
Speaker Recognition Using Real vs Synthetic Parallel Data for DNN Channel
Compensation

Fred Richardson, Michael Brandstein, Jennifer Melot and Douglas Reynolds

MIT Lincoln Laboratory
{frichard,msb,Jennifer.Melot,dar}@ll.mit.edu

Abstract
The effective use of synthetic multi-channel data for training de-
noising DNNs has been demonstrated for several speech tech-
nologies such as ASR and speaker recognition. This paper com-
pares the use of real and synthetic data for training denoising
DNNs for multi-microphone speaker recognition. Large reduc-
tions in error rates (37% and 50% for the AVG and POOL
EERs and 20% and 30% for the AVG and POOL min DCFs)
are attained on Mixer 6 microphone data using Mixer 1 and 2
multi-microphone data to train a denoising DNN. Nearly the
same reduction in error rate is realized using room impulse re-
sponse and noise estimates (RIRs) derived from the Mixer 1
and 2 data and applied to just the telephone channel. Applying
RIRs from three publicly available databases used in the Kaldi
Aspire evaluation system yields lower but significant reductions
in error rate (16% and 34% relative improvement in AVG and
POOL EER and 13% and 25% relative improvement in AVG
and POOL min DCFs). In all cases, the telephone channel per-
formance on SRE10 is improved by the denoising DNNs with
the real Mixer 1 and 2 trained DNN reducing EER by 12% and
min DCF by 8.9%.
Index Terms: denoising DNN, multi-condition training, chan-
nel compensation, speaker recognition

1. Introduction
Recently there has been a great deal of interest in using deep
neural networks (DNNs) for channel compensation under re-
verberant or noisy channel conditions such as those found in
microphone data [1, 2, 3, 4, 5, 6]. The 2015 Aspire challenge
[7] evaluated automatic speech recognition (ASR) performance
on conversational speech recorded over far-field microphones in
different rooms. Details about the recording environments used
for the Aspire evaluation data were not disclosed to performers
prior to the evaluation and the performers were limited to using
Fisher telephone data to train their systems. The top perform-
ing ASR systems in the Aspire challenge all used some form of
denoising DNN trained on synthetic parallel microphone data
generated from the Fisher telephone recordings [7].

The denoising DNN approach has also been shown to work
well for speaker recognition[1], but unfortunately there is lim-
ited publicly available real microphone data appropriate for
evaluating speaker recognition performance. The Mixer 1 and
2, Mixer 4 and 5, and Mixer 6 corpora collected by the Linguis-
tic Data Consortium (LDC) include multi-session parallel mi-
crophone data that was used to measure cross-channel speaker
recognition performance in the NIST 2004, 2005, 2006, 2008
and 2010 speaker recognition evaluations [8, 9, 10, 11, 12, 13].
The complete set of wide-bandwidth Mixer 1 and 2 microphone
recordings were used in this work and have been made available

to the LDC for future public release. The LDC has already re-
leased the Mixer 6 wide-bandwidth recordings [14] which are
also used in this work. For brevity the Mixer 1 and 2 corpora
will be refered to simply as Mixer 2.

While future collections of real multi-microphone multi-
session data may be essential for evaluating the performance
of speaker recognition and other speech technologies under real
and challenging channel conditions it may not be possible to
collect enough data for performers to use for system develop-
ment without disclosing channel characteristics of the evalua-
tion data. In this work we try to address the question of whether
using real parallel multi-microphone data for developing chan-
nel robust speaker recognition systems has advantages over us-
ing synthetic multi-channel data. For our analysis we use the
Mixer 2 real parallel microphone corpora and two synthetic par-
allel channel corpora derived from the Mixer 2 telephone data.
The first synthetic corpora uses RIRs and noise sources esti-
mated using parallel microphone segments extracted from the
Mixer 2 data and the second synthetic corpora uses RIRs drawn
from three publicly available databases used in the Kaldi Aspire
evaluation system [15]. For evaluation purposes we use the con-
versational portion of the Mixer 6 parallel microphone corpora
where the target and non-target trials are all over the same mi-
crophone. For both Mixer 2 and Mixer 6, the wide bandwidth
microphone recordings are down sampled to 8 KHz using the
same technique described in [16].

2. DNN Channel Compensation
A denoising DNN is a neural network regression model trained
to reconstruct data from a clean target channel given the same
data from a different possibly noisy or reverberant channel or
from the same channel as the target. The objective function
for the denoising DNN is the minimum mean squared error be-
tween the output of the DNN and the target channel’s data. The
denoising DNNs output layer uses a linear activation function
(instead of the softmax activation function used for a neural
network classifier). For this work we use either the Mixer 2
multi-channel corpus or a synthetic parallel corpus for training
the DNN with the telephone channel used as the target data.
Both the microphone and the target telephone channels are used
as input features to the DNN. A 5 layer 1024 node DNN archi-
tecture is used in all cases. The hidden layers of the DNN use
the same number of nodes and the sigmoid activation function.

The denoising DNN has been used to extract features that
are beneficial for a range of different speech technologies and
applications. The focus of this work is to use features estimated
by the denoising DNN as the input to an i-vector system for
channel robust speaker recognition. A simplified block diagram
of the hybrid i-vector/DNN system is shown in Figure 1. The
i-vector system uses a Gaussian mixture model (GMM) which
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Figure 1: Hybrid denoising DNN i-vector system

is often referred to as the universal background model (UBM)
to extract zero’th and first order statistics from the input feature
vector sequence. A super vector created by stacking the first
order statics is transformed down to a lower dimensional sub-
space using a linear transformation that depends on the zeroth
order statistics (see [17] for more details). This transformation
requires a total variability matrix T which is estimated from a
large set of super-vectors using an EM-algorithm [17] or PPCA
[18].

The i-vector is treated as a single low dimensional repre-
sentation of a waveform that contains both speaker and chan-
nel information. Mean vector m and whitening matrix W are
used to transform the i-vectors to have a unit normal distribution
N (0, I) before applying length normalization [19]. Then full
rank within class (Σwc) and across class (Σac) covariance ma-
trices are estimated using speaker labeled multi-session data and
the “2 covariance model” described in [20] is used for PLDA
scoring.

3. Microphone and Telephone Corpora
The Mixer 2 and Mixer 6 conversational microphone speech
collections were used in this work for evaluating microphone
channel compensation techniques for speaker recognition. For
the Mixer 2 data there are 239 speakers (123 female and 116
male) with 1035 sessions (averaging 4.3 sessions/speaker). The
sessions were recorded over 8 microphones (see Table 1) and a
telephone channel in parallel at three different locations: ICSI,
ISIP and LDC (see [10, 9, 13] for more details).

In order to train a denoising DNN on Mixer 2 data, a
matched filter was used to time align the data from each mi-
crophone channels to the telephone channel. Audio files were
rejected if the alignment process failed. At the end of the pro-
cess a total of 873 sessions out of the 1035 available sessions
had data for all channels.

The Mixer 6 microphone collection has data from 546
speaker (280 female and 266 male) with 1400 sessions. There
are a maximum of 3 sessions per a speaker (the average is 2.5).
The sessions were recorded over 14 microphones listed in Ta-
ble 2 in two office rooms at the LDC (see [12, 14] for more
details). Six microphones were selected for this work based on
their distance from the speaker and appear in bold in Table 2
(microphones 02, 04, 05, 08, 07 and 13). We chose to evaluate
target and non-target trials only on the same microphone and

Chan Microphone
01 AT3035 (Audio Technica Studio Mic)
02 MX418S (Shure Gooseneck Mic)
03 Crown PZM Soundgrabber II
04 AT Pro45 (Audio Technica Hanging Mic)
05 Jabra Cellphone Earwrap Mic
06 Motorola Cellphone Earbud
07 Olympus Pearlcorder
08 Radio Shack Computer Desktop Mic

Table 1: Mixer 2 microphones

Chan Microphone Distance (inches)
02 Subject Lavalier 8
04 Podium Mic 17
10 R0DE NT6 21
05 PZM Mic 22
06 AT3035 Studio Mic 22
08 Panasonic Camcorder 28
11 Samson C01U 28
14 Lightspeed Headset On 34
07 AT Pro45 Hanging Mic 62
01 Interviewer Lavalier 77
03 Interviewer Headmic 77
12 AT815b Shotgun Mic 84
13 AcoustImagic Array 110
09 R0DE NT6 124

Table 2: Mixer 6 microphones

same room since all sessions from a given speaker in Mixer 6
were recorded in the same room.

Mixer 6 also includes sessions with varying vocal effort
(high, low and normal). During the course of this work we
found that the performance of the high vocal effort data was
particularly poor on the telephone channel. The performance of
our baseline system described in Section 5 on the NIST 2010
Speaker Recognition Evaluation (SRE10) , Mixer 2 and Mixer
6 is summarized in Table 3. Our initial investigation revealed
that at least some of the Mixer 6 data appears to have distortion
on the telephone channel. Since the high vocal effort speech
does not appear to adversely affect the other microphone chan-
nels and there are at most 3 microphone sessions per a speaker
in Mixer 6, we chose to retain the high vocal effort data for
the purpose of evaluating microphone speaker recognition per-
formance. Following the approach described in [21], we ana-
lyzed the relationships among microphone distance attenuation,
the ratio of speech plus noise power to noise power (SNRp),
and the baseline system performance[21, 7]. Distance atten-
uation and system performance showed a Spearman correla-
tion of 0.7928786 for the baseline system and 0.6499239 for
the system with channel compensation, suggesting that channel
compensation helped mitigate the effect of distance from the
microphone on system performance. Our method of calculat-
ing SNRp used SAD marks rather than the reference transcripts
used in [21]. SNRp and distance attenuation were not signif-
icantly correlated, with a Spearman rho of -0.1748497. Also,
functions of SNRp were not significantly correlated with sys-
tem performance, with rho values near 0.

A test set was created from the Mixer 6 data for evalu-
ating microphone performance with 1,230 target and 224,897



Task EER DCF
SRE10 Tel 5.77 0.662
Mixer2 Tel 0.20 0.0352
Mixer 6 Tel 10.89 0.910

Table 3: Baseline system performance on telephone channel
data

non-target trials for each of the 6 channels (7,371 target and
1,347,686 non-target trials pooled across all microphones). The
telephone potion of SRE10 test set was used for evaluating
speaker recognition performance on telephone data. The SRE10
test set consists of 7,094 target and 405,066 non-target trials.

4. Synthesized Corpora
The Mixer 2 telephone channel data was modified using room
impulse responses and noise sources (RIRs) in two different
ways. The first approach involved estimating the RIRs and ad-
ditive noise from a very limited protion of Mixer 2 and then
simulating the entire data set by generating synthetic microh-
pone data by filtering the original telephone speech with the
estimated RIRs and adding noise. Specifically 60 sec segments
were extracted from eight Mixer 2 session across all eight par-
allel microphones. Each telephone microphone pair was time
aligned and the channel impulse responses were estimated via
Welch’s averaged periodogram over the speech segments while
the additive noise was derived from the non-speech portions.
Given the limited reverberant conditions of the original record-
ing environment, the estimated impulse responses were trun-
cated to a 100ms duration. Each Mixer 2 telephone recording
was transformed for each microphone by randomly selecting
one of the eight RIRs to create the synthetic multi-channel cor-
pus. The additive noise was applied across the original tele-
phone waveform by using an overlap-add synthesis of random-
ized windows of the noise estimate while maintaining the orig-
inal SNR levels.

The Kaldi Aspire approach described in [15] was used to
create a second synthetic corpus. RIRs were drawn from three
different sources: the Aachen Impulse Response (AIR) database
[22], the RWCP sound scene database [23] and the 2014 Re-
verb challenge database [24]. Both the Reverb Challenge and
RWCP databases provided noise sources which were added at
randomly selected SNR levels of 0, 5, 10, 15 or 20 dB. The RIRs
were randomly selected eight times for each Mixer 2 telephone
recording.

5. Experimental Setup
Denoising DNNs were trained using 40 Mel frequency cepstral
coefficients (MFCCs) including 20 derivatives coefficients ex-
tracted from a 25ms window of speech every 10ms. The input
to the DNN consist of the MFCCs feature vectors stacked in
a 21 frame window with 10 frames before and after the center
frame (210ms of speech) with the center frame corresponding
to the target feature vector. The target data for the DNN is a sin-
gle MFCC feature vector extracted from the telephone channel
data. The MFCCs are normalized using a non-linear warping
(see [25]) to fit a unit Gaussian distribution over a sliding 300
frame window for both the DNN input and output features. The
DNNs are trained using stochastic gradient descent (SGD) with
a mini-batch size of 256 and a learning rate of 0.1. In most cases
SGD training is completed in fewer than 20 epochs. The DNN

DNN Training AVG POOL
None (baseline) 11.5% 21.2%

Real Mixer 2 7.23% 10.6%
Mixer 2 RIRs 7.25% 11.1%

Kaldi/Aspire RIRs 9.66% 13.9%

Table 4: Performance (EER) for real and synthetic parallel data

architecture in all cases consists of 5 layers with 1024 nodes per
a layer and uses a sigmoid activation function.

The i-vector systems use a 2048 component Gaussian mix-
ture model and 600 dimensional i-vector sub-space. The GMM,
T, m, W Σwc, Σac parameters are all estimated using the
Switchboard 1 and 2 data sets. The baseline system uses 40
MFCC feature vectors with mean and variance normalization.
For our experimental results we report both the equal error rate
(EER) and minimum decision cost function (min DCF) for a
target prior of 0.01.

In Section 6 “Real Mixer 2” refers the Mixer 2 parallel cor-
pus, “Mixer 2 RIRs” refers to the synthetic corpus generated
using the Mixer 2 derived RIRs and “Kaldi/Aspire RIRs” refers
to the synthetic corpus generated using RIRs drawn from the
AIR, RWCP or 2014 Reverb challenge databases.

6. Experiments
Performance for the baseline and DNN systems is presented in
Table 4 (EER) and Table 5 (min DCF). In the tables, “AVG” is
the average EER across microphones and “POOL” is the pooled
performance for scoring all microphones together. The differ-
ence between the AVG and POOL results to some extent reflects
the calibration of a given system.

In all cases, the DNN systems perform significantly better
than the baseline system with the DNN trained on real Mixer 2
data giving the largest relative improvement of 37% and 50%
for the AVG and POOL EERs and 20% and 30% for the AVG
and POOL min DCFs. The DNN trained using the Mixer 2 RIRs
corpus performs almost as well as the DNN trained on the Real
Mixer 2 corpus except that the POOL min DCF is significantly
worse. The DNN trained on the Kaldi/Aspire RIRs corpus does
not perform as well as the other DNNs but is still significantly
better than the baseline (16% and 34% relative improvement in
AVG and POOL EER and 13% and 25% relative improvement
in AVG and POOL min DCFs). The AIR, RWCP and Reverb
2014 databases may contain RIRs from a much broader range of
acoustic environments than the offices used in Mixer 2 or Mixer
6 collections which could explain the degraded performance.

As noted earlier, it is important for the denoising DNNs
to improve microphone performance without degrading perfor-
mance on conversational telephone speech. To assess the per-
formance impact of the denoising DNN on telephony data we
evaluated the DNNs on the SRE10 telephone data set. The re-
sults of this experiment are given in Table 6. Note that there
is actually a small gain in performance for the Real Mixer 2
denoising DNN on SRE10 (a 12% reduction in EER and 8.9%
reduction in min DCF) and minor gains for the other two DNNs.

7. Conclusions
In this work we have compared the use of real parallel multi-
microphone speech data and synthetic multi channel speech
data for training denoising DNNs for speaker recognition. Both
the real Mixer 2 parallel data and the synthetic data generated



DNN Training AVG POOL
None (baseline) 0.728 0.978

Real Mixer 2 0.581 0.687
Mixer 2 RIRs 0.592 0.730

Kaldi/Aspire RIRs 0.632 0.729

Table 5: Performance (min DCF) for real and synthetic parallel
data

Figure 2: Baseline

Figure 3: DNN trained using real Mixer 2

DNN Training EER DCF
None (baseline) 5.77 0.662

Real Mixer 2 5.05 0.603
Mixer 2 RIRs 5.24 0.632

Kaldi/Aspire RIRs 5.38 0.647

Table 6: Performance on SRE10 telephone data

Figure 4: DNN trained using Mixer 2 RIRs

Figure 5: DNN trained using Kaldi/Aspire RIRs



using RIRs estimated from the Mixer 2 data perform very well
on the Mixer 6 same-channel multi-microphone test data yield-
ing large improvements in both EER and min DCF relative to
the baseline system (relative improvements of 37% and 50% for
the AVG and POOL EERs and 20% and 30% for the AVG and
POOL min DCFs). Smaller but still significant performance
gains are realized using data generated with RIRs and noise
sources drawn from three publicly available databases. The
RIRs and noise sources drawn from these databases may span a
broader range of acoustic environments compared to those used
in the Mixer 2 and Mixer 6 collections which could explain the
lower reduction in error relative to the Mixer 2 derived RIRs and
noise sources. While we have not attempted to address the ques-
tion of whether or not synthetic multi-channel data should be
used for evaluating speaker recognition performance, it appears
that this data can be used effectively for developing channel ro-
bust speaker recognition systems through the use of denoising
DNNs.
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