 6,
TagScheme1:Src is a tag for Netflow.Field1 and Netflow.Field2. Netflow.Field1 and Proxy.Field5 have
TagScheme2:External as the tag.

2.7 DIMENSION SET REACHABILITY THROUGH DATA OPERATORS

A dimension set can also be represented as a function of one or more dimension sets and a data
operator that operates on the values of the specified dimension sets and/or scalar values. As an example,
consider a COUNT operator that counts the entries with a specific dimension in a field. Note that these
data operators operate on the values stored in tables and fields. In key/value stores, data in dimension sets
are often fused to create another dimension set. This fusion operation is another example of the
aforementioned data operator. The new DimensionSet X that came into existence due to a data operation
on another DimensionSet Y is referred to as derived from DimensionSet Y. A dimension set may also be
derived from multiple dimension sets.

The relationship among input dimension sets and output dimension sets for an operator are stored in
the knowledge registry. The input and output relationships are used to infer the derived from relationship
between dimension sets through the specific data operator.

An example of derivation relationships is shown in Figure 7, where DimensionSet13 is derived
from DimensionSet15 and DimensionSet14. A derived dimension set is semantically equivalent to a
regular dimension set, and is treated as such in A-Expressions.

 11

Figure 7. Derived dimensions.

Figure 7 shows a set of dimension sets related through a set of operators. In Figure 7, all except
DimensionSet15 and Dimension14 are derived dimension sets. The information on which operators led to
the creation of the DimensionSet11 from DimensionSet14 and DimensionSet15 will be stored in the
knowledge registry. It is always possible that any of the dimension sets in Figure 3 could refer to tables
that obtained data directly from sensors or data that was derived from other dimension sets and not a
derived dimension set at all. Therefore, it is important to be able to clearly identify the derived data fields
and tables as distinct from non-derived fields and tables. In Figure 5, the field and table classes have an
attribute, derived, that can be true or false. The derived data is stored in the data store, and the knowledge
registry is updated with appropriate metadata related to the derived data. This report does not address the
confidentiality or privacy concerns that arise from such storage.

2.8 ADDRESS EXPRESSIONS OR A-EXPRESSIONS

In a distributed key/value store, data is stored in tables or column families, and can be retrieved
with keys. The tables have columns, which we refer to as fields in this report. The fields are location
dependent in two ways: (1) every field has a position that is unchangeable within a table in the data store,
and (2) a field can be referenced only with respect to a table because a field is an integral part of a table.
This location dependency makes it very hard to implement generalized queries and ad hoc queries that
only refer to the field names or the table names. This report will define multiple ways to define storage-
independent addresses for the fields, and tables, and how to resolve such addresses to fields in one or
more tables. Queries may use these addresses, which we term A-Expressions, to specify one or more
fields or tables. The resolution of the A-Expression to a set of fields is done over a knowledge registry.
We described an architecture to this resolution is earlier sections. In the rest of this report, we focus on the

 12

details of how such resolution is done. While this report focuses on evaluating A-Expressions over
key/value data stores, the described techniques are not specific to key/value stores. A-Expressions can be
used effectively over other types of data stores such as relational databases, as long as a knowledge
registry is also implemented.

A-Expressions such as IPAddress, where IPAddress is the name of a field, are used to specify all
the data within a field. Queries for a specific subset of data within a field require in addition to the
specification of fields, expressions such as IPAddress=173.1.3.1. In such expressions, any reference to a
field in a table or a reference to a table in any query can be replaced by an A-Expression. However, the
semantics of operators such as = are defined in the query language in which A-Expressions are
embedded; for example, SQL. We discuss examples of using A-Expressions within SQL later in this
report.

2.9 COMPONENTS OF A-EXPRESSIONS AND THEIR EVALUATION

An A-Expression may be constructed using the following types of components: dimension,
dimensionset, tag, tag scheme, and a set of registry operators defined for these components. We refer to
these operators as registry operators because these operators cannot be evaluated over the data in the data
store but only over the ontology stored in the knowledge registry. We describe an example of these
registry operators later in this report. An A-Expression, when evaluated over the data schema in a
knowledge registry, yields a set of tables or fields. An A-Expression does not contain any direct reference
to any table or field. In the subsequent paragraphs, we define these components, registry operators,
multiple examples of A-Expressions, an example implementation of a registry ontology instance, and an
example implementation of the registry operators.

Fields and tags use the syntax of the form Table.Field and TagScheme.Tag respectively to denote
the fact that a field can only be defined relative to a table. similarly, a tag does not have an independent
existence without the tag scheme. The character _ denotes a default tag scheme. ALL refers to all tables,
or all fields in the registry depending on the registry operator context. Below are the registry operators
used in A-Expression.

1. The / registry operator is used to operate on tables and returns tables containing all dimensions
specified as a dimension set, or as a set of dimensions.

2. The * registry operator is used to operate on tables or fields and returns fields matching
dimensions or tags.

3. The . is a registry operator that operates on fields and returns fields that existed specific
durations specified within { and }.

4. (and) are used to describe to impose an evaluation order of A-Expression in that the
A-Expression within a parenthesis will be evaluated first prior to what is outside.

 13

5. NOT (!), AND (&), and OR (|) are logical registry operators. The NOT operator is a universal
negation.

6. { and } is used to create sets of dimensions, dimension sets, tags, or durations using a ,
separation.

7. [and] is used to extract the set of dimensions in a set of dimension sets.

8. The ? is a registry operator that operates on a dimension set and returns all unique reachable
dimension sets from the given dimension set through data operators.

See Appendix A for the full set of ANTLR [7] based rules for parsing A-Expressions.

2.10 EXAMPLES OF A-EXPRESSIONS

2.10.1 Examples for Dimensions Based on Figure 8

An A-Expression, ALL * Dimension1, will resolve to all fields with that dimension. In Figure 8,
Dimension1 will resolve to EventTable1.Field1 and EventTable2.Field3.

Contrast this example with a situation where there are no dimensions defined. In this situation,
Field1 and Field3 need to be referenced explicitly as EventTable1.Field1 and EventTable2.Field3,
respectively. Every referenced field in EventTable1 and EventTable2 will need to be known to the
analyst. Describing in terms of dimensions allows specification of both of these fields, or any not yet
existing field in a table with the dimension of Dimension1.

Let us say that a new EventTable3 with a Field34 with Dimension1 is added in the future. The same
A-Expression Dimension1 would resolve to EventTable1.Field1, EventTable2.Field3, and
EventTable3.Field34. Thus, the user who specifies the expressions does not need to know anything about
the availability or physical location of fields in the tables.

 14

Figure 8. Table, field, dimension, dimension set, tag, tag scheme.

2.10.2 Virtual Dimension Examples Based on Figure 8

A virtual dimension is processed in A-Expressions just like a dimension. As a consequence, the
dimensions that are part of a virtual dimension will only resolve to fields that are within a single table,
and these dimensions map to adjacent fields in the exact sequence in which they are defined in the virtual
dimension.

An A-Expression of ALL * Dimension4 would resolve to fields consisting of Dimension1 and
Dimension2, {EventTable1.Field1, EventTable1.Field2}, but not to {EventTable2.Field3,
EventTable1.Field2}.

2.10.3 Dimension Set Examples Based on Figure 8

A dimension set can be used in A-Expressions, as a short cut for specifying all the dimensions in
that dimension set individually. Such an expression resolves to tables that contain all the fields
corresponding to the dimensions in the dimension set. For example, DimensionSet1 may be used to
identify EventTable1 because only EventTable1 has all of the dimensions of DimensionSet1.

Furthermore, a dimension set can also be used to narrowly specify a particular field with a specific
dimension. For example, ALL/DimensionSet1 * Dimension1 will resolve to exactly EventTable1.Field1,
and ALL/DimensionSet2 * Dimension1 will resolve to exactly EventTable2.Field3 in Figure 1.

 15

In A-Expressions, instead of an already defined dimension set, an anonymous dimension set may be
defined as a set of dimensions. For example, ALL/{Dimension1,Dimension3} is equivalent to
ALL/DimensionSet2.

It is also possible to use [and] operators to specify the dimensions in a set of dimension sets. For
example, ALL * [DimensionSet1] * Dimension1 will resolve to EventTable1.Field1 and
EventTable2.Field3 in Figure 8. The [and] set of operators is useful when the name(s) of the dimension
set(s) are known but not the dimensions within them.

2.10.4 Tag and Tag Scheme Examples Based on Figure 8

Tags and tag schemes also provide an alternate and powerful way to unambiguously specify a
subset of fields resolved with an A-Expression consisting of only dimensions and dimension sets. For
example, in Figure 8, an A-Expression of ALL * Dimension3 can resolve to both EventTable2.Field4 and
EventTable2.Field5. Therefore, we need a way to unambiguously specify just one of those fields using an
A-Expression. We will describe below how to use tags in A-Expressions to do just this.

A tag scheme has a set of tags which may have arbitrarily relationships among them. For example,
all the tags in a tagging scheme may be related, as in TagScheme2, or not related at all, as in TagScheme1,
or somewhere in between.

The tag schemes may be created and shared by knowledge engineers, or analysts (end users), and
stored in the registry or elsewhere, as described in Figure 3 and Figure 4.

2.10.5 Reachability-Based Examples

In Figure 7, the A-Expression DimensionSet13? will resolve to {DimensionSet12,
DimensionSet11}.

2.10.6 Duration-Based Examples

A-Expression ALL/DimensionSet1 {2013-05-30T09:00:00, 2013-05-30T10:00:00} * Dimension1
will return EventTable1.Field1 if it exists or has values within that duration.

2.11 COMPOSING A-EXPRESSIONS

The expressiveness of A-Expressions come from the way A-Expressions may be combined. Below
we give different examples of these combinations.

2.11.1 Composing A-Expressions with Dimensions, Dimension Sets, and Tags

In Figure 8, an A-Expression ALL/DimensionSet2 * Dimension3 * TagScheme1:Tag3 will resolve
exactly to EventTable2.Field4. An A-Expression of ALL/DimensionSet2 * Dimension3 *
TagScheme2:Tag2 will resolve to EventTable2.Field5.

 16

In Figure 8, A-Expression ALL/DimensionSet2 * TagScheme1:Tag2 will resolve to
EventTable2.Field3, whereas ALL * Dimension2 * TagScheme2:Tag1 will resolve to EventTable2.Field3
as well. However, note that two different tag schemes were used. It is possible that TagScheme1 is created
by KnowledgeEngineer1 and TagScheme2 is created by Analyst1 based on their individual ideas on how
the information in the data store must be interpreted.

Sometimes, a user may not know of existing dimenson sets, but would know the tags. Sometimes,
dimension sets may not have been defined, yet tags are assigned to fields. In such cases, using logical
operators within an A-Expression containing tags from one or more tag schemes may be used. Such
A-Expressions can be used to make the resolution more precise.

2.11.2 Composing A-Expressions with Logical Operators

In Figure 8, ALL * Dimension1 * (TagScheme1:Tag1 & (! TagScheme2:Tag1)) will resolve to
EventTable1.Field1. If the user knew of DimensionSet1, an equivalent A-Expression for Field1 would be
ALL/DimensionSet1 * Dimension1 * TagScheme1:Tag1.

In Figure 8, ALL/DimensionSet2 * (([DimensionSet2]) & (! (Dimension1))) will return all fields in
EventTable2 except ones with Dimension1 but with dimensions specified in DimensionSet2. The returned
fields would be EventTable2.Field4, and EventTable2.Field5.

It is quite possible that a dimension set may resolve to multiple tables. In such cases, tags may be
used to distinguish them. For example, (ALL/DimensionSet1) & TagScheme1:someTag could be used to
identify only tables with DimensionSet1 with the specified tag.

2.12 IMPLEMENTATION OF A-EXPRESSION ONTOLOGY

There are two key elements to resolving A-Expressions over the knowledge registry: (1) storing the
A-Expression components, the relationships among them and with tables, and fields in the knowledge
registry ontology, and (2) algorithms to resolve the A-Expressions using the stored ontology in the
knowledge registry. We describe below an instance of the stored relationships in knowledge registry, and
the associated algorithms in the next section. Note that this is only an example of implementation using
JSON format, and these entities and relationships can be stored in other formats such as XML, RDF, or
OWL.

 17

Table to Field Map: This map specifies the fields in each table. The map corresponding to Figure
8 is below in JSON format.

{
"tables":
[
 {"name" : "EventTable1", fields": [{"name": "f1"},{"name":"f2"}] },
 {"name" : "EventTable2","fields" : [{"name": "f3"},{"name":"f4"},{"name":"f5"}] }
]
}

Field to Dimension Map: This map describes the dimension corresponding to each field. Below is
the map for Figure 8.

{
"f2dmap":
 [
 {"table" : "EventTable1","field": "f1","dimension": "d1"},
 {"table" : "EventTable1","field": "f2",dimension": "d2"},
 {"table" : "EventTable2","field": "f3","dimension": "d1"},
 {"table" : "EventTable2","field": "f4","dimension": "d3"},
 {"table" : "EventTable2","field": "f5","dimension": "d3"}
]
}

Dimension Set to Dimensions: This map describes all the dimensions in a dimension set. Below is
a map for Figure 8.

{
"dimensionSets":
 [
 {"name": "ds1","dimensions": [{"name": "d1"},{"name":"d2"}]},
 {"name": "ds2","dimensions" : [{"name": "d1"},{"name":"d3"}]},
 {"name": "ds3","dimensions" : [{"name": "d4"},{"name":"d3"}]}
]
}

 18

Virtual Dimensions to Dimensions: This map describes the dimensions that are part of a virtual
dimension. Below is the map for Figure 8.

{
"virtualDimensions":
 [
 {"name": "d4","virtualDimensions": [{"name": "d1", "position": "1"},{"name":"d2", "position": "2"}] }
]
}

Tag Scheme to Tags Map: This map describes all the tags within a tag scheme. Below is an
example for Figure 1.

{
"tagSchemes" :
 [{"name": "ts1","tags": [{"name": "t1"},{"name":"t2"}, {"name":"t3"}] } ,
 {"name": "ts2","tags" : [{"name": "t1"}, {"name":"t2"}, {"name":"t3"}] }
]
}

Tag to Field Map: This map describes the fields that a tag is associated with. Below is an example
for Figure 8.

{
"tag2fieldItems":
 [
 { "table" : "EventTable1", "field": "f1", "tagScheme": "ts1","tag": "t1"},
 { "table" : "EventTable1","field": "f2", "tagScheme": "ts1","tag": "t1"},
 { "table" : "EventTable2","field": "f3","tagScheme": "ts1", "tag": "t2"},
 { "table" : "EventTable2","field": "f3","tagScheme": "ts2", "tag": "t1"},

 { "table" : "EventTable2","field": "f4","tagScheme": "ts1","tag": "t3"},
 { "table" : "EventTable2","field": "f5","tagScheme": "ts2","tag": "t2"}
]
}

 19

Data operator to input dimension sets or input dimensions; output dimension set or output
dimensions: This map describes the “in” and “out” parameters to each operator. Below is an example
based on Figure 7.

{
"operators": [
 {"name": "op1","dimensionSetIn": [{"name": "ds15"},
 { "name": "ds14"}
],
 "dimensionSetOut": {"name": "ds13"}},
 {"name": "op3","dimensionSetIn": [{"name": "ds13"}],
 "dimensionSetOut": {"name": "ds12"}},
 {"name": "op4","dimensionSetIn": [{"name": "ds12"}],
 "dimensionSetOut": {"name": "ds11"}}

]
}

2.13 A-EXPRESSION EVALUATION ALGORITHMS

As the examples above imply, algorithms are needed for evaluating an A-Expression to all or some
row values within a field, or in some cases to tables. These algorithms implement operators over the
registry, and therefore, we refer to them as registry operators. The algorithms outlined in this section are
implemented and evaluated over the ontology stored in the knowledge registry (1) to resolve to fields or
tables based on A-Expressions, and (2) to obtain all the dimension sets reachable through data operators
from a given dimension set. These algorithms use the notations ALL_TABLES, ALL_FIELDS,
ALL_DIMENSIONS, and ALL_DIMENSIONSETS to refer to all the tables, dimensions, and dimension
sets in the knowledge registry. Note that A-Expressions use ALL to denote any of these.

These algorithms will be used by users (analysts, analytic tool developers, knowledge engineers)
for multiple purposes. First, we describe below a list of the different types of such algorithms that need to
be implemented to resolve A-Expressions based on fields and tables. The algorithms are described using
Java-like syntax, and these algorithms implement registry operators in A-Expressions. Additional
algorithms may be created for convenience, but these are the minimum registry operators or algorithms
that are required to be implemented. Below, the bolded italicized phrases are the algorithm names. In
parentheses, we describe the corresponding registry operator.

 20

1. Given a list of tables, return a subset of those tables that match a given dimension set (/ registry
operator)

public List<Table> matchTablesDimensionSetTables(List<Table> in_tables, DimensionSet ds) {
 List<Table> matchedTables = new ArrayList<Table>();
 // for each table check the all dimensions in dimensionset match
 // a subset of the fields in the table
 for (Table t : in_tables) {
 int matchesNeeded = ds.getDimensions().size();
 for (Dimension d : ds.getDimensions()) {
 for (Field f : t.getFields()) {
 if (f.getDimension() == d) {
 matchesNeeded--;
 break;
 }
 }
 }
 if (matchesNeeded < 1) {// we have a matching table
 matchedTables.add(t);
 }
 }
 if (matchedTables.size() > 0)
 return matchedTables;
 else return null;
 }

 21

2. Given a list of tables, return a subset of fields that match a set of dimensions (* operation with
dimensions as qualifiers)

public List<Field> matchTablesDimensionsFields(List<Table> l_tables,
 List<String> l_dimensions) {
 List<Field> matchedFields = new ArrayList<Field>();
 for (Table t : l_tables) {
 for (Field f : t.getFields()) {
 for (String dimension : l_dimensions) {
 if (f.getDimension().getName().equals(dimension)) {
 matchedFields.add(f);
 }
 }
 }
 }
 if (matchedFields.size() == 0) return null;
 else return matchedFields;
 }

3. Given a list of fields, return a subset of fields that match a set of dimensions (* operation with
dimensions as qualifiers)

public List<Field> matchFieldsDimensionsFields(List<Field> l_fields,
 Set<Dimension> dimensions) {
 List<Field> matchedFields = new ArrayList<Field>();
 for (Field f : l_fields) {
 for (Dimension dimension : dimensions) {
 if (f.getDimension() == dimension)) {
 matchedFields.add(f);
 }
 }
 }
 if (matchedFields.size() == 0) return null;
 else
 return matchedFields;
 }

 22

4. Given a list of fields, return the fields that match a list of tags (* operation with tags as
qualifiers)

 public List<Field> matchFieldsTagsFields(List<Field> in_fields,
 List<Tag> in_tags) {
 if (in_tags.size() == 0)
 return null;
 List<Field> fields = new ArrayList<Field>();

 for (Field f : in_fields) {
 for (Tag tg : f.getTags()) {
 for (Tag in_tag : in_tags) {
 if (in_tags == null)
 continue;

 if ((tg == in_tag)
 & & (tg.getTagScheme() == in_tag.getTagScheme())) {
 fields.add(f);
 }
 }
 }
 }
 if (fields.size() > 0)
 return fields;
 else
 return null;
 }

5. Given a set of Fields A and a set of Fields B, return the fields that are in both sets
(intersectionFields) (& operator)

6. Given a set of Tables A and set of Tables B, return the tables that are in both sets
(intersectionTables) (& operator)

7. Given a set of Fields A and a set of Fields B, return the fields that are in either sets
(unionFields) (| operator)

8. Given a set of Tables A and set of Tables B, return the tables that are in either sets
(unionTables) (| operator)

9. Given a set of Fields A and a set of Fields B, return the fields that are in A but not in B
(minusFields) (! operator)

 23

10. Given a set of Tables A and set of Tables B, return the tables that are in A but not B
(minusTables) (! operator)

As an example of mapping these algorithms to the operators, consider Example 4, ALL *
Dimension1 * (TagScheme1:Tag1 & (! TagScheme2:Tag1)) . We map &, |, and ! to set operations
intersection, union, and minus, respectively. The scope of ! operator can be interpreted to be either as
global, meaning all tags in all tag schemes, or just as all tags in the specified tag scheme, meaning tags in
TagScheme2. We assume the global interpretation for A-Expressions with !.

The above A-Expression can easily be translated to the following prefix notation.

(* (* ALL Dimension1) (& TagScheme1 : Tag1 (! TagScheme2 : Tag1)))

By replacing the operators in the above expression with appropriate functions discussed earlier, we
get:

(matchFieldsTagsFields (matchFieldsDimensionsFields ALL_FIELDS Dimension1) (intersectionFields TagScheme1 :
Tag1 (minusFields ALL_FIELDS TagScheme2 : Tag1)))

2.14 QUALIFYING BY TIME PERIOD WITH . OPERATOR

One of the applications of the A-Expressions is to locate availability of data within a table.
Sometimes data is available, and sometimes data is not. In such cases, registry maintains the availability
information as shown in the durations field in the example below for tables. The fields in the table are
available only within the durations described by start time and end times.

 24

{
"tables":
 [
 {
 "name" : "EventTable1",
 "fields": [{"name": "f1"},{"name":"f2"}],
 "durations": [{"start_time": "2013-05-30T09:00:00", "end_time": "2013-05-30T10:00:00"}, {"start_time":
"2013-05-30T11:00:00", "end_time": "2013-06-01T10:00:00"}, {"start_time": "2013-07-02T10:00:00", "end_time":
"2013-07-05T10:00:00"}]},
 {
 "name" : "EventTable2",
 "fields" : [{"name": "f3"},{"name":"f4"},{"name":"f5"}],
 "durations": [{"start_time": "2013-05-30T09:30:00", "end_time": "2013-05-30T10:30:00"}, {"start_time": "2013-05-
30T11:30:00", "end_time": "2013-06-01T10:30:00"}, {"start_time": "2013-07-02T10:30:00", "end_time": "2013-07-
05T10:30:00"}]

 }
]
}

An additional registry operator, and an algorithm for it can be used to select a subset of fields that is
available within a duration. This operation is matchFieldsPeriodsFields, and its algorithm is described
below.

 public List<Field> matchFieldsPeriodsFields(List<Field> in_fields, List<Period> in_durations) {
 List<Field> fields = new ArrayList<Field>();
 for (Field f : in_fields) {
 for (Period du: in_durations) {
 if (f.getTable().fieldAvailable(f, du))
 fields.add(f);
break;
 }
 }
 if (fields.size() > 0)
 return fields;
 else return null;
 }

This registry operator can be combined with other registry operators. An example based on Figure 8
is ALL.{2013-05-30T09:12:00, 2013-05-30T09:33:00} * Dimension1, and will return EventTable1.Field1
and EventTable1.Field2 using the tables described above.

 25

Note that the duration information can also be stored for each field to describe unavailability of
some fields of a table during some time periods, and similar algorithm as above can be applied to the
fields of a table as well.

2.15 REACHABILITY IN A-EXPRESSIONS

It is possible and useful to specify all the dimension sets or sets of dimensions that can be reached
through the data (store) operations. For example, COUNT() is a data operator. We define and implement
two registry operators for analyzing reachability through the data operators. To process this reachability,
the operator map table stored in the registry is used. We describe these registry operators with the
example in Figure 8 in the previous section.

11. Given a dimension set, return the set of dimension sets that can be reached through data
operations

public Set<DimensionSet> reachDimensionSetDimensionSets(DimensionSet in_ds) {
 List<Operator> startOps = new ArrayList<Operator>();
 for (Operator op : operators.getOperators()) {
 for (DimensionSet ds : op.getDimensionSetIn()) {
 if (ds.getName().equals(in_ds.getName())) {
 if (!startOps.contains(op)) startOps.add(op);
 }
 }
 }
 Set<DimensionSet> dimSetsOut = new HashSet<DimensionSet>();
 List<Operator> allVisitedOps = getReachedOperators(startOps);

 for (Operator op : allVisitedOps) {
 dimSetsOut.add(op.getDimensionSetOut());
 }

 if (dimSetsOut.size() == 0) return null;
 else return dimSetsOut;
}

A registry operator corresponding to the above algorithm can be defined as ? and can be used in A-
Expressions. For example, to find all tables that can be reached through data operations from a dimension
set, DimensionSet11, we could specify: ALL/(DimensionSet11?), which would be mapped to the prefix
notation of (/ ALL (? DimensionSet11)), which in turn gets mapped to:

(matchTablesDimensionSetTables ALL (reachDimensionSetDimensionSets DimensionSet11))

 26

A grammar can be defined for parsing A-Expressions, for example using a parser generator called
ANTLR [7]. Appendix A has the ANTLR-based parsing rules. ANTLR can also be used to generate the
registry operator to algorithm mapping described in the previous paragraphs.

2.16 USING A-EXPRESSIONS IN QUERIES

When an A-Expression may resolve a set of fields, or tables, the address expressing is effectively
referring to all the data that is currently stored in those fields or tables. However, an analyst may be
interested in the value in a single row or cell in the field. To specify subset of a field, or to apply
additional processing on the data in one or more fields, A-Expressions may be used with data operators in
queries. Below, we give an example of a Knowledge Query Language (KQL) query similar to what was
described in [6], and show how the same query may be expressed in SQL with embedded A-Expressions.

 27

3. KQL QUERY

An example in KQL query similar to the query in the previous report [6] is below.

{
 "OPERATOR" : "select",
 "INPUT" : [{
 "DIMENSION" : "dest:domain",
 "VALUE" : "twitter.com"
 }, {
 "DIMENSION" : "Time",
 "VALUE" : "20131216060000,20131216065915"
 }],
 "OUTPUT" : [{
 "DIMENSION" : "fqdn"
 }, {
 "DIMENSION" : "ipv4"
 }]
 }],
 "EVENT" : "event:webwasher"
}

This query returns values of fqdn and ipv4 dimensions from webwasher event with domain value is
twitter.com that is a destination (dest) within the specified time period.

We can create an A-Expression by making a tag of dest from the default tag scheme, _ . The
corresponding SQL query with A-Expression fragments will be:

SELECT {fqdn,ipv4}*_:dest FROM ALL/webwasher
WHERE domain.{ 20131216060000,20131216065915} ="twitter.com";

The input A-Expressions corresponding to the query is ALL/webwasher * domain.
{20131216060000, 20131216065915} and the output A-Expression is
ALL/webwasher*{fqdn, ipv4}*_:dest.

Note that a * operator is inserted in the input A-Expression to create the A-Expressions after the
content in the FROM clause, and before the content of the WHERE clause. Similarly, a * operator is
inserted after the content in the FROM clause, and before the content of the SELECT clause
({fqdn ,ipv4}*_:dest).

 28

If there are multiple clauses in the WHERE clause joined by SQL logical operators
(AND/OR/NOT), then there will be as many input A-Expressions as there are distinct A-Expression
fragments in the WHERE clause. We only discuss embedding A-Expressions in the SELECT statement in
SQL in this report, though same approach may be used to embed A-Expressions in other SQL statements.

The parse tree corresponding to the input A-Expression is below, created by defining grammar rules
(see Appendix A) for parsing A-Expressions.

Figure 9. Parse tree for input A-Expression.

The parse tree corresponding to the output A-Expression is as follows:

Figure 10. Parse tree for an output A-Expression.

Let us say the Table corresponding to this query is Domain_tbl and the dields for fqdn, ipv4, and
domain dimensions are fqdn_f, IPv4_f, and domain_f respectively. Then, the corresponding SQL query
that will be executed on the data store will be:

 29

SELECT fqdn_f, ipv4_f FROM Domain_tbl
WHERE domain_f ="twitter.com" AND Start_time = 20131216060000 AND End_Time = 20131216065915;

We don’t assume in this query that start and end times are also columns in Domain_tbl, though we
chose to express the query that way. Different databases implement searching for time differently, and we
expect the query execution engine to do the necessary conversion to the underlying executed query
corresponding to the data store.

3.1 PROVENANCE RECORDING

Provenance recording is done within AQP (see Section 2) whenever an output A-Expression
extracted from the query is processed. Since a query may have multiple output A-Expressions, the
provenance record of the query result is the aggregation of the provenance records of all the individual
output A-Expressions. Below, we describe provenance recording for each such output A-Expressions.

Provenance record for a dimension set, since a dimension set resolves to a table, comprises of the
data collection objects corresponding to the table. For example, in Figure 11, the provenance record for
A-Expression ALL/DimensionSet15, may have data collection sets <DimensionSet15_DC1,
DimensionSet15_DC2>, which are two separate data collection objects corresponding to DimensionSet15.
We assume DimensionSet15 is not a derived dimension set from any other dimension set, and we consider
the provenance record of a derived dimension set later in this section. Only a subset of the data collection
objects of a table may be in provenance record if duration (.) registry operator is used in a A-Expression.

Since an A-Expression may evaluate to fields, and data collection entities (see Figure 5 and also
[6]) in the registry ontology map to only tables, we will record provenance for a dimension to be the same
as the provenance for the table in which the field occurs. Thus, provenance record for an A-Expression is
the set of data collections corresponding to a set of tables will form the provenance record, if the tables
and fields are not derived. For example, in Figure 11 (assuming DimensionSet15 is not derived), the
provenance record for A-Expression ALL/DimensionSet15 * Dimension2 is <DimensionSet15_DC1,
DimensionSet15_DC2>, which are two separate data collection objects corresponding to DimensionSet15.
Provenance record for DimensionSet15 contains <DimensionSet15_DC1, DimensionSet15_DC2>, the
data collection objects for DimensionSet15. We assume DimensionSet15 is not a derived dimension set.

 30

Figure 11. Provenance example.

If a dimension set is derived, then the provenance record for a dimension set (or for a dimension in
the dimension set) will include one provenance path corresponding to each such non-derived dimension
set from which that dimension set is derived.

Again, consider Figure 11. The provenance record for ALL/Dimension12 * Dimension3 has two
provenance paths.

{<<DimensionSet15_DC1,op1>, <DimensionSet15_DC2,op1>,
<DimensionSet13,op3>,<DimensionSet12>>,

<<DimensionSet14_DC,op1>,<DimensionSet13,op3>,<DimensionSet12>>}

Here DimensionSet12 is a derived dimension set, and therefore appears as the last entry in the
provenance path. The two non-derived dimension sets are DimensionSet15 and DimensionSet14, and the
data collection objects corresponding to those dimensions are the respective first entries in the
corresponding provenance path. DimensionSet13 appears in the path with op3 because DimensionSet13 is
derived from DimensionSet15 and DimensionSet14 using op3.

Thus, a provenance record for a derived dimension set (or for one of its dimensions) consists of one
or more provenance paths. Each provenance path is a sequence <<DataCollection_1, data operator>, …,
<DataCollection_n, data_operator>, <DimensionSet_X, data operator>, …, <DimensionSet_F>>. The
initial entries in the provenance path are the data collection objects corresponding to a non-derived
dimensionset from which DimensionSet_F is derived. The next entries such as DimensionSet_X are the
names of the dimension sets derived from the non-derived dimension set corresponding to those data
collection objects. The names of these dimension sets will follow the sequence of derivation until

 31

DimensionSet_F is derived. The final entry, DimensionSet_F, is the derived dimension set that
A-Expression resolved to in this provenance path.

It is possible that some tables do not have a corresponding dimension set assigned, and a dimension
set is derived from that table. In such cases, instead of the dimension set, the name of the table is recorded
in a provenance path.

The provenance record is reported by AQP along with the query results.

This page intentionally left blank.

 33

4. ADDITIONAL A-EXPRESSION EXAMPLES

In this section, we provide more A-Expression examples to help clarify the concepts already
discussed so far.

4.1 DIMENSION AND * OPERATOR

Figure 12. Netflow and proxy tables.

ALL * IPAddress resolves to the following fields: Netflow:Field2 and Proxy:Field4.

ALL * DomainName resolves to the following field: Proxy:Field5.

4.2 DIMENSIONSET AND / OPERATOR

In Figure 12, how do you write an A-Expression that resolves to just Netflow:Field2? We need the
concept of a dimension set to do that. Let there be two dimension sets,

DimensionSet1: {IPAddress, Port, Protocol}

DimensionSet2: {IPAddress, DomainName, Time}

Now,

ALL/DimensionSet1 * IPAddress resolves to only Netflow:Field2, and

ALL/{IPAddress, Port, Protocol} * IPAddress resolves to only Netflow:Field2.

Note that the two A-Expressions above are not the same. {IPAddress, Port, Protocol} is not
DimensionSet1 even though it has the same dimensions! It is a transient dimension set defined in the
A-Expression. Note that resolving a dimension set to fields in a table requires every dimension in that
dimension set to map to at least one field in the table. Also, the dimensions in a dimension set are not

 34

required to map to any existing fields in existing tables implying that dimension sets have no obligation to
match to any existing dimensions.

4.3 TAGS AND TAG SCHEMES

In Figure 12, how would you create an A-Expression to resolve just to Proxy:Field4? We need the
concept of tags and tag schemes to accomplish this.

Figure 13. A single tag scheme.

Using tags in TagScheme1, the following A-Expression can be written to resolve just to
Proxy:Field4 as follows: ALL * IPAddress * TagScheme1:Client. The reason why this works is that
Proxy:Field4 is the only field that has the dimension of IPAddress and tag of Client. Can we create
another A-Expression for Proxy:Field4 using the schemes in Figure 13? It turns out that yes, we can.
ALL * IPAddress * (!TagScheme1:Src) resolves to Proxy:Field4 because the only field that has dimension
IPAddress and does not have the tag TagScheme1:Src is Proxy:Field4. Figure 14 shows the addition of
one more tag scheme, TagScheme2.

 35

Figure 14. Two tag schemes.

Let’s look at another example with tags. See Figure 15. What is an A-Expression for
EventTable2:Field4?

Figure 15. Another tag example with a single tag scheme.

ALL * (TagScheme1:Tag3) * Dimension3 resolves to EventTable2:Field4.

 36

Consider another example using Figure 16. Can an A-Expression be created for Field1 without
using a dimension set?

Figure 16. Another tag example with two tag schemes.

Yes. ALL * (!TagScheme2:Tag1) * Dimension1 resolves to EventTable1:Field1.

 37

4.4 REACHABILITY OPERATOR

Consider Figure 17. What does DimensionSet15? resolve to?

Figure 17. Reachability operator example.

It resolves to DimensionSet13, DimensionSet12, and DimensionSet11.

This page intentionally left blank.

 39

5. CONCLUSION

This report describes techniques for accessing data stores using a knowledge registry by (1) adding
tag-based, customizable, storage-independent addressing schemes for fields and tables in a key/value data
store, and (2) defining and providing composable expressions called A-Expressions that can be integrated
with existing query languages such as Structured Query Language (SQL) for addressing tables and fields.
The concept of customizable tags and composable addressing schemes do not exist currently for data
stores, either in key/value stores or traditional relational databases. The major benefits of this approach
are listed below.

1. Ability to create and process complex A-Expressions using multiple registry operators. This
capability allows creation of A-Expressions that include dimensions, dimension sets, tags, and tag
schemes.

2. Ability to map semantic entities such as dimensions, dimension sets, tags, and tag schemes to
tables and fields in the data store through A-Expressions. Users need not be aware of what tables
exist, or where the tables physically exist in the data store. This feature means that a current query
can be used at a later time to retrieve data from tables that do not yet exist.

3. Ability to provide provenance and context information such as which tables and fields are used
for evaluating each A-Expression in a query, along with the results of a query.

4. Ability to embed and process the A-Expressions in popular and existing query languages such as
SQL, thus making the queries declarative. The declarative and implementation-independent
approach makes the queries more portable across different types of data stores and programming
languages than a query embedded in a program snippet using a custom API.

5. Ability to customize the semantic mapping using tags and tagging schemes pertaining to domains
such as network traffic, and further customizing the tag-based semantic mapping to specific user
groups or even to individual users. These tags and tagging schemes may be stored in the
knowledge registry, or elsewhere, so that A-Expression Query Processor (see Figure 3) may
access it. In this report, we assume the tags and tag schemes are stored in the knowledge registry.

6. Ability to search the knowledge registry and discover the existence of tables derived from other
existing tables using A-Expressions. The derivation information of tables may be stored in the
knowledge registry, or elsewhere, so that A-Expression Query Processor (AQP) may access it.

7. Virtual dimension allows reinterpretation of existing ingested data without the need to redo data
ingesting of data sources. Note that virtual dimension does not change the data store itself, just
the knowledge registry. This is a huge advantage over traditional ways of attaching types to data

 40

in columns either in relational databases or key/value stores. Virtual dimensions do not require
discarding the old interpretation in order to use the newer interpretation.

8. Due to the separation of the data storage mechanism and the address resolution mechanism, it is
possible to describe a new dimension set based on a data operation over other dimension set(s)
dynamically, i.e., after the system goes into operation, without requiring to stop the ingesting
platform.

9. The overall benefit of using our technique of ontology-assisted addressing of fields and tables is
that ad hoc queries can be created by users with no knowledge of the fields or columns in the
implemented data store tables, yet learn exactly which tables and fields were used to construct the
results through associated provenance information.

 41

APPENDIX A:
A-EXPRESSION PARSING RULES

grammar aexp17;

options {
output=AST;
ASTLabelType=CommonTree;
}

tokens {
ALL='ALL';
AND='&';
OR= '|';
NOT='!';
}

@lexer::header{
package edu.mit.ll.antlr;
}

@parser::header{
package edu.mit.ll.antlr;
}

@members{
boolean debug = false, caseInsensitive =false;
public void enableDebug(boolean value){
this.debug = value;
}
public void enableCaseInsensitive(boolean caseInsensitive) {
this.caseInsensitive = caseInsensitive;
}

}
start
 :
 r_exp
 {
 if(this.debug)
 System.out.println($r_exp.tree==null?"null":$r_exp.tree.toStringTree());

 42

 }
 ;

r_exp
 :
 period_exp ((AND^|OR^) period_exp)*
 |
 NOT r_exp ->^(NOT r_exp)
 ;

period_exp
 :
 star_exp ('#'^ star_exp)*
 ;

star_exp
 :
 slash_exp ('*'^ slash_exp)*
 ;
slash_exp
 :
 atom2 ('/'^ atom2)+
 |
 atom2 ('?'^)+
 |
 atom ('.'^ durations)*
 ;
atom2
 :
 set_of_dims ('.'^ durations)*
 |
 dimSet ('.'^ durations)*
 ;

atom
 :
 dims
 |
 tags
 |
 '(' r_exp* ')'
 {
 if(this.debug)

 43

 System.out.println("Encountered rexp in parenthesis");
 }
 |
 '[' (dimSet|set_of_dimSets) ']'
 ;

dims
 :
 ALL
 |
 dim
 |
 set_of_dims
 ;

set_of_dims
 :
 '{' dim '}' -> '{' dim '}'
 |
 '{' dim (',' dim)+ '}' -> '{'^(','dim+)'}'
 ;

set_of_dimSets
 :
 '{' dimSet '}' -> '{' dimSet '}'
 |
 '{' dimSet (',' dimSet)+ '}' -> '{'^(',' dimSet+)'}'
 ;
dim
 :
 ID
 ;
tags
 :
 '{' tag '}' -> '{' tag '}'
 |
 '{' tag (',' tag)+ '}' -> '{'^(',' tag+)'}'
 |
 tag
 ;
tag
 :
 (tagScheme|'_') ':' ID

 44

 ;

tagScheme
 :
 ID
 ;

dimSet
 :
 ALL
 |
 ID
 ;

durations
 :
 '{' duration (';' duration)* '}' -> '{'^(';'duration+)'}'
 ;

duration:
 start_time ',' end_time
 ;
start_time
 :
 INT -> INT
 ;
end_time
 :
 INT -> INT
 ;

INT : '0'..'9' ('0'..'9')*
 ;
ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*
 ;

COMMENT
 : '//' ~('\n'|'\r')* '\r'? '\n' {$channel=HIDDEN;}
 | '/*' (options {greedy=false;} : .)* '*/' {$channel=HIDDEN;}
 ;

WS : (' '|'\t')+ {skip();} ;

 45

NEWLINE:'\r'? '\n' ;

STRING
 : '"' (ESC_SEQ | ~('\\'|'"'))* '"'
 ;

fragment
HEX_DIGIT : ('0'..'9'|'a'..'f'|'A'..'F') ;

fragment
ESC_SEQ
 : '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\')
 | UNICODE_ESC
 | OCTAL_ESC
 ;

fragment
OCTAL_ESC
 : '\\' ('0'..'3') ('0'..'7') ('0'..'7')
 | '\\' ('0'..'7') ('0'..'7')
 | '\\' ('0'..'7')
 ;

fragment
UNICODE_ESC
 : '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
 ;

This page intentionally left blank.

 47

BIBLIOGRAPHY

1 Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes,
A., and Gruber, R. E., “Bigtable: A Distributed Storage System for Structured Data.” In Proceedings
of the 7th Conference on USENIX Symposium on Operating Systems Design and Implementation –
Volume 7 (Seattle, WA: 6–8 November 2006). USENIX Association, Berkeley, CA, p. 15.

2 Doulkeridis, C., and Nørvåg, K., “A Survey of Large-Scale Analytical Query Processing in
MapReduce,” The VLDB Journal, pp. 1–26, 2013.

3 “Pig Latin Reference Manual 2,” Hadoop, https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html/.

4 “Apache Hive TM,” Hadoop, https://hive.apache.org/.

5 Damodaran, S.K and O’Gwynn, D.B., “Method and Systems for Enhanced Ontology Assisted
Querying of Data Stores,” U.S. Patent Appl. No.:14/546,355, filed on 18 November 2014.

6 Damodaran, S.K., Yu, T., and O’Gwynn, D.B., “Knowledge Registry System and Methods,”
U.S. Patent Appl. 20150199424, issued on 16 July 2015.

7 Parr, T., “The Definitive ANTLR Reference: Building Domain-Specific Languages,” The Pragmatic
Bookshelf, 2007.

This page intentionally left blank.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

TBD 2016
2. REPORT TYPE
 Technical Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8721-05-C-0002 & FA8702-15-D-0001

Knowledge Query Language (KQL) 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER
2231

Suresh K. Damodaran

5e. TASK NUMBER
61

 5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

TR-1199

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Bernadette Johnson, Chief Technology Officer

9
0
1

U
n
i
v
e
r
s
i
t
y

B
l
v
d
.

S
E
,

S
u
i
t
e

1
0
0

ASD R&E
MIT Lincoln Laboratory
244 Wood Street 11. SPONSOR/MONITOR’S REPORT
Lexington, MA 02420-9108 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Currently, queries for retrieval from NoSQL datastores are tightly coupled to the specific implementation of the datastore implementation,
making portability of the queries or query-dependent algorithms difficult. This report introduces a declarative approach that is independent
of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions)
embedded in commonly used query languages such as Structured Query Language (SQL). The declarative approach makes the queries
portable, and results in several advantages over the existing approaches to querying, especially when the data is semi-structured, and when
the data sources may change over time. Cyber event logs are examples of such data sources. When the query is independent of the
underlying physical data sources, having provenance information on the query results becomes important to impart necessary context, and
ensure trust in the query results returned. This declarative approach is made possible through the use of a Knowledge Registry. In this
report, we discuss embedding A-Expressions in the widely used SQL, resolving A-Expressions using the ontology implemented in a
Knowledge Registry, and returning query results with provenance information.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Same as report 57 19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

This page intentionally left blank.

