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Abstract
Spoken language recognition requires a series of signal process-
ing steps and learning algorithms to model distinguishing char-
acteristics of different languages. In this paper, we present a
sparse discriminative feature learning framework for language
recognition. We use sparse coding, an unsupervised method,
to compute efficient representations for spectral features from
a speech utterance while learning basis vectors for language
models. Differentiated from existing approaches, we introduce
a maximum a posteriori (MAP) adaptation scheme that further
optimizes the discriminative quality of sparse-coded speech fea-
tures. We empirically validate the effectiveness of our approach
using the NIST LRE 2015 dataset.
Index Terms: speech recognition, sparse coding

1. Introduction
Originally used to explain neuronal activations [1], sparse cod-
ing emerges as an effective means to discover underlying
structures of unknown data. High-level feature representations
learned from sparse coding occasionally have resulted the best
performance for discriminative tasks in computer vision. Yet,
sparse coding of speech features—or audio signals in general—
has not been explored extensively. In this paper, we investigate
a discriminative learning framework based on sparse coding for
language recognition.

Language recognition is a systematic process of identify-
ing the spoken language in a speech utterance. Over the years,
Gaussian mixture models (GMMs) [2] and support vector ma-
chine (SVM) [3] have been crucial to build a high-performance
language identification (LID) system. More recently, the idea
of total variability space or i-vector [4] has been studied for
LID. Motivated by joint factor analysis (JFA) approach [5] for
speaker verification, i-vector approaches are known to perform
better than JFA.

Sparse coding has been previously applied to speaker and
language identification [6, 7, 8]. Despite much interest from the
machine learning community, there is surprisingly little work in
sparse coding for speech. In a classification pipeline for sparse
coding, a simple classifier such as linear SVM is trained on the
learned sparse feature vectors and known to perform on par with
(or better than) more complex nonlinear schemes (e.g., deep
neural networks, kernel SVM) [9]. One possible explanation
is that sparse coding can achieve a near-optimal approximation
of much complicated nonlinear relationship through local and
piecewise linear functions.
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We structure the rest of this paper as follows. In Section 2,
we present a background on sparse coding. Section 3 describes
our sparse coding-based approaches for language recognition.
In particular, we propose adaptive sparse coding (ASC), an
enhancement to the semi-supervised classification pipeline on
vanilla sparse coding, and discuss an online method for per-
utterance dictionary adaptation. As a result, we can significantly
improve the discriminative quality of sparse-coded speech fea-
tures. In Section 4, we evaluate the proposed approaches against
an i-vector based benchmark pipeline developed by Lincoln
Laboratory and MIT on a subset of the NIST LRE 2015 com-
prising the Arabic and Chinese clusters. Section 5 concludes the
paper.

2. Sparse Coding Background
Sparse coding is an unsupervised method to learn an efficient
representation of data using a small number of basis vectors. It
has been used to discover higher-level features present in data
from unlabeled examples. Given an example x ∈ RN , sparse
coding searches for a representation y ∈ RK (i.e., the feature
vector for x) while simultaneously updating the dictionary D ∈
RN×K of K basis vectors by

min
D,y
‖x−Dy‖22 + λ‖y‖1 s.t. ‖di‖2 ≤ 1, ∀i (1)

where di is ith dictionary atom in D, and λ is a regulariza-
tion parameter that penalizes over the `1-norm, which induces a
sparse solution. With K > N , sparse coding typically trains an
overcomplete dictionary. This makes the sparse code y higher in
dimension than x, but only S � N elements in y are nonzero.

A more direct way to control sparsity is to regularize on the
`0 pseudo-norm ‖y‖0, describing the number of nonzero ele-
ments in y. However, it is known to be intractable to compute
the sparsest `0 solution in general. The approach in Eq. (1) is
called least absolute shrinkage and selection operator (LASSO)
[10], a convex relaxation of the `0 sparse coding that induces
sparse y’s. We use least angle regression (LARS) [11] to solve
the LASSO problem. We also consider orthogonal matching
pursuit (OMP) [12], a greedy-`0 sparse coding algorithm that
computes the `0 sparse coding problem extremely fast by

min
D,y
‖x−Dy‖22 s.t. ‖y‖0 ≤ S. (2)

OMP finds at most an S-sparse y explicitly.

3. Our Approach
3.1. Shifted delta cepstral feature extraction

We use a spectral-based technique by Torres et al. [13, 14] to
process speech waveforms. Speech is analyzed with a Ham-
ming window of 20-msec duration at a 10-msec frame rate.
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Figure 1: Vanilla sparse coding pipeline

The windowed speech waveforms pass through a mel-scale fil-
terbank and RASTA filtering with per-utterance normalization
to zero mean and unit variance. Using the 7-1-3-7 scheme, we
calculate the shifted delta cepstral (SDC) coefficients. Concate-
nating with static cepstra, the spectral features extracted from
speech form a 56-dimensional vector. Lastly, we run energy-
based speech activity detection to remove undesirable back-
ground noise.

3.2. Vanilla sparse coding

The key reasoning for sparse coding is to learn useful repre-
sentations by decomposing spectro-temporal features of speech
into a sparse linear combination of basis vectors in a dictionary
(also learned). Nonzeros in the computed sparse code quantify
the presence of specific basis vectors. By exploiting variation of
the nonzero locations and magnitude, we can build a discrimi-
native pipeline for language recognition.

Figure 1 describes a baseline sparse coding approach for
LID, which we call “vanilla sparse coding (VSC).” VSC is a
semi-supervised approach. Assuming L languages of interest
L ∈ {l1, . . . , lL}, we perform sparse coding with an unbiased
mix of unlabeled speech examples from all languages to train
a dictionary D ∈ RN×K during the unsupervised phase. The
trained dictionary represents universal sparse modeling of the
L languages. That is, given an unknown speech input x ∈ RN ,
we can compute its sparse representation y ∈ RK using D. By
sparse modeling assumption, y has only several nonzero ele-
ments

x ≈ y1d1 + y2d2 + · · ·+ yKdK ,

where yj is jth element in y, dj the jth basis vector in D. We
use the notation X = [x(1) . . . x(n)] for a batch of n unlabeled
training examples, where x(i) ∈ RN is the ith example in the
batch. Optionally, X can be normalized and whitened before
sparse coding for better result.

The supervised phase uses a labeled dataset. Consider m
labeled training examples in X` = [χ(1) . . . χ(m)]. Now, each
example χ(k) = {x(k), l(k)} includes a language label l(k) ∈ L
for x(k). Recall each x contains the spectral feature for a single
frame (i.e., 10 msec). Since a speech utterance is much longer
(up to minutes), sparse coding will result in too many feature
vectors per utterance. Before the supervised training of classi-
fiers, we perform pooling, a technique popularized in computer
vision, across all sparse codes from the same utterance. The pur-
pose of pooling is two-fold: 1) aggregation of feature vectors
and 2) statistical robustness.

3.3. Enhancement: adaptive sparse coding

We propose an enhancement of VSC as illustrated in Figure 2.
We name the approach “adaptive sparse coding (ASC).” The
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Figure 2: During the supervised phase of adaptive sparse cod-
ing pipeline, per-utterance dictionary adaptation is performed.
Difference vector between adapted and universal sparse models
is used to train classifiers.

unsupervised phase of ASC is identical to VSC, and the dictio-
nary D for universal sparse modeling of all languages is first
learned. The basic idea of ASC is to adapt D to the utterance-
dependent dictionary Da during the supervised phase. With
both D and Da, we can compute two sparse codes y and
ya for each input vector x from the same utterance such that
x = Dy and x = Daya, respectively. ASC takes in the differ-
ence ∆ = ya−y to train classifiers (compared to y for VSC as
in Figure 1). Note that ∆ vectors from the same utterance are
also pooled before applied to classifiers.

Our idea of adapted sparse coding dictionaries and form-
ing discriminative ∆ is analogous to adapted GMM-UBM and
supervectors [2, 15]. Consider a probabilistic model for sparse
coding under a Gaussian noise

p(x|D,y) ∼ N (

K∑
j=1

yjdj , σ
2I) (3)

where the Gaussian noise has a zero-mean and covariance σ2I.
A sparse prior p(y) ∝

∏
j e
−λ|yj | regularizes the activations

on sparse code y. Note that the hyperparameter λ is same as the
regularization parameter of Equation (1). We can formulate the
maximum a posteriori (MAP) estimation problem to solve for
{ya,Da} jointly

arg max
D′,y′

p(y′|x,D′) = arg max
D′,y′

p(x|D′,y′)p(y′). (4)

Since p(x|D′,y′) is a multivariate Gaussian density function,
we can derive an analytical solution for Equation (4). For this
paper, however, we focus on efficient estimation of the adapted
dictionary and sparse code by following an online method by
Mairal et al. [16].

In Algorithm 1, we present a fast online algorithm for dic-
tionary adaptation. This algorithm is guaranteed to converge
and computes a good estimate of Da from D given an arbi-
trary amount of utterance input. In particular, block-coordinate
descent in the inner-loop sequentially updates each basis vector
(column) in the dictionary. Since the y vectors are sparse, the
coefficients of the matrix A are concentrated on the diagonal,
making the search for optimal Da very efficient. For the sparse
coding step in the inner-loop, we can use either LARS or OMP.

3.4. SVM classification

We consider support vector machines (SVMs) for both VSC
and ASC pipelines. The kernel trick for SVM has been studied
widely to cope with cases where the input vectors for SVM are
not linearly separable. For our case, sparse coding and pooling
together give reasonably sufficient nonlinear transformation for



Algorithm 1 Online dictionary adaptation
1: require: universal sparse modeling dictionary D from un-

supervised phase
2: initialize: D0

a := D, A0 := 0, B0 := 0
3: for t := 1 to T (inner-loop)
4: draw x uniformly random from X
5: compute sparse code y for x using Dt−1

a

6: update At := At−1 + yy> and Bt := Bt−1 + xy>

7: update by block-coordinate descent
Dt

a := argminD′ 1
t
[ 1
2
Tr(D′>D′At)− Tr(D′>Bt)]

8: end
9: return: Dt

a

U"erance(1(from(language(li((
U"erance(2(from(language(li#

( (((((((…(
(

U"erance(m(from(language(li(

U"erance(1(from(language(l1((
( (((((((…"

U"erance(m(from(language(l1#
( (((((((…(

(

U"erance(1(from(language(li–1(
( (((((((…"

U"erance(m(from(language(li–1((
U"erance(1(from(language(li+1(

( (((((((…"
U"erance(m(from(language(li+1(#

( (((((((…(
(

U"erance(m(from(language(lL(

Linear(16vs6all(
SVM"

Class"0"

Class"1"

Model(for((
language(li#

Sparse(coding(
&(pooling"

Sparse(coding(
&(pooling"

Figure 3: Training 1-vs-all SVM for each language

the SDC coefficients. Hence, we use off-the-shelf linear SVMs
only.

A well-accepted strategy for a LID system is to train 1-vs-
all classifiers as explained in Figure 3. To train the model for
language li ∈ L, we input the pooled sparse codes for all la-
beled examples from li as class 0. For utterances from all other
languages lj ∈ L\li , we use class 1.

4. Experiments
4.1. Task, dataset, and evaluation metrics

To evaluate the performance of sparse coding pipelines for LID,
we consider the NIST Language Recognition Evaluation (LRE)
2015 [17]. The task is to determine the average performance of
a LID system that can classify each language as a target within
six predefined language clusters. The language clusters are Ara-
bic, Chinese, English, French, Slavic, and Iberian with 20 dif-
ferent languages in total. For the time being, we present a partial
evaluation focusing only on the Arabic and Chinese clusters. As
summarized in Table 1, there are 5 languages from Arabic and
4 languages from Chinese in NIST LRE 2015.

The dataset comes in train, test, and eval subsets. We
use the train and test subsets for development. The amount
of development data for each language is uneven. It ranges from
2.6 (zho-yue) to 97.5 hours (ara-arz) in speech duration.
The eval subset serves as held-out data to evaluate the classi-

Table 1: Arabic and Chinese language clusters from NIST LRE
2015

Cluster Target languages
Arabic Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
Chinese Cantonese, Mandarin, Min, Wu

fication performance. Following the 2015 evaluation plan [18],
we adopt the NIST average cost performance as our primary
evaluation metric

Cavg =
1

NL

{[
Cmiss · ptarget ·

∑
lT

pmiss(lT )
]

+
1

NL − 1

[
CFA · (1− ptarget) ·

∑
lT

∑
lN

pFA(lT , lN )
]}
.

In addition, we compute the classification accuracy metrics for
the nine 1-vs-all linear SVMs on VSC and ASC.

4.2. Methods and training

For comparative performance evaluation, we have trained a
benchmark pipeline that takes in SDC feature vectors in an
i-vector framework [4], which we call “IVEC-benchmark.”
IVEC-benchmark also uses a 7-1-3-7 SDC scheme along with
static cepstra for the same 56-dimensional vector input to
GMM-UBM and i-vector extraction. For years, i-vector based
systems have been able to produce state-of-the-art results in
speaker and language recognition tasks. IVEC-benchmark re-
mains to be a part of MIT Lincoln Laboratory’s NIST LRE 2015
submission [19].

Before sparse coding, we normalize each input vector by
removing its mean and dividing by the standard deviation. The
normalized input vectors are then ZCA-whitened [20]. Em-
pirically, we choose ZCA-whitening over PCA-whitening, and
there is no dimensionality reduction.

We have tested multiple configurations of VSC and ASC by
varying the choice of sparse coding algorithm, `1-regularized
LARS or greedy-`0 OMP, and the number of basis vectors in
a dictionary K = 512, 1024. For example, ASC-LARS-1024
denotes adaptive sparse coding with LARS and a 1,024-basis
vector dictionary. Throughout our experiments with LARS, we
use a sparsity penalty λ = 0.15. For OMP, we use a sparsity
bound S = 0.1× 56 ≈ 6.

During the unsupervised phase, we use the train subset
to train D for universal sparse modeling of all 9 languages. Dur-
ing the supervised phase, we partition test into five folds and
do cross-validation to determine hyperparameters of the SVMs.
For ASC, we also adapt D to utterance-specific dictionaries
with the test subset during the supervised phase. We have
tested average and max pooling methods described below.

1. Average: f({y(1), . . . ,y(M)}) = 1
M

∑M
j=1 |y

(j)|
2. Max: f({y(1), . . . ,y(M)})

= max∀k({|y(1)k |, . . . , |y
(M)
k |})

4.3. Fusion

As with the historical NIST LREs, if running multiple pipelines
concurrently is found beneficial, we should consider post-
processing at the backend that consists of per-pipeline calibra-
tion and fusion. For example, we can do a simple linear fusion
of IVEC-benchmark and one of our sparse coding pipelines:

llrlTfusion = ρ · llr
lT
1 − µ

lT
1

σlT1
+ (1− ρ) · llr

lT
2 − µ

lT
2

σlT2
. (5)

Here, we use a mixing ratio ρ to combine the scores (i.e., log-
likelihood ratios llr1 and llr2 with respect to a target language
lT ) from the two pipelines. We can also think of more sophis-
ticated fusion schemes on logistic regression and neural net-
works.



Table 2: Comparison of average cost performance (Cavg) on
Arabic and Chinese language clusters

Pipeline Arabic Chinese
IVEC-benchmark 0.2566 0.2054
IVEC-benchmark (GMM-SAD) 0.2539 0.2231
VSC-LARS-512 0.2615 0.2556
VSC-OMP-512 0.2823 0.2699
VSC-LARS-1024 0.2393 0.2043
VSC-OMP-1024 0.2486 0.2120
ASC-LARS-512 0.2187 0.1909
ASC-OMP-512 0.2342 0.2036
ASC-LARS-1024 0.1874 0.1634
ASC-OMP-1024 0.2015 0.1983

4.4. Results and discussion

Table 2 presents the performance comparison on the average
cost metric Cavg for IVEC-benchmark, as well as the proposed
VSC and ASC pipelines. These results are obtained by running
the eval subset, which includes 34,530 utterances for Arabic
and 44,596 utterances for Chinese. The bold-faced numbers rep-
resent the best result from each IVEC, VSC, ASC group. Notice
we include the result for IVEC-benchmark under GMM-SAD,
which performs better for Arabic.

We observe that ASC makes a significant improvement over
VSC. If the choice of sparse coding algorithm and the num-
ber of basis vectors in a dictionary K are the same, ASC re-
sults in consistently better cost performance. Overcompleteness
of sparse coding dictionary is an important hyperparameter to
preconfigure. For both VSC and ASC, increasing K from 512
to 1,024 has always improved the cost performance. Also for
both pipelines, LARS results in a better performance. However,
the computation time for LARS is found an order of magnitude
higher than OMP.

5. Conclusion
Sparse coding has achieved state-of-the-art performance in
computer vision and object recognition. Despite its growing in-
terest, there is relatively little work in sparse coding for acous-
tic language modeling. In this paper, we have described semi-
supervised approaches for sparse coding on the task of language
recognition. Differentiated from the existing sparse representa-
tion classification (SRC), we propose the MAP adaptation on
the dictionary for sparse modeling of all languages to improve
the discriminative quality of sparse-coded speech features. Us-
ing the NIST LRE 2015 dataset, we empirically evaluate the ef-
fectiveness of our approaches. Also, our experimental backend
results indicate that sparse coding, ASC in particular, should be
a viable component for the top LID system.
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