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Abstract Multi-robot networks use wireless communica-

tion to provide wide-ranging services such as aerial surveil-

lance and unmanned delivery. However, effective coordina-

tion between multiple robots requires trust, making them

particularly vulnerable to cyber-attacks. Specifically, such

networks can be gravely disrupted by the Sybil attack, where

even a single malicious robot can spoof a large number of

fake clients. This paper proposes a new solution to defend

against the Sybil attack, without requiring expensive crypto-

graphic key-distribution. Our core contribution is a novel al-

gorithm implemented on commercial Wi-Fi radios that can

“sense” spoofers using the physics of wireless signals. We

derive theoretical guarantees on how this algorithm bounds

the impact of the Sybil Attack on a broad class of multi-

robot problems, including locational coverage and unmanned

delivery. We experimentally validate our claims using a team

of AscTec quadrotor servers and iRobot Create ground clients,

and demonstrate spoofer detection rates over 96%.

1 Introduction

Multi-robot networks rely on wireless communication to en-

able a wide range of tasks and applications: coverage [32, 5,

36], disaster management [6], surveillance [3], and consen-

sus [31] to name a few. The future promises an increasing

trend in this direction, such as delivery drones which trans-

port goods (e.g., Amazon Prime Air [1]) or traffic rerout-

ing algorithms (e.g., Google Maps Navigation) that rely on

Affiliations:
1

Massachusetts Institute of Technology
2

Carnegie

Mellon University
2

MIT Lincoln Lab
Emails: sgil, dk, rus}@mit.edu, swarun@cmu.edu,
mazumder@ll.mit.edu
†
Co-primary authors

broadcasted user locations to achieve their goals. Effective

coordination, however, requires trust. In order for these multi-

robot systems to perform their tasks optimally, transmitted

data is often assumed to be accurate and trustworthy; an as-

sumption that is easy to break. A particularly challenging

attack on this assumption is the so-called “Sybil attack.”

In a Sybil attack a malicious agent generates (or spoofs)

a large number of false identities to gain a disproportionate

influence in the network.1 These attacks are notoriously easy

to implement [38] and can be detrimental to multi-robot net-

works. An example of this is coverage, where an adversarial

client can spoof a cluster of clients in its vicinity in order to

create a high local demand, in turn denying service to legit-

imate clients (Figure 1). Although a vast body of literature

is dedicated to cybersecurity in general multi-node networks

(e.g., a wired LAN), the same is not true for multi-robot net-

works [17, 35], leaving them largely vulnerable to attack.

This is because many characteristics unique to robotic net-

works make security more challenging; for example, tradi-

tional key passing or cryptographic authentication is difficult

to maintain due to the highly dynamic and distributed nature

of multi-robot teams where clients often enter and exit the

network.

This paper addresses the challenge of guarding against

Sybil attacks in multi-robot networks. We focus on the gen-

eral class of problems where a group of server robots coordi-

nate to provide some service using the broadcasted locations

of a group of client robots. Our core contribution is a novel

algorithm that analyzes the received wireless signals to de-

tect the presence of spoofed clients spawned by adversaries.

We call this a “virtual spoofer sensor” as we do not use spe-

cialized hardware nor encrypted key exchange, but rather a

commercial Wi-Fi card and software to implement our so-

lution. Our virtual sensor leverages the rich physical infor-

mation already present in wireless signals. At a high level,

as wireless signals propagate, they interact with the envi-

ronment via scattering and absorption from objects along

the traversed paths. Carefully processed, these signals can

provide a unique signature or “spatial fingerprint” for each

client, measuring the power of the signal received along each

spatial direction (Fig. 2). Unlike message contents such as

reported IDs or locations which adversaries can manipulate,

spatial fingerprints rely on physical signal interactions that

cannot be exactly predicted [15, 27].

Using these derived fingerprints, we show that a confi-

dence metric, α ∈ (0, 1) can be obtained for each client in

the network. We prove that these confidence metrics have a

desirable property where legitimate clients have an expected

confidence metric close to one, while spoofed clients will

have an expected confidence metric close to zero. A par-

ticularly attractive feature of confidence metric α is that it

1 Please refer to [7, 30] for a detailed treatment of this class of cyber
attacks.
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Fig. 1: Sybil Attack on Coverage: A server robot provides locational
coverage to legitimate clients when no attack is present. In a Sybil at-
tack, an adversary spoofs many fake clients to draw away coverage
from the legitimate clients.

can be readily integrated into a wide variety of multi-robot

controllers. In particular, we demonstrate two natural meth-

ods to integrate α into these controllers: either as a contin-

uous per-client weighting function or as a means to clas-

sify clients discretely into two groups as either legitimate

or spoofed. More importantly, we prove analytical bounds

on α that provably limit the influence of adversarial clients

on the performance of these controllers. We integrate our

confidence metric with multi-robot controllers in the con-

text of two well-known problems: locational coverage algo-

rithm [5, 36] and the drone delivery [1, 22, 33].

We provide an extensive experimental evaluation of our

theoretical claims using a heterogeneous team of air/ground

robots consisting of two AscTec Hummingbird platforms

and ten iRobot Create platforms. We conduct our experi-

ments in general indoor settings with randomly placed clients.

Our results in both the coverage and vehicle routing prob-

lems demonstrate a spoofer detection rate of 96%. In ad-

dition, for the case of coverage we find that the converged

positions of the service robots is on average 3 cm from opti-

mal even when more than 75% of total clients in the network

are spoofed.

Contributions of this paper: We develop a virtual sensor

for spoofing detection which provides performance guaran-

tees in the presence of Sybil attacks and is applicable to a

broad class of problems in distributed robotics. We show that

the influence of spoofers is analytically bounded under our

system in two contexts: 1) locational coverage, where each

robot providing coverage remains within a bounded radius

of its optimal position even in the presence of adversarial

clients. 2) unmanned delivery, where the total path length

traversed by the service vehicle remains bounded relative to

its value in the absence of an attack. Our theoretical results

are validated extensively through experiments in diverse set-

tings.

2 Related Work

The problem of Sybil attacks has been studied in general

multi-node, often static, networks, and many tools have been

developed for these settings. Past work falls under three cat-

egories: (1) Cryptographic authentication schemes can be

Fig. 2: Spatial Fingerprints: A quadrotor server measures the direc-
tional signal strength of each client (here, simplified to 2-D). The blue
client has one line-of-sight peak; the other, 2 signal paths.

used to prevent Sybil attacks (Table 7 in [44]). These re-

quire trusted central authorities and computationally expen-

sive distributed key management, to account for dynamic

clients that enter and leave the network [44]. (2) Non cryp-

tographic techniques in the wireless networking community

leverage wireless physical-layer information to detect spoofed

client identities or falsified locations [18, 48, 46, 47, 45].

These rely on bulky and expensive hardware like large multi-

antenna arrays, that cannot be mounted on small robotic

platforms. (3) Recent techniques have attempted to use wire-

less signal information like received signal strength (RSSI) [26,

42, 34] and channel state information [24]. Such techniques

need clients to remain static, since mobility can cause wire-

less channels to fluctuate rapidly [2]. In addition, they are

susceptible to power-scaling attacks, where clients scale power

differently to imitate different users. In sum, the above sys-

tems share one or more of the following characteristics mak-

ing them ill-suited to multi-robot networks: (1) require com-

putationally intensive key management; (2) rely on bulky

and expensive hardware; (3) assume static networks. Indeed

past work has highlighted the gravity and apparent spar-

sity of solutions to cyber-security threats in multi-robot net-

works [17, 35, 4].

Unlike past work, our solution has three attributes that

particularly suit multi-robot networks. (1) It captures phys-

ical properties of wireless signals and therefore does not

require distributed key management. (2) It relies on cheap

commodity Wi-Fi radios, unlike hardware-based solutions [46,

48]. (3) It is robust to client mobility and power-scaling at-

tacks.

Finally, our system builds on Synthetic Aperture Radar

(SAR) to construct signal fingerprints [10]. SAR has been

widely used for radar imaging [10, 19] and indoor position-

ing [21, 20, 41, 13]. In contrast, this paper builds upon SAR

to provide cyber-security to multi-robot networks. In doing

so, it provides theoretical security guarantees that are val-

idated experimentally. These integrate readily with perfor-

mance guarantees of existing multi-robot controllers, like

the well-known robotic coverage controllers [5, 36] as shown
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in Sec. §6 and drone delivery controllers [22, 33] as de-

scribed in Sec. §7.

3 Problem Statement

This paper focuses on problems where the knowledge of

agent positions facilitates some collaborative task. Specifi-

cally, it assumes two groups of agents, “clients” requiring

some type of location-based service such as coverage or

goods delivery and “servers” whose positions are optimized

in order to provide the service to its clients. Let P := {p1, . . . ,
pc} denote the client positions inR3. Let X := {x1, . . . , xm}
be the positions of the servers in R3 and the notation [m] =
{1, . . . ,m} denote their indices. We consider the case where

a subset of the clients, S ⊂ P (with s := |S|) are “spoofed”

clients.

Definition 1 (Spoofed Client) A single malicious client may

generate multiple unique identities, each with a fabricated

position. Each generated, or “spawned” identity is consid-

ered a spoofed client. By spoofing multiple clients, the ma-

licious client gains a disproportionate influence in the net-

work. All clients which are not spoofed are considered legit-

imate clients.

Threat Model: Our threat model considers one or more ad-

versarial robot clients with one Wi-Fi antenna each. The ad-

versaries can be mobile and scale power on a per-packet ba-

sis. We only consider adversarial clients.2 Adversarial clients

perform the “Sybil Attack” to forge packets emulating s
non-existent clients, where s can exceed the number of le-

gitimate clients. More formally:

Definition 2 (Sybil Attack) Define a network of client and

server positions as P ∪ X , where a subset S of the clients

are spoofed, such that P = S ∪ S̃. We assume that set P is

known but knowledge of which clients are spoofed (i.e., in

S) is unknown. This attack is called a “Sybil Attack.”

To counter the Sybil attack, this paper has two objec-

tives. First, we find a relation capturing directional signal

strength between a client i and a server l. We seek a map-

ping Fil : [0, π
2 ] × [0, 2π] %→ R such that for any 3D di-

rection (θ,φ) defined in Fig. 4, the value Fil(θ,φ) is the

power of the received signal from client i along that direc-

tion. Using this mapping, or “fingerprint”, our first problem

is to derive a confidence metric whose expectation is prov-

ably bounded near 1 for legitimate clients and near 0 for

spoofed clients. Further, we wish to find these bounds an-

alytically from problem parameters like the signal-to-noise

ratio of the received wireless signal. We summarize this ob-

jective as Problem 1 below:

2 The case of adversarial server robots is left for future work al-
though many of the concepts in the current paper are extensible to this
case as well.

Problem 1 (Spoofer Detection) Let Fi be the set of finger-

prints measured from all clients j ∈ [c] and servers l ∈
[m] in the neighborhood, Ni, of client i.3 Here, a neigh-

borhood of client i, Ni, are all agents that can receive Wi-

Fi transmissions sent by client i. Using Fi, derive a con-

fidence metric αi(Fi) ∈ (0, 1) and a threshold ωi(σ2
i ) >

0 where σ2
i represents error variances such as the signal-

to-noise ratio that are assumed to be given. Find ωi(·) to

have the provable property of differentiating spoofed clients

whereby spoofed clients are bounded below this threshold,

i.e., E[αi] ≤ ω, and legitimate clients are bounded above

this threshold E[αi] ≥ 1− ω.

Our second objective is to apply our spoofer detection

method as weights that can bound the influence of spoofers

in multi-robot problems. Specifically, we consider the well-

known coverage problem in [5, 36]. We show that by inte-

grating the confidence metric from Problem 1, we can ana-

lytically bound the error in performance caused by spoofed

clients in the network. We consider the coverage problem

where an importance function is defined over an environ-

ment and where the positions of the clients correspond to

peaks in the importance function. Here, servers position them-

selves to maximize their proximity to these peaks, to im-

prove their coverage over client robots. IfCV = {x∗
1, . . . , x

∗
m}

is the set of server positions optimized by the coverage con-

troller with zero spoofers, we wish to guarantee that server

positions optimized with spoofers present, CVα
, is “close”

to CV . We state this second objective more specifically as

Problem 2 below:

Problem 2 (Sybil-resillience in Multi-Robot Coverage) Con-

sider a locational coverage problem where an importance

function ρ(q) > 0 is defined over an environment Q ⊂ R3

and q ∈ Q. Specifically, consider an importance function

that can be decomposed into terms, ρi(q), depending on

each client’s position, i ∈ [c] (for example, each client posi-

tion corresponds to a peak), i.e., ρ(q) = ρ1(q)+ . . .+ρc(q).
Let CV = {x∗

1, . . . , x
∗
m} be the set of server positions re-

turned by an optimization of ρ(q) over X , where there are

zero spoofed clients in the network. Under a Sybil attack, let

CVα
= {x1, . . . , xm} be the set of server positions returned

by an optimization of an α-modified importance function

ρ(q) = α1ρ1(q) + . . . + αcρc(q) where the importance

weight terms αi satisfy the bounds stated in Problem 1. We

wish to find an ϵ(P) > 0 such that the set CVα
is within

a distance ϵ(P) to CV . CVα
is within a distance ϵ(P) to

CV if ∀x ∈ CVα
there exists a unique y ∈ CV where

dist(x, y) < ϵ(P). Here, P is a set of problem parameters

that we wish to find.

3 Detecting if a client i is spoofed becomes easier given more servers
communicating with i (i.e., a larger neighborhood Ni). But even with
a single server, this determination can be made. A theoretical treatment
of this point is given in Sec. §5 and experimental results (§9.1) use as
little as one server.
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Intuitively, solutions to Problem 2 guarantee that under a

Sybil attack, all server positions computed using anα-modified

coverage controller are within a computable distance ϵ(P)
from their optimal positions (i.e., in the absence of spoofers).

Sec. §6 derives a closed-form for ϵ(P) and shows the set

P of problem parameters to be the number of spoofers, the

footprint of the environment covered, and signal noise.

Finally, Problem 3 below shows that the α weights can

be used to derive discrete decision variables for selecting

what clients to service, for example, in a drone delivery con-

text. Here, the goal is to bound the difference between the

resulting expected path length and the expected path length

in the optimal case of no spoofed clients. For consistency,

we will refer to the delivery drone as a “server” throughout.

Problem 3 (Sybil-resillience in Drone Delivery) Consider

the graph G = (V,E) where vertices V = P ∪ x are client

and depot positions P and x respectively, and edges ei ∈ E
connect the vertex of every client pi ∈ P to the depot vertex

x, i.e., a star graph where x is the inner vertex. Note that we

consider the case for one server and several clients where the

goal of the server is to serve each client, by iteratively pick-

ing up its package at the depot location x and transporting it

to the client’s location p ∈ P .

Let the path cost for each edge d : (E) → R be the Eu-

clidean distance of that edge in G. We wish to show that

an indicator function Iαi
defined over the αi from Prob-

lem 1 can be used as a decision variable to select a subset

of clients P ∗ ⊂ P to be serviced by the delivery vehicle.

The resulting subset of clients P ∗ has the property that the

expected path length computed over this subset of clients,

L =
∑

pi∈P∗ d(pi, x), is the same to within a computable

bound, as the expected path length computed over only le-

gitimate clients Llegit =
∑

pi∈P\S d(pi, x). In other words,

we wish to find a set of problem parameters P and a bound

δ(P) such that |E[L]− E[Llegit]| ≤ δ(P).

4 Fingerprints to Detect Malicious Clients

Here we construct a fingerprint, a directional signal strength

profile for a communicating server-client pair. Our choice

of signal fingerprints have many desirable properties that

enable us to derive a robust spoof-detection metric: they

1) capture directional information of the transmitted signal

source and thus are well-suited for flagging falsely reported

client positions, 2) can be obtained for a single server-client

pair, unlike location estimation techniques such as triangula-

tion which require multiple servers to coordinate, 3) cannot

be manipulated by the client, since the occurrence of each

signal path is due to environment reflections, 4) are applica-

ble in complex multipath environments where a transmitted

signal is scattered off of walls and objects;since these scat-

tered signals manifest themselves as measurable peaks in

the fingerprint, complex multipath contributes significantly

to fingerprint uniqueness.

We construct fingerprints using wireless channels h, com-

plex numbers measurable on any wireless device character-

izing the attenuation in power and the phase rotation that sig-

nals experience as they propagate over the air. These chan-

nels also capture the fact that wireless signals are scattered

by the environment, arriving at the receiver over (poten-

tially) several different paths [40]. Fig. 3 is an example 2D

schematic of a wireless signal traversing from a client robot

to a server robot arriving along two separate paths: one at-

tenuated direct path at 40◦ and one reflected at 60◦. If the

server robot had a directional antenna, it could obtain a full

3D profile of power of the received signal (i.e., |h|2) along

every spatial direction. We use such a 3-D profile as a “spa-

tial fingerprint” that can help distinguish between different

clients.

Unfortunately directional antennas are composed of large

arrays of many antennas that are too bulky for small ag-

ile robot platforms. Luckily, a well-known technique called

Synthetic Aperture Radar [10] (SAR) can be used to emu-

late such an antenna using a commodity Wi-Fi radio. Its key

idea is to use small local robotic motion, such as spinning

in-place, to obtain multiple snapshots of the wireless chan-

nel that are then processed like a directional array of anten-

nas. SAR can be implemented using a well-studied signal

processing algorithm called MUSIC [16] to obtain spatial

fingerprints at each server robot.

Mathematically, we obtain a spatial fingerprint for each

wireless link between a server l and client i as a matrix Fil :
R×R → R. For each spatial path represented as (θ,φ) (see

Fig. 4), Fij maps to a scalar value representing the signal

power received along that path. More formally:

Fil(φ, θ) = 1/|Eign(ĥilĥ
†
il
)e

√
−1Ψil(φ,θ)|2 (1)

Where ĥil is a vector of the ratio of wireless channel snap-

shots between two antennas mounted on the body of the

server l and Ψil(φ, θ) = 2πr
λ

cos(φ − Bl) sin(θ − Γl), λ
is the wavelength of the signal and r is the distance be-

tween the antennas, Bl,Γl are the server’s angular orienta-

tion, Eign(·) are noise eigenvectors, (·)† is conjugate trans-

pose, and k is the number of signal eigenvectors, equal to

the number of paths.

While our above formulation is derived from MUSIC [16],

it varies in one important way: while MUSIC uses a single-

antenna channel snapshot hil, we use the channel ratio ĥil =
h1il/h2il between two antennas. This modification provides

resilience to intentional power scaling by the sender since

scaling his transmit power by χ yields a measured ratio ĥil =
χh1il/(χh2il); a value unaffected by power scaling.



Guaranteeing Spoof-Resilient Multi-Robot Networks 5

Fig. 3: Example Signal Fingerprint: (a) A
server (×) receives a client ( ) signal on 2
paths: direct along 40◦ attenuated by an ob-
stacle (shaded) and reflected by a wall along
60◦. (b) is a corresponding fingerprint: peak
heights at 40◦ and 60◦ correspond to their
relative attenuations.

Fig. 4: 3-D Angles: The figure depicts the
notation for the azimuthal angle φ and po-
lar angle θ for the direct path from a ground
client ( ) to aerial server robot (×) in 3 di-
mensions. More generally, the set of all an-
gles between client i and server l are denoted
as Φil, Θil respectively.

Symbol Meaning

m, c, s No. of servers, clients, spoofers
pi, xl Position of client i / server l
Fil, k Fingerprint of i at l, k peaks

ĥil M × 1 channel ratios of i to l
f(· ;µ,σ2) PDF of normal distribution

g(· ;µ,σ2) min(1,
√
2πf(x;µ,σ2))

κ Constant = ((
√
2 +

√
π)/π)2

αi, βi confidence, honesty metric of i
γij Similarity metric of client i, j

SNR Signal-to-noise ratio
RSSI Received Signal Strength
σ2

θ , σ2

φ Variance in peak shifts of Fil

σ̂2

θ , σ̂2

φ σ2

θ , σ2

φ plus measurement error

CVL
, CVα Coverage centroid of optimal, our

system; error e within ϵ
D(Q), ρ(q) Footprint, Mass function

Fig. 5: Table of Most Common Notations

5 Constructing a Client Confidence Metric

Given a client fingerprint Fil(φ, θ) for each client i relative

to a robotic server l, we wish to generate a confidence met-

ric αi ∈ [0, 1] that approaches 1 for legitimate clients, and

0 otherwise. We achieve this by defining αi as the product

of two terms βi and γij that go to 0 if a client reports a fal-

sified location or has the same fingerprint as another client

j respectively. In particular, βi is termed the honesty metric

and is the likelihood (Eq. (2)) that client i is indeed along

its reported direction (φil, θil) with respect to each server l
in its neighborhood. The second term γij is the similarity

metric - the likelihood that client i’s fingerprint as seen by

server l is not unique compared to that of a different client j
of server l. Finally, αi is the product of 1) βi and 2) (1−γij)
over all j ̸= i, which compares client i’s fingerprint with all

other clients in its neighborhood and approaches 0 if client

i’s profile is not unique. Therefore if either the honesty term

or similarity term goes to 0, the confidence metric αi for

client i also approaches zero.

αi = βi

∏

j ̸=i

(1− γij) where, βi =
∏

l∈Ni

L(i is at (φil, θil)|Fil)

γij =
∏

l∈Ni

L(i spoofs j|Fil, Fjl) (2)

Here, L(·) denotes an event likelihood, (φil, θil) is the re-
ported direction of client i with respect to server l, and the

neighborhood Ni are servers communicating with client i.
Defining Honesty and Similarity Metrics: The honesty

metric βi and similarity metric γij are derived using peak

locations in client fingerprints. In practice however, peaks

may have slight shifts owing to noise. Thus, any comparison

between peak locations must permit some variance due to

these shifts. Fortunately, noise in wireless environments can

be modeled closely as additive white-Gaussian [40]. As the

following lemma shows, this results in peak shifts that are

also Gaussian, meaning that their variance is easy to model

and account for. More formally, the lemma states that shifts

are normally distributed with zero mean and well-defined

variance, based on the wireless medium’s signal-to-noise ra-

tio (SNR):

Lemma 1 Let ∆θi,∆φi denote the error between the az-

imuthal and polar angle of the uncorrelated ith path of a

(potentially multipath) source and the corresponding angles

of the (local) maximum in the fingerprint F (φ, θ), over sev-

eral uniformly gathered packets (i.e., SAR snapshots) for

θ ∈ (10◦, 80◦). Then ∆θi and ∆φi are normally distributed

with a mean 0, and expected variance σ2
φ and σ2

θ :

σ2
θ = σ2

φ =9λ2/(8Mπ2r2SNR)

Where, λ is the wavelength of the signal, SNR is the signal-
to-noise ratio in the network4, M is the number of packets

per-rotation, and r is the distance between the antennas. !

The above lemma follows from well-known Cramer-Rao

bounds [28, 12, 11] shown previously for linear antenna

movements in SAR [39] but readily extensible to circu-

lar rotations (proof in supplementary text [14]). Using this

lemma, we can define the honesty metric βi as the likeli-

hood that the client is at its reported location, subject to this

Gaussian error and additional measurement error in reported

locations.

Definition 3 (βi) Let φFil
and θFil

denote the closest max-

imum in Fil(φ, θ) to (φil, θil). We denote σ̂2
φ and σ̂2

θ as the

variances in angles σ2
φ and σ2

θ plus any variance due to mea-

surement error of reported locations that can be calibrated

from device hardware. We define βi for client i as:

βi =
∏

l

g(φil − φFil
; 0, σ̂2

φ)× g(θil − θFil
; 0, σ̂2

θ) (3)

Where g(x;µ,σ2) = min(1,
√
2πf(x;µ,σ2)) is a normal-

ized Gaussian PDF f(x;µ,σ2) with mean µ and variance

σ2. !

4 For clarity, we drop dependence on i, l for SNR, σθ and σφ
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In practice, reported client locations are subject to mea-

surement errors due to position sensor inaccuracies. Our def-

inition of βi above accounts for this by using the effective

variances σ̂2
φ and σ̂2

θ that are the sum of the variance in an-

gles, σ2
φ and σ2

θ , in addition to the variances due to measure-

ment error.

Using Lemma 1 we define the similarity metric γij as the

likelihood that two client fingerprints share identical peaks:

Definition 4 (γij) Let (Φil,Θil) and (Φjl,Θjl) denote the

set of local maxima, ordered by non-decreasing angle val-

ues, in fingerprints Fil and Fjl. We define γij for client i
relative to client j as:

γij =
∏

φi∈Φil,φj∈Φjl

g(φi − φj ; 0, 2σ
2
φ)

∏

θi∈Θil,θj∈Θjl

g(θi − θj ; 0, 2σ
2
θ) (4)

Where g(·;µ,σ2) is from Definition. 3, and the factor of 2

in the variance accounts for computing the difference of two

normally distributed values. !

Defining the Confidence Metric: We notice that Eqn. 2, 3

and 4 fully define αi for each client i. In summary, the con-

fidence metric is computed in three steps: (1) Obtain the

client fingerprint using SAR on wireless signal snapshots.

(2) Measure the variance of peak locations of these client

fingerprints using their Signal-to-Noise Ratio. (3) Compute

the similarity and honesty metrics using their above defi-

nitions to obtain the confidence metric. Algorithm 1 below

summarizes the steps to construct αi for a given client i.

Algorithm 1 Algorithm to Compute Client Confidence Metric

◃ Input: Ratio of Channels ĥil and SNR
◃ Output: Confidence Metric, αi for client i
◃ Step (1): Measure fingerprints for client i
for l = 1, . . . ,m do

for φ ∈ {0◦, . . . , 360◦}; θ ∈ {0◦, . . . , 360◦} do

Find Fil(φ, θ) using a single spin to get ĥil (Eqn. 1)
end for

end for
◃ Step (2): Measure variances in peak locations using SNR
σ2

θ = σ2

φ = Apply Lemma 1 SNR
◃ Step (3): Find honesty, similarity and confidence metric
βi = Apply Defn. 3 using σ2

θ , σ2

φ, peaks of Fil

for j = {1, . . . , c} \ {i} do
γij = Apply Defn. 4 using σ2

θ , σ2

φ, peaks of Fil, Fjl

end for
αi = βi

∏

j ̸=i(1− γij)

We now present our main result that solves Problem 1

in the problem statement (Sec. §3). The following theorem

says the expected αi’s of legitimate nodes approach 1, while

those of spoofers approach 0, allowing us to discern them

under well-defined assumptions: (A.1) The signal paths are

independent. (A.2) Errors in azimuth and polar angles are

independent. (A.3) The clients transmit enough packets to

emulate a large antenna array (in practice, 25 − 30 packets

per second).5

Theorem 1 Consider a network withm servers and c clients.

A new client i either: 1) spoofs s clients reporting a ran-

dom location, potentially scaling power, or; 2) is a uniformly

randomly located legitimate client. Let αspoof , αlegit be the

confidence metrics in either case. Assume that the client ob-

tains its signals from servers along k paths (where the num-

ber of paths k is defined by Eqn. §1 in Sec. §4). Under A.1-

A.3, the expected αspoof ,αlegit are bounded by:

E[αspoof ] ≤
[

√

σ̂θσ̂φκ
]m

[2mkσθσφ]
s

E[αlegit] ≥ 1− cmσ̂θσ̂φ

[√

2σθσφκ
]mk

(5)

Where κ =
(

(
√
2 +

√
π)/π

)2
, σθ, σφ, σ̂θ, σ̂φ are the vari-

ances defined in Lemma 1 that depend on signal-to-noise

ratio (the latter include measurement error in reported lo-

cations).

Proof Sketch: To give some intuition on why the theorem

holds, we provide a brief proof sketch (proof in supplemen-

tary text [14]). To begin with, notice from their definitions

that both the honesty metric βi and confidence metric γij
inspect peaks in fingerprints Fil (Lemma 1). For the honesty

metric βi of a legitimate node, this peak location should be

normally distributed (subject to noise, measurement error)

around the reported location. For a spoofer that reports a ran-

dom location, the peak location is uniformly distributed. A

similar (but inverse) argument holds for γij . Hence, we sim-

ply need to show is that the definitions of βi and γi which

are both products of the form g(X) can be bounded in ex-

pectation if X is uniform or normally distributed.

To this end, consider two random variables u and ν which

are respectively uniform and normally distributed between 0
and 2π with mean 0 and variance σ2. Let S =

√
2σ(ln 1

σ
)0.5,

the value at which the minimization in g(x) is triggered.

E[g(ν)] and E[g(u)] are as follows:

E[g(ν)] =

∫ S

−S

f(x; 0,σ2)dx+
√
8π

∫ −S

−∞
[f(x; 0;σ2)]2dx

≥
∫ S

−S

f(x; 0,σ2)dx = erf

(

S

σ
√
2

)

≥ 1− σ (6)

Where erf(·) is the well known Error function and using

1−erf(x) < e−x2

. Similarly, we can evaluate E[u(n)] as:

E[g(u)] =

∫ S

−S

1

2π
dx+ 2

√
2π

∫ −S

−2π

1

2π
f(x; 0;σ2)dx

≤ S

π
+

1√
2π

(

1− erf(
S

σ
√
2
)

)

≤
√
σκ (7)

5 This is a mild requirement since 25−30 packets can be transmitted
in tens of milliseconds, even at the lowest data rate of 6Mb/s of 802.11n
Wi-Fi.
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By assumptions A.1-A.3, we can apply these bounds to

write the expectation of the honesty metric βi as a product

of those of the independent variables:

E[βspoof ] =
∏

l

E[g(u; 0, σ̂2
φ)]E[g(u; 0, σ̂2

θ)] ≤
[

√

σ̂θσ̂φκ
]m

E[βlegit] =
∏

l

E[g(ν; 0, σ̂2
φ)]E[g(ν; 0, σ̂2

θ)] ≥ 1−mσ̂θσ̂φ

Applying a similar argument, the similarity metric γ is:

E[γspoof ] =
k
∏

p=1

E[f(ν; 0, 2σ2
φ)f(ν; 0, 2σ

2
θ)] ≥ 1− 2mkσθσφ

E[γlegit] =
k
∏

p=1

E[g(u; 0, 2σ2
φ)g(u; 0, 2σ

2
θ)] ≤

[√

2σθσφκ
]mk

Combining the above equations, we prove Eqn. 5. !

A natural question one might ask is if the above lemma

holds in general environments, where its assumptions A.1-

A.3 may be too stringent. Our extensive experimental results

in Sec. 9 show that our bounds on α approximately pre-

dict performance in general environments. Further, Sec. §9.1

shows that results from an anechoic chamber, which emulate

free-space conditions where the lemma’s assumptions can

be directly enforced, tightly follow the bounds of Lemma 1.

In sum, one can adopt the above lemma to distinguish

adversarial nodes from legitimate nodes, purely based on α.

However, an interesting alternative is to incorporate α di-

rectly into multi-robot controllers to give provable service

guarantees to legitimate nodes. The next section show how

αi readily integrates with robotic coverage controllers, in

particular.

6 Threat-Resistant Distributed Control

This section describes how our spoof detection method from

Sec. §5 integrates with well-known coverage controllers from [5,

36, 37]. The area coverage problem deals with positioning

server robots to minimize their Euclidean distance to cer-

tain areas of interest in the environment. These areas are

determined by an importance function ρ(q) that is defined

over the environment Q ⊂ R3 of size L(Q). For our cov-

erage problem, the peaks of the importance are determined

by client positions P , e.g., ρ(q, P ) = ρ1(q) + . . . + ρc(q)
where ρi(q) quantifies the influence of client i’s position on

the importance function. Using [5, 36, 37], server robot po-

sitions optimizing coverage over ρ(q, P ) will minimize their

distance to clients.

To account for spoofed clients, we modify the impor-

tance function ρ(q, P ) using the αi for each client i ∈ [c]
that is computed by Algorithm 1. E.g., we can multiply each

client-term in ρ(q, P ) by its corresponding confidence weight:

ρ(q, P )α = α1ρ1(q)+. . .+αcρc(q). Given the properties of

Fig. 6: Coverage guarantee: An ϵ ball around the ground-truth cen-
troid, CVlegitimate

, is shown in green. Theorem 2 finds ϵ(P) so that server
positions remain in this ball in the presence of spoofed clients.

these weights derived in Theorem 1, i.e., αi is bounded near

zero for a spoofed client and near one for a legitimate client,

the effect of multiplication by the α’s is that terms corre-

sponding to spoofed clients will be bounded to a small value

(see Fig. 6); providing resilience to the spoofing attack.

For simplicity, we assume the importance function ρ(q)
is static (from [5]) and α’s from Algorithm 1 are computed

once, at the beginning of the coverage algorithm. We note

that our approach readily extends to the adaptive case in [36,

37] when the importance function (and location of clients)

change, by having the service robots exchange their learned

importance function. This in turn can trigger a re-calculation

of α values.

We now show that computed server positions are im-

pacted by spoofers to within a closed-form bound, that de-

pends on problem parameters like signal-to-noise ratio. The-

orem 2 below solves Problem 2 of our problem statement (Sec. §3).

Theorem 2 Let X be a set of server robot positions and

P = S ∪ S̃ be a set of client positions where S is the set of

spoofed client positions, and S̃ is the set of legitimate clients.

The identities of the clients being spoofed is assumed un-

known. Let {α1, . . . ,αc} be a set of confidence weights sat-

isfying Theorem 1 and assume a known importance function

ρ(q, P ) = ρ1(q) + . . .+ ρc(q) that is defined over the envi-

ronment Q ⊂ R3 of size D(Q). Define CV = {x∗
1, . . . , x

∗
m}

to be the set of server positions optimized over ρ(q, S̃), i.e.,

where there are zero spoofed clients and CVα
to be the set

of server positions optimized over ρ(q, P )α = α1ρ1(q) +
. . .+αcρc(q) where there is at least one spoofed client, i.e.,

|S| ≥ 1. If {α1, . . . ,αc} satisfy Theorem 1, we have that

∀x ∈ CVα
there exists a unique y ∈ CV , where in the ex-

pected case dist(x, y) ≤ ϵ(m, s,σφ,σθ,κ)

ϵ = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

D(Q)

and m, s,σφ,σθ,κ are problem parameters as in Theo-

rem 1.

Proof: We make an important observation that E[αi] ≤
a if client i is a spoofed node, and E[αi] ≥ b otherwise;

hence:

ρ(q, P )α = a(ρ1(q) + . . .+ ρs(q)) + b(ρs+1(q) + . . .+ ρc(q))



8 Stephanie Gil
†1

et al.

is the maximal effect that the presence of spoofed clients

can have on the importance function. Intuitively, all spoofed

clients have a weight of at maximum a and all legitimate

clients have a reduced weight of at minimum b. Using this

observation we can bound the influence of the spoofed clients

on computed server control inputs (see Fig. 6). Specifically,

recall from [5] that the position control for each server is:

ul = −2MV (CV − cl), where MV =
∫

V
ρ(q)dq, CV =

1
Mv

∫

V
qρ(q)dq and V is the Voronoi partition for server l

defined as all points q ∈ Q with dist(q, xl) < dist(q, xg)
where g ̸= l. Using the importance function from above we

can write CVα
= 1

MVα
(aCVS

+ bCVL
) where CVS

is the

component of the centroid computed over spoofed nodes

and CVL
is the component of the centroid computed over

legitimate nodes and MVα
is defined shortly. We rewrite

CVS
as a perturbation of the centroid over legitimate nodes

as CVS
= CVL

+ v∥e∥ where v is an arbitrary unit vec-

tor and the magnitude of e can be as large as the length

of the operative environment,∥e∥ ≤ D(Q). Let the total

mass be T = MVs
+ MVL

. We can write a similar ex-

pression for the mass MVα
using the bounds a and b as

MVα
= bT + (a − b)MVL

. Substituting these expressions

into CVα
and simplifying gives CVα

=
CVL

+bv∥e∥
bT+(a−b)MVL

. Com-

bining this expression with the server control input:

ul = k ( [(a+ b)CVL
− pl] + b∥e∥v ) (8)

Where k = −2(bT + aMVL
). If (a + b) = 1, this control

input drives the server robot l to a neighborhood of size ϵ =
b∥e∥ ≤ bD(Q) centered around the centroid CL defined

over the legitimate clients. So if:

b = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

from Theorem 1 Equation (5), then:

ϵ = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

D(Q)

then we have (a+ b) = 1 as desired, proving the lemma. !

7 Threat-Resistant Drone Delivery

The previous section describes an application of the α from

Section 5 as continuous weights to bound the influence of

adversarial clients. While this approach is useful for prob-

lems of a continuous nature like coverage, other problems

in control require a more discrete approach. For example,

in delivery problems a decision must be made whether to

visit a client site or not since traversing a path some frac-

tion of its length is equivalent to not visiting the client site at

all. In other words, it is an inherently binary decision prob-

lem. This section shows how the α weights from Section 5

can be used as a classifier to select a subset of clients to

be serviced, as in a drone delivery context. The drone de-

livery problem is described in Problem 3. The result below

shows that the total path length traversed in the drone deliv-

ery problem is impacted by the presence of spoofed nodes

to within a closed-form bound, that depends on problem pa-

rameters like signal-to-noise ratio.

Theorem 3 Let x be a the server robot position and P =
S∪S̃ be a set of client positions where S is the set of spoofed

client positions, and S̃ is the set of legitimate clients. The

identities of the clients being spoofed is assumed unknown.

Let {α1, . . . ,αc} be a set of confidence weights satisfying

Theorem 1 and environment size D(Q). There exists a de-

cision threshold T > 0 such that the indicator function de-

fined as:

Iαi
=

{

1 αi > T

0 otherwise

for each client i ∈ {1, . . . , c}, can be derived to determine

whether client i will be serviced by the delivery drone, i.e.,

Iαi
= 1. Using this indicator function we define the total

path length covered by the server to beL =
∑

pi∈P Iαi
dist(pi, x).

Let Llegit =
∑

pi∈S̃ dist(pi, x) be the total path length cov-

ered by the server in the optimal case of no spoofed nodes.

Then the difference in expectations is bounded such that:

|E[L]− E[Llegit]| ≤ max(|S|, |S̃|)bD(Q) (9)

= max(|S|, |S̃|)ϵ (10)

where ϵ = bD(Q), b = max
{

[
√

σ̂θσ̂φκ]m[2mkσθσφ]s ,
cmσ̂θσ̂φ[

√

2σθσφκ]mk
}

, and m, s,σφ,σθ,κ are problem

parameters as in Theorem 1.

Proof: For each client i ∈ 1, . . . , c, let us denote:

Iαi
=

{

1 αi > T

0 otherwise

Where T is a constant chosen so that:

E[αi] =

∫ 1

0
P (αi > x)dx (11)

= P (αi > T ) (using Mean Value Theorem) (12)

= E[Iαi
] (13)

The last equation holds from the fact that Iαi
is an indicator

function for the event αi > T . Note that here we show the

existence of such a T , but we do not find an analytical value

for T . In Section 9 however, we show the empirical perfor-

mance of the median threshold T = 0.5. We can then write
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the expected total path length of the delivery drone as:

E[L] = E[
∑

pi∈P

Iαi
dist(pi, x)] (14)

=
∑

pi∈P

E[Iαi
]dist(pi, x) (15)

=
∑

pi∈P

E[αi]dist(pi, x) (using Eqn. 13) (16)

=
∑

pi∈S̃

E[αi]dist(pi, x) +
∑

pl∈S

E[αl]dist(pl, x) (17)

Recall from Theorem 1 and 2 that we can bound E[αi] as:

E[αi,spoof ] ≤ ϵ/D(Q) E[αi,legit] ≥ 1− ϵ/D(Q)

Where

ϵ = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

D(Q)

Applying the above bounds to Eqn. 17, we have:

E[L] ≤
∑

pi∈S̃

dist(pi, x) +
ϵ

D(Q)

∑

pl∈S

dist(pl, x)

≤ E[Llegit] + |S|ϵ

E[L] ≥
∑

pi∈S̃

(

1− ϵ

D(Q)

)

dist(pi, x) +
∑

pl∈S

0

≥ E[Llegit]− |S̃|ϵ

Combining the above two equations, we conclude that:

|E[L]− E[Llegit]| ≤ max(|S|, |S̃|)ϵ

which proves the theorem. !

8 Using α in Multi-Robot Control Objectives

The above sections demonstrate two modalities of integrat-

ing confidence metric α to secure multi-robot controllers:

either as a continuous per-agent weight, or as a means to

classify agents as legitimate or spoofed. Theorem 2 and The-

orem 3 show theoretical bounds on the influence of adver-

saries to controllers in the coverage and unmanned delivery

contexts. Further, empirical results in Sec. §9 demonstrate

that α performs well when applied both in continuous and

discrete settings. However, it is natural to ask which of these

two modes ought be applied to secure any given multi-robot

problem of interest, beyond coverage and unmanned deliv-

ery. In this regard, we make the following observations:

Applying α as continuous weights: For many control ob-

jectives, the contribution of each agent to the total optimiza-

tion function is naturally expressed as a continuous quan-

tity. In these contexts, a natural modality to integrate α is

to incorporate it as a per-agent weight that directly reduces

Fig. 7: Hardware

evaluation: De-

picts an example

robot network

within our experi-

mental setup with

a quadrotor server

and several mobile

clients

the contributions of spoofed clients to the optimization func-

tion. Doing so has two key advantages: (1) It enables prov-

able bounds in expectation on the influence of spoofers to

the multi-robot objective (akin to Theorem 2). (2) Per-client

weighting limits the extent to which spoofed clients can in-

fluence the controller in the worst-case.

Applying α to decision-based problems: Unfortunately,

many problems do not allow for a continuous weighting

since their objectives are inherently discrete decisions on

each agent in the network (e.g. unmanned delivery). In these

cases, α can still be used to derive an indicator function that

classifies agents as legitimate or spoofed. This modality still

allows for obtaining bounds in expectation on the influence

of spoofers (akin to Theorem 3). However, by the sheer na-

ture of these problems, false positives or negatives have a

greater impact on the objective function in the worst-case.

For example, a small shift in α when it is close to the thresh-

old may cause the indicator function to easily mislabel a

spoofed client as legitimate or vice-versa.

9 Experimental Results

This section describes our results from an experimental eval-

uation of our theoretical claims. Our aerial servers were im-

plemented on two AscTec Atomboard computing platforms

equipped with Intel 5300 Wi-Fi cards with two antennas

each, mounted on two AscTec Hummingbird quadrotors. Our

clients were ten iRobot Create robots, each equipped with

Asus EEPC netbooks and single-antenna Wi-Fi cards. An

adversarial client forged multiple identities by spawning mul-

tiple packets containing different identities (up to 75% of the

total number of legitimate clients in the system), and could

use a different transmit power for each identity. The ad-

versary advertised identities by modifying the Wi-Fi MAC

field, a common technique for faking multiple identities [38].

Evaluation: We evaluate our system in two environments:

1) An indoor multipath-rich environment with walls and ob-

stacles equipped with a Vicon motion capture system to aid

quadrotor navigation; 2) An anechoic chamber to emulate

a free-space setting that is particularly challenging to our
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Fig. 8: Experimental Evaluation of α: (a) In an anechoic chamber

approximating our assumptions A.1-A.3 (§1), α largely agrees with the-

ory. (b) In a typical multipath environment, experimental results closely

follow theoretical predictions. Data shows that α = 0.5 is a good thresh-

old value.
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Fig. 9: Co-Aligned Clients: We vary the angle φ between a legitimate

and malicious client, relative to a single server, and plot α in (a) an ane-

choic chamber and (b) an indoor environment. The minimum φ needed

to distinguish the clients is only: (a) 3◦ in freespace, (b) 0◦ in multipath

settings.

(a) No security (b) Oracle (c) Our System

0 5 10 15 20 25 30
60

80

100

120

140

Iteration #

S
er

vi
ce

 c
os

t f
or

 L
eg

iti
m

at
e 

no
de

s

 

 

Ground Truth
Naive 
Ours

Spoofer Attack
 50% of Network

Spoofer Attack
 300% of Network

(d) Cost

Fig. 10: Experimental Results for Sybil Attack in Multi-Agent Coverage: Depicts the total distance of converged quadrotor server positions

(white ×) to two legitimate clients ( ) and six spoofed clients ( ). We consider: (a) an insecure system where each spoofed client creates a false

peak in the importance function, (b) a ground truth importance function, and (c) our system where applying α weights from Algorithm 1 recovers

the true importance function. (d) Depicts a ground-truth cost computed with respect to legitimate clients as Sybil nodes dynamically enter the

network. Our system (red dotted line) performs near-optimal even when spoofed clients comprise more than twice the network.

system. We estimated the average theoretical expected stan-

dard deviation to be σθ,σφ of 0.7◦ (Lemma 1). After includ-

ing the standard deviation in reported location, based on the

known errors of our localization framework, this increased

the average σ̂θ, σ̂φ by 2◦(variances in each experiment de-

pend on measured SNR) We compare our system against a

baseline that uses a Received Signal Strength (RSSI) com-

parison (akin to [34]).

Roadmap: We conduct four classes of experiments: (1) Mi-

crobenchmarks to validate our client confidence metric, both

in free-space and multipath indoor environments (Sec. §9.1).

(2) Experiments applying this confidence metric to quar-

antine adversaries (Sec. §9.2). Application of our system

to secure against Sybil attacks: (3) the coverage problem

(Sec. §9.3); (4) the drone delivery problem (Sec. §9.4).

9.1 Microbenchmarks on the Confidence Metric

This experiment studies the correctness of our system’s con-

fidence metric α. Recall from theory in §5 that α’s measured

by a server robot distinguish between unique clients based

on their diverse physical directions and the presence of mul-

tipath reflections. Thus, a free-space environment (i.e., with

no multipath) is particularly challenging to our system.

Method: To approximate free-space, we measured α values

in a radio-frequency anechoic chamber (Fig. 11(a)) which

attenuates reflected paths by about 60 dB, for a legitimate

and malicious client from one server robot 12 m away. We

also introduced a metallic reflector in this controlled setting,

to measure the contribution of multipath to α. Next, in a

10 m x 8 m indoor room (a typical multipath case), we mea-

sured α’s from one server for up to ten legitimate clients and

ten spoofed clients.

Results: In Fig. 8, the values of α in the anechoic chamber

tightly follow our theoretical bounds in Theorem 1 (Fig. 9(c)).

As expected, our results in indoor multipath environments

exhibit a larger variance but follow the trend suggested by

theory. Further, we stress our confidence metric by isolating

the case of colinearity in both environments. We consider

a spoofing adversary initially co-aligned with a legitimate

client as the angle of separation, φ, increases from 0◦ to 20◦

relative to the server robot (Fig. 11(b)), and measure α in

Fig. 9. In the anechoic chamber at φ close to 0◦, the finger-

prints of the legitimate and adversarial nodes are virtually

identical: each has precisely one peak at 0◦. Consequently,
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(a) Chamber (b) φ

Fig. 11: Microbenchmarks on α : (a) An anechoic chamber simu-

lating freespace. (b) We measure α while varying the angle between a

legitimate and malicious client, relative to the robotic server.

Fig. 12: Anechoic chamber multipath: We measure α for a spoof-
ing client coaligned with a legitimate client (φ = 0◦) in the anechoic
chamber before and after adding a reflector to introduce multipath. The
increased separation of α and lower standard deviation (shown as bars)
is depicted on the right.

α for the legitimate node is much below 1, indicating that

is believed to be adversarial (i.e., the term (1 − γ) in α
approaches zero in Eqn. 2). However, α for the legitimate

client quickly approaches 1, even if φ = 3◦ in the anechoic

chamber. In fact, α is virtually identical to 1 beyond 10◦,

indicating that a single server robot can distinguish closely

aligned legitimate and adversarial clients even in free-space.

To evaluate the effects of multipath with coaligned clients

in a controlled manner, we positioned a small metallic re-

flector several meters away from the two clients and server

in the anechoic chamber. Fig. 12 demonstrates that the the

additional reflected signal paths strongly disambiguate the α
values for coaligned clients. Specifically, the term (1−γ) in

Eqn. 2 approaches zero only for the adversary. We also eval-

uate coaligned clients in a typical indoor setting (Fig. 9b).

As expected, multipath reflections from walls and obstacles

clearly distinguish spoofing clients from legitimate clients

even at φ = 0◦.

9.2 Performance of Sybil Attack Detection

In this experiment, we measure our system’s classification

performance on legitimate and spoofed clients, in the pres-

ence of static, mobile, and power-scaling adversaries.

Method: This experiment was performed in the multipath-

rich indoor testbed with walls and obstacles. Each run con-

sisted of one quadrotor server and randomly positioned clients

— either ten legitimate clients, or nine legitimate clients

and an adversary reporting two to nine additional spoofed

Our System RSSI
TPR FPR TPR FPR

Static 96.3 3.0 81.5 9.1

Mobile 96.3 6.1 85.2 6.1

∆ mW 100.0 3.0 74.1 27.3

Table 1: Summarized classification performance: True

positive rates (TPR) and false positive rates (FPR) for clas-

sifying clients as spoofed, when α < 0.5 in our system, and

with a 2 dB minimum dissimilarity for RSSI.

clients. Each Sybil attack was performed under three modal-

ities: (1) a stationary attacker with a fixed transmission power,

(2) a mobile attacker (random-walk and linear movements),

and (3) an attacker scaling the per-packet power by a dif-

ferent amount for each spoofed client, from 1 to 31 mW.

We compare our system to a baseline RSSI classifier using a

thresholded minimum dissimilarity, a technique previously

applied in static networks [34, 42]. Measured signal-to-noise

ratios for clients ranged from 5 dB to 25 dB. In our sys-

tem, quadrotor servers performed classification by applying

a threshold using the measured α values for each client.

Results: In Fig. 13, we measure true-positives against false-

positives collected over multiple network topologies, result-

ing in the well-known Receiver Operating Characteristics

(ROC) curves [8]. Our theoretical results in Sec 7 indicate

that α measurements are suitable for use in a threshold-

ing classification context. Empirically, Fig. 8 shows that a

threshold of α < 0.5 performs well to classify clients as

spoofed. Table 1 summarizes our performance results when

using this threshold for each of the three attack modalities,

compared to RSSI-based classification where a 2 dB thresh-

olded minimum dissimilarity performed best.

In particular, our classifier is robust to power-scaling Sybil

attacks (where RSSI performs poorly) since we use the ra-

tio of wireless channels in computing α (Sec. §4). Our client

classifier exhibits consistent performance in both power-scaling

and mobile scenarios with a TPR ≈ 96% and FPR ≈ 4%.

9.3 Application to Multi-Agent Coverage

We implement the multi-agent coverage problem from [5],

where a team of aerial servers position themselves to min-

imize their distance to client robots at reported positions

pi,i ∈ [c]. We use an importance function ρ(q, P ) = ρ1(q)+
. . . + ρc(q) defined in Sec. §6 where each client term is a

Gaussian-shaped function ρi(q) = exp(− 1
2 (q − pi)T (q −

pi)) (Fig. 10b). An α-modified importance function is im-

plemented as ρ(q, P )α = α1ρ1(q) + . . . + αcρc(q) where

the α terms are computed using Algorithm 1 (Fig. 10c).

Method. This experiment was performed in the multipath-

rich indoor testbed. For each experiment we randomly place

three clients in an 8 m x 10 m room with two AscTec quadro-
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(b) Static adversaries (c) Power-Scaling adversaries (d) Mobile adversaries

Fig. 13: Receiver Operating Characteristics: We measure ROC curves for adversaries which (a) are static; (b) scale power

differently while spoofing different clients; and (c) are mobile. We compare the performance of our system against a baseline

using received signal power.

tor servers. Fig. 10(a)-(c) shows one client-server topology

where an adversary spoofs six Sybil clients. Upon conver-

gence, we measure the distance of each server from an opti-

mal location in 3 scenarios: 1) a naive system with no secu-

rity, 2) an oracle which discards Sybil clients a priori, and

3) our system.

Results: Fig. 10(a)-(c) depicts the converged locations for

a candidate topology in the above three scenarios. We ob-

serve that by incorporating α weights in our controller, our

system approximates oracle performance. Fig. 10d demon-

strates the ability of our system to bound the service cost to

near optimal even as spoofers enter the network (comprising

up to 300%).

Aggregate Results: Across multiple topologies and 12 runs,

with no security the maximum distance from each quadrotor

to an oracle solution is on average 3.77 m (stdev: 0.86). Our

system achieves a 0.02 m (stdev: 0.02) average from oracle.

9.4 Application to Unmanned Delivery

This experiment applies our Sybil attack detection algorithm

in the context of unmanned delivery. Specifically, we con-

sider a delivery quadrotor that iteratively visits multiple client

locations from a depot to deliver packages, for instance de-

livering relief material in a disaster area. An adversarial power-

scaling client spawning multiple non-existent client loca-

tions could readily disrupt such a system, drawing the de-

livery robot away to service regions where no clients ex-

ist. We study the effectiveness of our system in guarding

against such attacks and compare it against the RSSI base-

line (Sec. §9.2).

Method: Multiple heuristics exist for approximating opti-

mal solutions to unmanned delivery problems which min-

imize distance, payload, or fuel usage [22, 33]. We use a

simple distance metric — the shortest quadrotor flight path

which visits all client locations iteratively, returning to the

depot each time — and deploy a system that uses our bi-

nary classifier based on signal fingerprints to filter malicious

clients. We compare our results both against a baseline clas-

sifier based on RSSI as well as a naive system which vis-

its every reported client location. We repeat the experiment

across ten randomly chosen topologies. Fig. 14(a) depicts a

candidate topology where two legitimate clients report their

positions p1 and p2 to a quadrotor beginning its delivery

route at location x, while a malicious client at position p3 re-

ports six false client locations (inclusive). The average min-

imum trajectory length for the quadrotor to visit all 8 clients

across our topologies is 41.78m.

Results: Fig. 14(a)-(c) depicts candidate trajectories of the

quadrotor in the three scenarios: (1) A naive system with-

out cyber-security; (2) The RSSI-baseline; (3) Our system.

In the RSSI baseline, the quadrotor compares the received

power per packet for each client, but misclassifies a subset

of the spoofed clients as legitimate owing to noise, result-

ing in the quadrotor traveling a mean path length of 20.92

m. In contrast, our system benefits from the large margin of

separation when classifying clients using their α value (as in

Sec. §9.2), with the quadrotor’s resultant mean path length

of 12.05 m performing close to an oracle’s ideal system’s

path length of 10.91 m across toplogies (see Fig. 14(d)).

10 Conclusion

In this paper, we develop a new system to guard against

the Sybil attack in multi-robot networks. We derive theoret-

ical guarantees on the performance of our system, which are

validated experimentally. While this paper has focused on

coverage and unmanned delivery, our approach can be read-
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Fig. 14: Path of Delivery Robot: Depicts sample trajectories of the delivery robot iteratively visiting each client and returning

to a depot with two legitimate clients and an adversary spoofing six clients for: (a) The naive system with no security; (b)

The baseline that classifies nodes based on received signal power; and (c) Our system. (d) Depicts the mean and standard

deviation of total length of the trajectory across the different scenarios.

ily extended to secure other multi-robot controllers against

Sybil attacks, e.g., applications within the Vehicle Routing

Problem [22, 33], in search-and-rescue tasks [23], and to for-

mation control [43]. We note for future work that our method

of detecting spoofed clients is applicable to servers as well,

since they also communicate wirelessly. Additionally, while

this paper addresses Sybil attacks in which spoofed clients

assume unique identities, our approach generalizes to de-

fense against replay attacks [9, 29] where adversaries im-

itate existing legitimate clients in the network. Since our

approach is based on the fundamental physics of wireless

signals, we believe that it also applies to other Wi-Fi based

security issues in robot swarms such as packet path valida-

tion [25] and detecting packet injection attacks to name a

few.

Acknowledgements This work was partially supported by the NSF
and MAST project (ARL grant W911NF-08-2-0004). We thank mem-
bers of the MIT Center for Wireless Networks and Mobile Computing:
Amazon.com, Cisco, Google, Intel, MediaTek, Microsoft, and Telefon-
ica for their interest and general support.

References

1. Amazon prime air. URL http://www.amazon.

com/b?node=8037720011

2. Adib, F., Kumar, S., Aryan, O., Gollakota, S., Katabi,

D.: Interference Alignment by Motion. MOBICOM

(2013)

3. Beard, R., McLain, T., Nelson, D., Kingston, D., Johan-

son, D.: Decentralized cooperative aerial surveillance

using fixed-wing miniature uavs. Proceedings of the

IEEE 94(7), 1306–1324 (2006). DOI 10.1109/JPROC.

2006.876930

4. Chapman, A., Nabi-Abdolyousefi, M., Mesbahi, M.:

Identification and infiltration in consensus-type net-

works. 1st IFAC Workshop on Estimation and Control

of Networked Systems (2009)

5. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage

control for mobile sensing networks. Robotics and Au-

tomation, IEEE Transactions on 20(2), 243–255 (2004).

DOI 10.1109/TRA.2004.824698

6. Daniel, K., Dusza, B., Lewandowski, A., Wietfeld, C.:

Airshield: A system-of-systems muav remote sensing

architecture for disaster response. In: Systems Con-

ference, 2009 3rd Annual IEEE, pp. 196–200 (2009).

DOI 10.1109/SYSTEMS.2009.4815797

7. Douceur, J.: The sybil attack. In: P. Druschel,

F. Kaashoek, A. Rowstron (eds.) Peer-to-Peer Systems,

Lecture Notes in Computer Science, vol. 2429, pp.

251–260. Springer Berlin Heidelberg (2002). DOI

10.1007/3-540-45748-8 24. URL http://dx.doi.

org/10.1007/3-540-45748-8_24

8. Fawcett, T.: Roc graphs: Notes and practical considera-

tions for researchers. Tech. rep. (2004)

9. Feng, Z., Ning, J., Broustis, I., Pelechrinis, K., Krishna-

murthy, S.V., Faloutsos, M.: Coping with packet replay

attacks in wireless networks. In: Sensor, Mesh and Ad

Hoc Communications and Networks (SECON), 2011

8th Annual IEEE Communications Society Conference

on, pp. 368–376. IEEE (2011)

10. Fitch, P.J.: Synthetic Aperture Radar. Springer (1988)

11. Gazzah, H., Marcos, S.: Directive antenna arrays for

3d source localization. In: Signal Processing Advances

in Wireless Communications, 2003. SPAWC 2003. 4th

IEEE Workshop on, pp. 619–623 (2003). DOI 10.1109/

SPAWC.2003.1319035

12. Gazzah, H., Marcos, S.: Cramer-Rao bounds for an-

tenna array design. IEEE Transactions on Signal Pro-

cessing 54, 336–345 (2006). DOI 10.1109/TSP.2005.

861091

13. Gil, S., Kumar, S., Katabi, D., Rus, D.: Adaptive Com-

munication in Multi-Robot Systems Using Directional-

http://www.amazon.com/b?node=8037720011
http://www.amazon.com/b?node=8037720011
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24


14 Stephanie Gil
†1

et al.

ity of Signal Strength. ISRR (2013)

14. Gil, S., Kumar, S., Mazumder, M., Katabi, D., Rus, D.:

Guaranteeing spoof-resilient multi-robot networks. Full

paper version with supplementary material available as

a TECH REPORT at MIT CSAIL Publications and Dig-

ital Archive (http:/publications.csail.mit.edu)

15. Goldsmith, A.: Wireless Communications. Cambridge

University Press (2005)

16. Hayes, M.H.: Statistical Digital Signal Processing and

Modeling, 1st edn. John Wiley & Sons, Inc., New York,

NY, USA (1996)

17. Higgins, F., Tomlinson, A., Martin, K.: Threats to the

swarm: Security considerations for swarm robotics. In-

ternational Journal on Advances in Security 2 (2009)

18. Jin, D., Song, J.: A traffic flow theory aided physical

measurement-based sybil nodes detection mechanism

in vehicular ad-hoc networks. In: Computer and

Information Science (ICIS), 2014 IEEE/ACIS 13th

International Conference on, pp. 281–286 (2014).

DOI 10.1109/ICIS.2014.6912147. URL http://

ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6912147&tag=1

19. Klausing, H.: Feasibility of a sar with rotating antennas

(rosar). In: Microwave Conference, 1989 (1989)

20. Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor

localization with zero start-up cost. In: Proceedings of

the 20th Annual International Conference on Mobile

Computing and Networking, MobiCom ’14, pp. 483–

494. ACM, New York, NY, USA (2014). DOI 10.1145/

2639108.2639142. URL http://doi.acm.org/

10.1145/2639108.2639142

21. Kumar, S., Hamed, E., Katabi, D., Erran Li, L.:

Lte radio analytics made easy and accessible. In:

Proceedings of the 2014 ACM Conference on SIG-

COMM, SIGCOMM ’14, pp. 211–222. ACM, New

York, NY, USA (2014). DOI 10.1145/2619239.

2626320. URL http://doi.acm.org/10.

1145/2619239.2626320

22. Laporte, G., Nobert, Y., Taillefer, S.: Solving a family of

multi-depot vehicle routing and location-routing prob-

lems. Transportation science 22(3), 161–172 (1988)

23. Lin, L., Goodrich, M.A.: Uav intelligent path planning

for wilderness search and rescue. In: Intelligent Robots

and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, pp. 709–714. IEEE (2009)

24. Liu, H., Wang, Y., Liu, J., Yang, J., Chen, Y.: Prac-

tical user authentication leveraging channel state in-

formation (csi). In: Proceedings of the 9th ACM

Symposium on Information, Computer and Commu-

nications Security, ASIA CCS ’14, pp. 389–400.

ACM, New York, NY, USA (2014). DOI 10.1145/

2590296.2590321. URL http://doi.acm.org/

10.1145/2590296.2590321

25. Liu, X., Li, A., Yang, X., Wetherall, D.: Passport: Se-

cure and adoptable source authentication. In: Proceed-

ings of the 5th USENIX Symposium on Networked

Systems Design and Implementation, NSDI’08, pp.

365–378. USENIX Association, Berkeley, CA, USA

(2008). URL http://dl.acm.org/citation.

cfm?id=1387589.1387615

26. Liu, Y., Bild, D., Dick, R., Mao, Z.M., Wallach, D.: The

mason test: A defense against sybil attacks in wireless

networks without trusted authorities (2014)

27. MalmirChegini, M., Mostofi, Y.: On the spatial pre-

dictability of communication channels. Wireless Com-

munications, IEEE Trans. 11(3) (2012)

28. Mathews, C.P., Zoltowsk, M.D.: Signal subspace tech-

niques for source localization with circular sensor ar-

rays. Purdue University TechReport (1994)

29. Miao, F., Pajic, M., Pappas, G.J.: Stochastic game ap-

proach for replay attack detection. In: Decision and

Control (CDC), 2013 IEEE 52nd Annual Conference

on, pp. 1854–1859. IEEE (2013)

30. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil

attack in sensor networks: analysis defenses. In: In-

formation Processing in Sensor Networks, 2004. IPSN

2004. Third International Symposium on, pp. 259–268

(2004). DOI 10.1109/IPSN.2004.1307346

31. Olfati-Saber, R., Murray, R.: Consensus problems in

networks of agents with switching topology and time-

delays. Automatic Control, IEEE Transactions on

49(9), 1520–1533 (2004). DOI 10.1109/TAC.2004.

834113

32. Parker, L.E.: Distributed algorithms for multi-robot ob-

servation of multiple moving targets. Autonomous

Robots 12 (2002)

33. Pavone, M., Frazzoli, E., Bullo, F.: Adaptive and dis-

tributed algorithms for vehicle routing in a stochastic

and dynamic environment. Automatic Control, IEEE

Transactions on 56(6), 1259–1274 (2011)

34. Pires W.R., J., de Paula Figueiredo, T., Wong, H.,

Loureiro, A.: Malicious node detection in wireless sen-

sor networks. In: Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International, pp.

24– (2004). DOI 10.1109/IPDPS.2004.1302934

35. Sargeant, I., Tomlinson, A.: Modelling malicious enti-

ties in a robotic swarm. In: Digital Avionics Systems

Conference (DASC), 2013 IEEE/AIAA 32nd (2013)

36. Schwager, M., Julian, B.J., Rus, D.: Optimal cover-

age for multiple hovering robots with downward fac-

ing cameras. In: Robotics and Automation, 2009. ICRA

’09. IEEE International Conference on, pp. 3515–3522

(2009). DOI 10.1109/ROBOT.2009.5152815

37. Schwager, M., Rus, D., Slotine, J.J.: Decentralized,

adaptive coverage control for networked robots. The

International Journal of Robotics Research 28(3), 357–

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6912147&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6912147&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6912147&tag=1
http://doi.acm.org/10.1145/2639108.2639142
http://doi.acm.org/10.1145/2639108.2639142
http://doi.acm.org/10.1145/2619239.2626320
http://doi.acm.org/10.1145/2619239.2626320
http://doi.acm.org/10.1145/2590296.2590321
http://doi.acm.org/10.1145/2590296.2590321
http://dl.acm.org/citation.cfm?id=1387589.1387615
http://dl.acm.org/citation.cfm?id=1387589.1387615


Guaranteeing Spoof-Resilient Multi-Robot Networks 15

375 (2009). URL http://ijr.sagepub.com/

content/28/3/357.abstract

38. Sheng, Y., Tan, K., Chen, G., Kotz, D., Campbell, A.:

Detecting 802.11 mac layer spoofing using received

signal strength. In: INFOCOM 2008. The 27th Con-

ference on Computer Communications. IEEE, pp. –

(2008). DOI 10.1109/INFOCOM.2008.239. URL

http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=4509834&tag=1

39. Stoica, P., Arye, N.: Music, maximum likelihood, and

cramer-rao bound. Acoustics, Speech and Signal Pro-

cessing, IEEE Transactions on 37(5), 720–741 (1989).

DOI 10.1109/29.17564

40. Tse, D., Vishwanath, P.: Fundamentals of Wireless

Communications. Cambridge University Press (2005)

41. Wang, J., Katabi, D.: Dude, where’s my card?: Rfid

positioning that works with multipath and non-line of

sight. SIGCOMM (2013)

42. Wang, T., Yang, Y.: Analysis on perfect location

spoofing attacks using beamforming. In: INFOCOM,

2013 Proceedings IEEE, pp. 2778–2786 (2013). DOI

10.1109/INFCOM.2013.6567087. URL http://

ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6567087

43. Wang, X., Yadav, V., Balakrishnan, S.: Cooperative

uav formation flying with obstacle/collision avoidance.

Control Systems Technology, IEEE Transactions on

15(4), 672–679 (2007)

44. Wang, Y., Attebury, G., Ramamurthy, B.: A survey of

security issues in wireless sensor networks. Commu-

nications Surveys Tutorials, IEEE 8(2), 2–23 (2006).

DOI 10.1109/COMST.2006.315852

45. Xiao, L., Greenstein, L., Mandayam, N.B., Trappe, W.:

Channel-based detection of sybil attacks in wireless

networks. Information Forensics and Security, IEEE

Transactions on 4(3), 492–503 (2009). DOI 10.1109/

TIFS.2009.2026454

46. Xiong, J., Jamieson, K.: Securearray: Improving wifi

security with fine-grained physical-layer informa-

tion. In: Proceedings of the 19th Annual Interna-

tional Conference on Mobile Computing &#38; Net-

working, MobiCom ’13, pp. 441–452. ACM, New

York, NY, USA (2013). DOI 10.1145/2500423.

2500444. URL http://doi.acm.org/10.

1145/2500423.2500444

47. Yang, J., Chen, Y., Trappe, W., Cheng, J.: Detection

and localization of multiple spoofing attackers in wire-

less networks. Parallel and Distributed Systems, IEEE

Transactions on 24(1), 44–58 (2013). DOI 10.1109/

TPDS.2012.104

48. Yang, Z., Ekici, E., Xuan, D.: A localization-based

anti-sensor network system. In: INFOCOM 2007.

26th IEEE International Conference on Computer

Communications. IEEE, pp. 2396–2400 (2007).

DOI 10.1109/INFCOM.2007.288. URL http://

ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4215870

http://ijr.sagepub.com/content/28/3/357.abstract
http://ijr.sagepub.com/content/28/3/357.abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509834&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509834&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6567087
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6567087
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6567087
http://doi.acm.org/10.1145/2500423.2500444
http://doi.acm.org/10.1145/2500423.2500444
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215870
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215870
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215870

	Introduction
	Related Work
	Problem Statement
	Fingerprints to Detect Malicious Clients
	Constructing a Client Confidence Metric
	Threat-Resistant Distributed Control
	Threat-Resistant Drone Delivery
	Using  in Multi-Robot Control Objectives
	Experimental Results
	Conclusion



