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Abstract—Maintaining low spatial sidelobes, despite the failure 

of individual antenna elements, is important for many radar and 
communication systems utilizing phased arrays. Techniques in 
the literature require accurate antenna element pattern data. In 
this paper we present a new algorithm for computing low-
sidelobe beamforming which only requires the original 
beamforming weights which produce low sidelobes when all 
elements are functioning normally. The algorithm does not 
require accurate knowledge of the antenna element patterns, and 
permits user adjustment of the trade-off between sidelobe level, 
taper loss, and mainbeam width. Near optimum low sidelobes are 
demonstrated in several examples. 
 

Index Terms — Array signal processing, beams, linear algebra, 
phased arrays, shaped beam antennas. 

I. INTRODUCTION 

For many phased array antenna applications, low spatial 
sidelobes are required, and it is desirable to maintain these low 
sidelobes despite the failure of one or more antenna elements. 
For most systems the array manifold (i.e., the individual 
complex antenna element patterns) are known well enough to 
compute a low spatial sidelobe pattern despite the failure of 
several elements, as described in [1-8]. For this paper it is 
assumed the low sidelobe beamformers with no failed 
elements are known. However with failed elements the array 
manifold is not known accurately enough to apply any of the 
referenced approaches. The complex antenna element patterns 
are different and the measurement errors are too large. 
Nothing has been found in the literature for this problem. The 
authors published a paper in ICASSP 2012 on this topic [9]. 
This expanded paper provides detailed mathematical 
justification, performance bounds, and additional techniques 
not included in the earlier paper.  

Specifically, consider an ݊ element phased array and the 
following length ݊ vectors. Let ࣂ be an angular direction 
which for a two dimenstional array is a vector of length 2 and 
for a one dimentional array is a scalar. Let ࣂ෩ be the desired 
direction for a low sidelobe beamformer. We assume with no  
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failed elements the following length ݊ vectors are 
UNKNOWN and KNOWN and all vectors except for ࢿሺࣂሻ are 
unit normed. 

 
UNKNOWN for all ࣂ 
 ࢜௧ሺθሻ : true steering vector to angle ࣂ (i.e., on the array 

manifold) 
 ࢿሺࣂሻ: antenna array manifold (calibration) errors 
 
KNOWN  
 ࢝ሺࣂሻ: low sidelobe beamformers for all ࣂ within a 

neighborhood around ࣂ෩, where the inner product 
,ሻࣂሺ࢝〉 ࣂ௧ሺ࢜  ઢሻ〉	is small for ࣂ  ઢ in the sidelobe 
region 

 ࢜൫ࣂ෩൯ ൌ ሾ࢜௧ሺࣂ෩ሻ  ෩ሻࣂ௧ሺ࢜ห	෩ሻሿ/ࣂሺࢿ   ෩ሻห : assumedࣂሺࢿ
steering vector to angle ࣂ෩ 
 

The foundation of this paper is the observation that with 
failed elements and perfect knowledge of the array manifold,  
a nearly optimal low sidelobe beamformer is represented by a 
linear combination of low sidelobe beamformers with no 
failed elements, ࢝ሺࣂሻ’s, in a neighborhood around ࣂ෩ under 
the constraint that the linear combination has zeros at the 
location of the failed elements. Furthermore since each of 
these low sidelobe beamformers achieve low sidelobes, we 
would expect that linear combinations of them in a 
neighborhood around ࣂ෩ would also have low sidelobes. 

The algorithms in this paper exploit this observation using 
only the KNOWN vectors. The paper derives equations for 
estimating taper loss, sidelobe level, and mainbeam region 
width, and the algorithm permits optimization trade-offs 
among these three important criteria. Examples achieve a near 
optimal solution comparable to accurately knowing ࢜௧ሺࣂሻ for 
all ࣂ. Thus for some systems, in particular where a rapid 
recalculation of the beamformer with failed elements is 
required, it may be preferable to use this method even if ࢜௧ሺθሻ 
is accurately known.  

The reader may be wondering how the ࢝ሺࣂሻ’s could have 
been determined in the first place without knowing the array 
manifold. Examples are airborne radars that during low 
sidelobe antenna pattern calibration flights, form beams by 
minimizing the sidelobe ground clutter. The method in [10] 
iteratively adjusts the beamformer and only requires 
observability of the single beam. Space Time Adaptive 
Processing (STAP) [11] requires a fully digitized array. STAP 
could also be used with failed elements but may not be 
available during normal radar operation. 
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Depending upon the nature of the antenna element failure, 
the mutual coupling between elements can change, which 
impacts the true array manifold. The results here and [1-8] 
apply to cases in which these changes are small. For example, 
failures that do not change the impedance at the antenna port 
have a negligible effect upon the mutual coupling. 

Section II describes methods for recomputing the 
beamformer weights with failed elements. Section III provides 
examples for both one- and two-dimensional arrays. Section 
IV applies these techniques to arrays with no failed elements 
to modify either the taper loss or the sidelobe level. It is 
common for techniques developed for phased antenna arrays 
to also be applicable in the temporal domain and thus Section 
V discusses how the same technique is applicable for pulse-
Doppler radars with missing pulses or missing range samples 
due to interference. Section VI is a summary. 

II. FAILED ELEMENT ALGORITHM 

Fig. 1 shows a digitally controlled beamformer, ࢝ሺࣂ෩ሻ, 
applied to the  element array to produce a single beam. If 
elements are digitized the beamformer is digital; otherwise it 
is analog. 

A. Beamformer with good antenna calibration 

We start by describing a procedure which could be used 
with good knowledge of the array manifold. With no failed 
elements, we could compute a low sidelobe beamformer ࢝ෝሺࣂ෩ሻ 
by modeling a covariance matrix with sidelobe interference.  

෩ሻࣂෝሺ࢝ ൌ ܫߛሾߤ  ሺ1 െ ෩ሻࣂሺ࢜෩൯ሿିଵࣂ൫ܯሻߛ

෩ሻࣂሺܯ ൌ
1
ܮ

 .			ሻுࣂሺࢇ࢜ሻࣂሺࢇ࢜
ఏ	ఌ	ஐೄಽ	

 (1) 

where ܫ is an identiy matrix representing the thermal noise, 
 ෩ሻ  is the modeled sidelobe interference covariance matrixࣂሺܯ
with no noise, ߛ controls the mixture of modeled interference 
to thermal noise,  Ωୗ is the set of sidelobe directions,  ܮ	 is 
the number of terms in the sum,  ߤ is a normalizing scale 
factor, and  H is Hermitian transpose. With failed elements, 
the corresponding rows and columns of vectors and matrices 
are deleted. With very good knowledge of the array manifold, 
this procedure works very well but unfortunately with or 
without failed elements, the procedure will fail to achieve low 
sidelobes if the array manifold errors are too large.  

Using just the KNOWN quantities in Section I, the next 
three sections derive procedures for selecting the number of 
 ሻ’s to include in this linear combination, their relativeࣂሺ࢝
weighting, plus estimates for the resulting sidelobe level 
achieved and the taper loss. The ability to estimate sidelobe 
level and taper loss permits optimization trades. 

B. Beamformer with constraints 

Here we modify (1) by constraining the solution to a specific 
subspace. Let ܹ be a matrix whose columns are ܭ low 
sidelobe beamformers surrounding the direction ࣂ෩ of interest. 
These should be closely spaced (less than a beamwidth) and 
preferably include  ࢝൫ࣂ෩൯ as a column. We constrain the 

solution to the vector space spanned by ܹ as follows. Let 
ܬ ൏ ࡰ be the number of failed elements and ܭ ൌ

ൣ݀ଵ, ݀ଶ, … , ݀൧
்
  be a vector for the locations of the failed 

elements. Within the space spanned by ܹ is a subspace ܵ of 
dimension ܭ െ  where all vectors in ܵ have a 0 at the ܬ
locations of the failed elements. We compute this subspace as 
follows. Using MATLAB notation, ܹሺࡰ, : ሻ	is a ܬ ൈ  ܭ	
matrix of only the rows of ܹ with failed elements. The 
ܭ ൈ ܭ	 െ  matrix ܬ

ܼ ൌ null൫ ܹሺࡰ, : ሻ൯ (2) 

is an orthonormal basis for the null space of ܹሺࡰ, : ሻ	 
obtained from the singular value decomposition. That is, 
ܹሺࡰ, : ሻܼ  is a ܬ ൈ ሺܭ െ 	ሻ matrix of 0s and thusܬ ܹܼ	            

is an ݊	 ൈ	ሺܭ െ  ሻ matrix with 0s along the rowsܬ
corresponding to the location of the ܬ failed elements. We 
constrain the solution to subspace ܵ thereby modifying (1) as 
follows 

ߤ෩൯ൌࣂ൫࢝ ܹܼൣሺ ܹܼሻுሾܫߛ  ሺ1 െ ෨൯ሿሺߠ൫ܯሻߛ ܹܼሻ൧
ିଵ
ሺ ܹܼሻு࢜ሺࣂ෩ሻ

ൌߤ ܹܼൣܼߛு ܹ
ு

ܹܼ  ሺ1 െ ෨൯ܼ൧ߠ൫ܩሻܼுߛ
ିଵ
ሺ ܹܼሻு࢜ሺࣂ෩ሻ

 (3) 

where 

෩൯ࣂ൫ܩ ൌ ܹ
ுܯ൫ࣂ෩൯ ܹ	. (4) 

The next two sections develop different approximations to 
 ෩൯ based upon different assumptions on how the lowࣂ൫ܩ
sidelobe beamformers, ࢝ሺࣂሻ’s, were formed. 

C. Uncorrelated beam approximation to G 

We never actually compute ܯ൫ࣂ෩൯ but it is helpful to think of 

Ωௌ as the sidelobe region which is outside the mainlobe of all 

the beamformers in ܹ. From (1) and (4) we can write 

෩൯ࣂ൫ܩ ൌ
1
ܮ

 ሾ ܹ
ு࢜ሺࣂሻሿሾ࢜ሺࣂሻு ܹሿ .

ఏ ఌ ஐೄಽ

 (5) 

where ܹ
ு࢜௧ሺࣂሻ is a vector for the sidelobe level at ࣂ for 

each of the ܭ beamformers in ܹ. We assume now that the 
process by which all of the beamformers in ܹ were produced 
yield the same average sidelobe level ߙ, but the actual 
sidelobes averaged over Ωௌ are approximately uncorrelated 
from beam to beam. For example if ࢝ሺࣂሻ ൌ ሷ࢝ ሺࣂሻ   ሻࣂሺ࢞	
where ࢝ሷ ሺࣂሻ has lower sidelobes than ࢝ሺࣂሻ and the sidelobe 
level is established by random vector ࢞ሺࣂሻ which is different 
for each ࣂ. Thus due to the averaging over the sidelobe angles, 
the off diagonal terms in (5) are small and can be 
approximated as zero. Our assumption yields the 
approximation 

෩ሻࣂଵሺܩ ൌ  (6) .		ܫߙ

D. Covariance estimate to G 

Any small angle dependent variations in the element antenna 
patterns from element to element will impose a fundamental 
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minimum on the level of antenna sidelobes that can be 
achieved. Here we consider the case where the ࢝ሺࣂሻ’s are 
close to this limit with small taper loss as, for example, if they 
were generated using (1) with ߛ ൌ 0 with excellent knowledge 
of the array manifold.  

Under the conditions described, the original beamformer 
 ෩ሻ, so it isࣂሺܩ ෩ሻ is close to optimal with respect toࣂሺ࢝
reasonable to seek an approximation ܩଶሺࣂ෩ሻ which preserves 
this property; This can be expressed via covariance inversion, 
or by the equivalent requirement that ܩଶ൫ࣂ෩൯࢝൫ࣂ෩൯ ∝  ෩ሻ. Inࣂሺ࢜
addition, similarly to ܩଵ above, we require that sidelobe 
estimates for each of the ࢝ agree with observation [see (9) 
below]. 

A straightforward computation shows that the following 
(positive-definite, Hermitian) matrix satisfies these two key 
model requirements: 

෩ሻࣂଶሺܩ ൌ ߙ 
1

ቚ࢜൫ࣂ෩൯
ு
෩൯ቚࣂ൫࢝

ଶ ܹ
ு࢜൫ࣂ෩൯࢜൫ࣂ෩൯

ு
ܹ

 diagቌ1 െ
ห࢜ሺࣂ෩ሻு࢝ห

ଶ

ቚ࢜൫ࣂ෩൯
ு
෩൯ቚࣂ൫࢝

ଶቍ 
(7) 

where ࢝, ݇ ൌ 1,2,  are the chosen beamformers which ܭ…
form the columns of ܹ, and the MATLAB notation for a 
diagonal matrix is being used.   

E. Taper loss and sidelobe estimate 

In choosing parameters K and ߛ it is important to have an 
estimate for the taper loss and changes in the average 
sidelobes. The taper loss estimate is 

෩ሻ൯ࣂሺ࢝൫ܮܶ ൌ ቚ࢝൫ࣂ෩൯
ு
෩൯ቚࣂ൫࢜

ଶ
 1 (8) 

where ࢝൫ࣂ෩൯ and ࢜൫ࣂ෩൯ are unit normed. The manifold errors 
may be too large to achieve the desired sidelobes using the 
methods in [1-8]; however, this taper loss estimate is quite 
accurate unless the manifold errors are very large. 

We can write ࢝ሺࣂ෩ሻ ൌ ܹࢉො where ࢉො is determined from (3). 
Since ܯ൫ࣂ෩൯ is a covariance matrix of steering vectors in the 
sidelobe region, the average sidelobes is  

				

෩ሻ൯ࣂሺ࢝൫ܮܵ ൌ ෩ሻࣂሺ࢝෩൯ࣂ൫ܯ෩ሻுࣂሺ࢝

ൌ ு	ොࢉ ܹ
ுܯ൫ࣂ෩൯ ܹࢉො	

ൌ .			ොࢉ෩൯ࣂ൫ܩு	ොࢉ

 (9) 

Using the approximation ܩ൫ࣂ෩൯ in (6) or (7) in place of ܩ൫ࣂ෩൯, 
we estimate the change of sidelobes as  

Δܵܮ௦௧൫࢝ሺࣂ෩ሻ൯ ൌ
	ොࢉ෩൯ࣂ൫ܩு	ොࢉ

ߙ
				݅ ൌ  (10) .	2	ݎ	1

One does not need to know the value for ߙ to use (10) since by 
the way ܩ൫ࣂ෩൯ is defined in (6) or (7) ߙ cancels. The appendix 
develops some rough upper bounds on the error incurred by 

using ܩ൫ࣂ෩൯ . For small enough perturbations from the original 
vector, (9) gives a good approximation even if (6) or (7) are 
not uniformly good approximations to ܩ൫ࣂ෩൯.  

F. Choosing parameters ܭ and ߛ 

In (3) ߛ controls the mixture of modeled interference to 
thermal noise. For ߛ ൌ 1	 this is a projection of  ࢜ሺࣂ෩ሻ onto 
the space spanned by the columns of ܹܼ and thus has the 
best taper loss but the highest estimated sidelobes. As ߛ 
decreases, the taper loss monotonically degrades and the 
estimated sidelobe power monotonically improves. (See, for 
example, theorem II in [12].)   ߛ ൏ 1	has the effect of 
regularizing the matrix ܼு ܹ

ு
ܹܼ by reducing the 

contribution of the eigenvectors corresponding to its small 
eigenvalues. These monotonicity properties are very useful for 
choosing parameters in the optimization procedures below.  

As is always the case when choosing beamforming weights, 
trade-offs can be made between taper loss, sidelobe level, and 
mainbeam region. Therefore, parameter choices must be 
determined in part by the properties most important to the 
application. However, the choice is simplified greatly by the 
monotonicity observations above. K directly impacts the width 
of the mainbeam region. Under our correction scheme, the 
coefficients of the linear combination of neighboring beams 
are roughly the corrected pattern gain at their corresponding 
look directions. Therefore a larger K will create a wider 
mainbeam region manifested as some combination of a wider 
mainlobe and/or high first sidelobes. Note that, even with 
antenna manifold errors, the shape of this resultant mainbeam 
region can be predicted and possibly adjusted depending on 
the needs of the application. No matter which method is 
chosen to estimate ܩ൫ࣂ෩൯, two procedures follow depending 
upon the desired goals. For both procedures it is convenient to 
take ߙ ൌ 1 since we only estimate the change in the sidelobe 
levels in (10) and the actual sidelobe levels may be unknown. 

 In Procedure 1 we set a goal for the change in the average 
sidelobes, Δܵܮ, to achieve and a bound on the taper loss, 
TLbound to avoid exceeding. These are estimated using (8) and 
(10). It is usually impossible to achieve both of these exactly. 
Procedure 2 is the reverse with a bound on the change in 
average sidelobes, Δܵܮ௨ௗ, and a goal for the taper loss,  
  .ܮܶ

Procedure 1 is flow charted in Fig. 2 in which values for ܭ 
and ߛ are found such that  Δܵܮ௦௧ሺ࢝ሻ ൌ Δܵܮ and the taper 
loss, ܶܮሺ࢝ሻ, is lower bounded by TLbound. (Note: ∆ܵܮ ൌ 1 
means unchanged sidelobes and ܶܮሺ࢝ሻ is negative.) Finding ߛ 
in the interval ሾ0,1ሿ is simplified by the monotonicity 
discussed above for the function in (8). ܭ is increased until an 
acceptable criteria are met. 

Procedure 2 is flow charted in Fig. 3 in which taper loss 
ሻ࢝ሺܮܶ ൌ ሻ࢝௦௧ሺܮ and Δܵܮܶ  Δܵܮ௨ௗ. Here again ܭ is 
increased until an acceptable criteria are met.  

With either procedure, should the goal and bound 
requirements be too stringent to achieve, K will continue to 
increase to an unacceptably large value and a solution may not 
be found, in which case the goal and bound should be reset 
and the procedure repeated. K is constrained to be odd to 
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provide symmetric beams around the beam of interest though 
an odd value is not an inherent requirement. 

III. EXAMPLES 

A. 64 element uniform linear array with half wavelength 
spacing 

 The authors feel it is important that the validity of 
algorithms such as the one described in this paper be tested 
under real-world conditions. Specifically, we test the 
procedure using a perfect uniform linear array as the assumed 
array manifold, ࢜ሺࣂሻ,  but a  true array manifold, ࢜௧ሺࣂሻ,  
having small perturbations from the perfect uniform linear 
array. The manifold errors, ࢿሺࣂሻ, limit the achievable 
beamformer sidelobes using (1) to -30 dB. However, the 
beamforming weight vectors, ࢝ሺࣂሻ, to achieve low sidelobes 
are available. The beams in ܹ are spaced by a half 
beamwidth (i.e., sinሺߠሻ ൌ ݅/݊	).  

The manifold errors, ࢿሺࣂሻ, are modeled as independent 
circularly Gaussian on each element of the array. Since on 
individual elements the errors are likely to be correlated with 
look direction, for a beamwidth change in look direction the 
errors are correlated by 0.98 on each element but independent 
from element to element. This is achieved by starting with an 
 matrix of independent circular Gaussian random ݉	ݔ	݊
variables, where ݊ is the size of the array and ݉ is a large 
number of closely spaced angles spanning all angles. The rows 
of this matrix are passed through a low pass filter to achieve 
the 0.98 correlation at one beamwidth. For the selected 
parameters, this limits the maximum achievable sidelobes.  

In Fig. 4 we examine element 15 failure in the 64 element 
uniform linear array. Plotted are the algorithm results, the 
original with no failed elements, the original with element 15 
set to 0, plus an optimum explained below. We used 
beamformer antenna patterns with the lowest possible 
sidelobes due to the element pattern differences from element 
to element and thus use	ܩଶሺࣂ෩ሻ with procedure 1, Δܵܮ ൌ
0	dB (i.e., unchanged sidelobes) and ܶܮ௨ௗ ൌ െ3.2	݀ܤ. The 
relevant parameters ߛ ,ܭ, and taper loss are indicated. The 
mainlobe is a little wider but the sidelobes are about the same 
as the pattern with no failed elements. 

In order to evaluate the performance of the correction 
algorithm, we include in Fig. 4 a comparison with an optimum 
approach. We define the optimum beamformer as the one 
resulting from (1) with no manifold errors and ߛ selected to 
maintain unchanged sidelobes and 2߂ chosen to be the angular 
width of the ܭ beams in the algorithm. Notice that the 
algorithm and optimum patterns virtually overlay with 
identical taper losses. The (A11) bounds true sidelobes at 5.3 
dB above the estimation, although the actual discrepancy 
between truth and estimation is less than 1 dB. 

Fig. 5 repeats the previous example except the original 
sidelobe levels have been raised by 5 dB by adding a random 
vector and thus we use ܩଵሺࣂ෩ሻ. Here again, the algorithm and 
the optimum are virtually identical with similar taper losses. 
The (A2) bounds true sidelobes at 4.7 dB above the estimate 
but again the actual discrepancy is less. 

Fig. 6 is the same as Fig. 4 except with three failed elements 
15, 32, 53. Here again the optimum and the algorithm agree 

well. The high first sidelobes are primarily due to deleting an 
element in the middle of the array. Had we plotted results for 
the single element 32 failure, a similar high first sidelobe 
appears. The bound given by (A11) is 8.3 dB which is not 
very tight due to the large value of ܭ. 

Fig. 7 shows the amplitudes of each component of ࢝ሺࣂ෩ሻ 
from Figs. 4 and 6 for both the algorithm and optimum which 
are very similar. The jagged nature is due to the modeling of 
the antenna element errors. In all cases maximum use is made 
of the largest contiguous interval of operating elements.  

Fig. 8 repeats Fig. 5 except we choose parameters to reduce 
the taper loss by allowing for higher sidelobes. We apply 
procedure 2 and set ܶܮ ൌ ௨ௗܮܵ∆ and ܤ݀	2.5 ൌ  .ܤ݀	1
The actual achieved change in sidelobes was 1.6	݀ܤ. The 
reduction in the taper loss resulted in high first sidelobes. Here 
(A2) bounds true sidelobes at 8.9 dB above the estimate. 
 These examples demonstrate the ability to trade sidelobes 
for lower taper loss.  

 

B. Two-dimensional array examples 

Here we show the application of the algorithm to a two-
dimensional array. The array errors were modeled in the same 
way as the one-dimensional example with errors correlated in 
both dimensions. Fig. 9 shows a low sidelobe pattern for a 16 
x 16 element array having sidelobe levels of    -52 dB off the 
cardinal axis and -39 dB on the cardinal axis. Figs. 10 and 11 
show the patterns with two failed elements at coordinates [4,8] 
and [8,12] before and after correction where the goal was to 
match the original sidelobe levels. Here we chose procedure 1,  
 ෩ሻ, and a two-dimensional grid of beams spaced by halfࣂଵሺܩ
beamwidth. The criteria were met with	ܭ ൌ 13 and ߛ ൌ 0.43. 
Figs. 12 and 13 show the beamformer amplitudes applied to 
each element before and after correction where the jagged 
nature is due to the nature of the antenna manifold errors. 
Notice in Fig. 13 the algorithm places emphasis on the 
elements in the upper right-hand corner to take advantage of 
the largest contiguous area of operating elements. The 
optimum approach does similarly. The achieved sidelobes in 
Fig. 11 are unchanged off the cardinal axis but are raised 2 dB 
on the cardinal axis. The taper loss has increased from -1.8 dB 
to -3.0 dB. Better taper losses are achievable with larger 
values of ܭ. For example with ܭ ൌ 25 it is possible to achieve 
a taper loss of -1.9 dB, comparable sidelobe levels, but higher 
near in sidelobes.  

IV. SIDELOBE ADJUSTMENTS WITH NO FAILED ELEMENTS 

For some applications it may be desirable to dynamically 
control the taper loss or sidelobe level with no failed elements.  
Fig.14 shows results using procedure 2 where the taper loss 
has been reduced by 0.9 dB. The pattern has high first 
sidelobes, near in sidelobes have been raised and far out 
sidelobes are about the same. Different values of K and ߛ	yield 
different changes to the pattern. 

V. PULSE-DOPPLER RADAR APPLICATION 

As is frequently the case, techniques developed in either the 
spatial or the temporal domain frequently finds application in 
the other domain. Consider a pulse-Doppler radar in which 
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one or more pulses are severely interfered with, but low 
Doppler sidelobes are needed with these pulses dropped. 
Mathematically, the missing pulses replace the failed 
elements, and the Doppler filters replace the low sidelobe 
beamformers. The techniques in this paper offer a rapid and 
predicable outcome for taper losses and Doppler sidelobe 
level. Since here manifold errors are likely not to be an issue, 
it may be preferable to use (3) instead of the approximation in 
(7) for the covariance matrix. Furthermore, the techniques in 
[1-8] are also applicable but may be more computationally 
intense with little added benefit.  

Similarly temporal samples in the range domain may be 
interfered with and low range sidelobes are needed even with 
these dropped samples. Mathematically the pulse compression 
filter replaces the low sidelobe beamformers.  

VI. SUMMARY 

We started with the observation that a low sidelobe 
beamformer with failed elements could be formed by a linear 
combination of a few beamformers around the direction of 
interest constrained to have a 0 at the location of the failed 
elements. To choose the number of beamformers, ܭ, and the 
relative value of modeled thermal noise, ߛ, we derived an 
approximation for the change in sidelobe level and the taper 
loss. We have thus demonstrated a robust method for 
calculating a low sidelobe beamformer with failed elements 
where we can control the achieved sidelobe levels, the taper 
loss, or the width of the mainbeam region.  

The approach is also applicable to forming beams with no 
failed elements to reduce taper losses by raising the sidelobes. 
Also discussed was the application of the algorithm in pulse-
Doppler radars for missing pulses or missing range samples 
with the goal of maintaining low Doppler or range sidelobes. 

The method has been shown to be near optimal and thus 
may find application even for systems with good knowledge 
of the antenna manifold. 

APPENDIX 

Here we examine the two variations of the sidelobe 
estimator and derive bounds on how much they can 
underestimate the true sidelobe levels.  

Ideally we would like perfect agreement of estimation with 
truth. This is impossible without detailed measurements, but 
for a good choice of ܩ௦௧ we can at least avoid the 
unacceptable situation of choosing a beamforming weight 
vector for which  ܵܮ௦௧ሺࢉሻ ≪   .ሻࢉ௧௨ሺܮܵ

While the results can be generalized, for simplicity we 
assume here that sidelobes of all the beams ࢝ are all 
approximately equal to ߙ. All ࢝ vectors in this appendix are 
constructed from the columns of the ܹ matrix, and so each 
such ࢝ uniquely defines a corresponding  ࢉ ∈ ԧ by the 
equation ࢝ ൌ ܹࢉ, or equivalently, ࢉ ൌ ሺ ܹ

ு
ܹሻିଵ ܹ

ு࢝. 
We define the vectors ࢋ by ࢝ ൌ ܹࢋ; Thus ࢋ is simply 
the ݇௧	standard basis vector of ԧ, that is, a vector with a 1 in 
the ݇௧ position and 0 elsewhere. For convenience, we let the 

index ݇ vary from –
ିଵ

ଶ
 to 

ିଵ

ଶ
. Since the look direction of 

interest, ࣂ, is fixed, we use the simplified notation, ࢝ ൌ

ࢋ ሻ, andࣂሺ࢝ ൌ ሺ ܹ
ு

ܹሻିଵ ܹ
ு࢝. We use the notation 

 ൌ ܹ
ு࢜ to represent the constraint vector in the ܹ 

beamspace. When we refer to taper loss in this appendix, we 
always mean with respect to the assumed steering vector, 
which for the purposes of this paper should be nearly 
indistinguishable from the true (unmeasurable) taper loss. We 
remind the reader that ܯ, hence also ܩ, is formed by 
excluding a mainbeam guard region wide enough to exclude 
the mainbeam regions of all the beams in ܹ. Let ܩ௦௧ be the 
model covariance matrix used in sidelobe estimation, in the 
beamspace basis.  

The bounds will make use of the following well-known 
inequality: If ܽଵ, ܽଶ, … , ܽ are real numbers, then 

ሺܽଵ  ⋯ ܽሻଶ  ܭ ⋅ ሺܽଵଶ  ⋯ ܽ
ଶ ሻ (A1) 

This inequality may be proven several ways. For example, one 
can multiply out the terms on the left-hand side of (A1) and 
repeatedly apply the simpler inequality 2ܽ ܽ  ܽ

ଶ  ܽ
ଶ,  

which follows easily from ൫ܽ െ ܽ൯
ଶ
 0. 

A. Diagonal Model Covariance Matrix 

Let ߙ denote the sidelobe power levels of the beamformer 
௦௧ܩ , and define࢝ ൌ diagሺߙሻ. If we are estimating the 
sidelobes of ࢝ ൌ ܹࢉ, and ࢉ ൌ ∑ܿࢋ, then the highest 
possible sidelobes occur when the terms in the sum add in 
phase: 

ሻࢉ௧௨ሺܮܵ  ቀ|ܿ| ⋅ |ଵ/ଶቁߙ|
ଶ
 (A2) 

One can directly apply (A2) to compute a worst-case bound on 
sidelobes of a ࢉො obtained from one of the algorithms in this 
paper. In general, applying (A1) to the sum yields 

ሻࢉ௧௨ሺܮܵ
ሻࢉ௦௧ሺܮܵ


൫∑|ܿ| ⋅ |ଵ/ଶ൯ߙ|

ଶ

∑|ܿ|ଶ ߙ
  (A3) ܭ

so that, for small values of ܭ, estimation error is acceptably 
low. Of course, estimates of average sidelobe levels in any 
spatial region of interest, as well as peak sidelobe estimates, 
can be bounded in a similar manner.  

In the body of the paper (6) assumes the special case in 
which ߙ ≡  is independent of ݇. Examples using (6) apply  ߙ
this bound. 

B. Model Covariance Matrix For ࢝ Optimal 

Here we follow the definition from Section II.D. We will 
considerably simplify our computations with the following 
additional notation: ܶܮ ≡ |ଶࢋு| ൌ  |ଶ is the taper࢝ு࢜|
loss for the ݇௧ beam, ߩ ≡ ࢋ

ுࢋܩ ⁄ܮܶ , and Δ, ≡ ߩ െ  .ߩ
We will sometimes also use ‖ࢉ‖ீ

ଶ ≡  .ࢉܩுࢉ
Using our compressed notation: 

௦௧ܩ ൌ ߩ ⋅ ு  diag൫ܶܮ ⋅ Δ,൯ (A4) 

It can easily be verified that ܩ௦௧ has the following desirable 
properties: 1) ܩ௦௧ is a positive-definite, Hermitian matrix, 2) 
ࢋ
ுܩ௦௧ࢋ ൌ ࢋ

ுࢋܩ for all ݇, and 3) ܩ௦௧ࢋ ൌ ሺߙ ࢋ
ு⁄ ሻ. 
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The first is a requirement for a sensible model covariance 
matrix. The second says that ܩ௦௧ agrees with ܩ on the basis 
vectors (known from observation). The third says that 
ࢋ ∝   can beࢋ ሻ, that is, our original weight vector௦௧ିଵሺܩ
obtained by covariance matrix inversion using ܩ௦௧ in the ܹ 
beamspace, thus ܩ௦௧ is a model covariance matrix for which 
  . is optimal࢝

Now we bound the error incurred by this approximation. 
Denote by ࢝௧ ൌ ܹࢉ௧ the true unit-normed optimal under 
௧ࢉܩ when restricted to the ܹ beamspace, so that ܯ ∝  .

Let ܶܮ௧ ൌ หுࢉ௧ห
ଶ
 be the taper loss of the true optimal, 

and similarly define ߩ௧ and Δ,௧.  
We will use the following shortly: If ࢞ is any vector such 

that ு࢞ ൌ 0, we have  

௧ுࢉ ࢞ܩ ൌ ൫ࢉܩ௧൯
ு
࢞ ∝ ࢞ு ൌ 0 (A5) 

Define vectors ࣎ and ࢾ by 

࣎ ൌ ࢋ െ
ࢋு
௧ࢉு

௧ࢉ

ࢾ ൌ ࢋ െ
ࢋு
ࢋு

ࢋ

 (A6) 

By these definitions one can easily verify that, for all ݇, 

࣎ு ൌ 0 ൌ ࢾு

ࢾ ൌ ࣎ െ
ࢋு
ࢋு

࣎
 (A7) 

We will need the following, which is computed using (A5), 
(A6), and (A7): 

ீ‖࣎‖
ଶ ൌ ܮܶ ⋅ Δ,௧ (A8) 

Using (A7) and (A8) we get the following bound, which we 
will use shortly: 

ீ‖ࢾ‖
ଶ ൌ ብ࣎ െ

ࢋு
ࢋு

ብ࣎
ீ

ଶ

 ܮܶ ⋅ ൫Δ,௧  Δ,௧  2Δ,௧
ଵ/ଶ Δ,௧

ଵ/ଶ ൯

 (A9) 

Now we are ready to bound 
	ࢉಹீࢉ

ࢉಹீೞࢉ
	 by expressing ࢉ in the 

ሼࢋ,  :ሽஷ basis. We writeࢾ

ࢉ ൌ ቆ
ࢉு
ࢋு

ቇࢋ ܿࢾ
ஷ

 (A10) 

where ܿ ൌ ࢋ
ுࢉ is simply the ݇௧ component of ࢉ in the 

standard basis. To bound ‖ࡳ‖ࢉ
ଶ ≡  we will use (A5)-(A8) ࢉܩுࢉ

and (A10), obtaining 

ீ‖ࢉ‖
ଶ ൌ ะ

ࢉு

௧ࢉு
௧ࢉ 

ࢉு

ࢋு
࣎ ܿࢾ

ஷ

ะ
ீ

ଶ

ൌ ܮܶ ⋅ ௧ߩ  ะ
ࢉு

ࢋு
࣎ ܿࢾ

ஷ

ะ
ீ

ଶ

 ܮܶ ⋅ ௧ߩ  ൭ቤ
ࢉு

ࢋு
ቤ ீ‖࣎‖ |ܿ| ⋅ ீ‖ࢾ‖

ஷ

൱

ଶ

 ܮܶ ⋅ ߩ  ൭|ܿ| ⋅
ஷ

ீ‖ࢾ‖ ൱

ଶ



2൫ܶܮ ⋅ Δ,௧൯
ଵ/ଶ

|ܿ| ⋅ ீ‖ࢾ‖
ஷ

 (A11) 

It remains to estimate the sidelobes and taper loss of ࢝௧. 
In the primary case of interest, average sidelobes cannot be 
significantly reduced from that of ࢝ due to antenna errors, so 
we take ࢉ௧ு ௧ࢉܩ ൎ  ,. For an approximation of taper lossߙ
note that largest (best) possible value for ܶܮ௧ is achieved by 
orthogonal projection of  the assumed steering vector ࢜ into 
the ܹ subspace. This estimation is overkill, but typically 
adequate. Substituting these estimates into our previous 
definitions gives us:  

Δ,௧ ൎ
ߙ
ܮܶ

െ
ߙ

ு࢜ ܹሺ ܹ
ு

ܹሻିଵ ܹ
ு࢜

 (A12) 

Substituting (A12) and (A9) into (A11) allows us to compute a 
numerical bound on true sidelobes, and thus, bound the 
estimation error. In the examples when (7) is used this bound 
is computed. 

We can derive a much simpler bound in the special limiting 
case that Δ,௧ ≪  :. Applying (A1) to (A11) givesߩ

 

2ܩ‖ࢉ‖  ܮܶ ⋅ ൫ߩ  Δ,௧൯  |ܿ|ଶܭ ⋅ ீ‖ࢾ‖
ଶ

ஷ

≲ ܮܶ ⋅ ߩ  |ܿ|ଶܭ ⋅ ீ‖ࢾ‖
ଶ

ஷ

 (A13) 

When Δ,௧ ≪   in this case it is typical to also haveߩ
Δ,௧ ≪ Δ,௧ for ݇ ് 0, allowing us to approximate (A9) as 
ீ‖ࢾ‖

ଶ ≲ ܮܶ ⋅ Δ,, yielding 

ࢉܩுࢉ ≲ ܮܶ ⋅ ߩ  |ܿ|ଶܭ ⋅ ܮܶ ⋅ Δ,
ஷ

 (A14) 

In comparison, our estimate (A4) gives 

ࢉ௦௧ܩுࢉ ൌ ܮܶ ⋅ ߩ |ܿ|ଶ ⋅ ܮܶ ⋅ Δ,
ஷ

 (A15) 

Therefore in this case the bound may be approximated simply 
as: 
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ࢉܩுࢉ
ࢉ௦௧ܩுࢉ

≲ 1  ሺܭ െ 1ሻ ቆ1 െ
௦௧ߪ

ߪ
ቇ (A16) 

where ߪ ൌ
்బ
ఈబ

 and ߪ௦௧ ൌ
்ሺሻ

ࢉಹீೞࢉ
.  
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Fig. 1.  Beamformer block diagram.  

 

 
 

 
Fig. 2. Procedure for setting a goal for sidelobes and bound 

on taper loss. 

 
 
Fig. 3. Procedure for setting a goal for taper loss and a 

bound on sidelobes. 
 

 

Fig. 4. Antenna patterns with failed element 15 with ࡳሺࣂ෩ሻ. 

 
Fig. 5. Antenna patterns with failed element 15 with ࡳሺࣂ෩ሻ. 

 

Fig. 6. Antenna patterns with failed elements 15, 32, and 53 
with ࡳሺࣂ෩ሻ. 

 
Fig. 7.  Weight vector amplitudes for cases in Figs. 5 and 7. 
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Fig. 8.  Antenna patterns with taper loss limited to -2.5 dB. 

 
 

 Fig. 9. Low sidelobe pattern for 16 x 16 array. 
 

 
Fig. 10. Uncorrected pattern with two failed elements.  

 
 

 
Fig. 11.   Corrected pattern with two failed elements. 

 
 

Fig. 12. Beamformer amplitudes with no failed elements. 

 
    

Fig. 13. Beamformer amplitudes with failed elements [8,4] 
and [12,8]. 
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Fig. 14. Antenna patterns with no failed elements and 
reduced taper loss. 

 


