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Abstract 

In this paper, we consider the task of language identification in 
the context of mismatch conditions. Specifically, we address 
the issue of using unlabeled data in the domain of interest to 
improve the performance of a state-of-the-art system. The 
evaluation is performed on a 9-language set that includes data 
in both conversational telephone speech and narrowband 
broadcast speech. Multiple experiments are conducted to 
assess the performance of the system in this condition and a 
number of alternatives to ameliorate the drop in performance. 
The best system evaluated is based on deep neural network 
bottleneck features using i-vectors. The proposed system 
results in a 30% improvement over the baseline result. 

 
Index Terms: language identification, domain adaptation, 
unsupervised learning, deep neural networks, bottleneck 
features 

1. Introduction and task 

Spoken language identification (LID) is the process of 
identifying the language in a spoken speech utterance. In 
recent years, great improvements in LID system performance 
have been seen due to the advent of new techniques based on 
low-dimensional feature representations (i-vectors) and more 
recently, deep neural networks (DNN) and bottleneck features.  

Although the observed performance is nothing short of 
remarkable, issues related to robustness are still of concern.  
Particularly, the application of LID systems trained on a given 
set of conditions (domain) but evaluated on a different set of 
conditions is of interest and results in degraded performance.  
Conventionally, this problem is addressed by obtaining labeled 
data in the new domain and retraining the system which 
usually results in a performance improvement.  There are 
multiple issues with this approach.  First, the data available in 
the new domain may not always be labeled, and labeling the 
data is a long, manual process that can produce inconsistent 
labels.  Secondly, retraining the system requires interruptions 
from system operation and potential housekeeping difficulties. 

As such, the aim of this paper is two-fold.  The primary 
goal of this work is to explore ways in which unlabeled data 
can be used in LID systems, particularly with mismatched 
domains.  A secondary goal is to demonstrate the general 
performance improvement of the hybrid DNN/i-vector system 
relative to a standard i-vector system.   
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The organization of this paper is as follows: Section 2 
describes the experimental setup used to simulate and test the 
mismatch scenario.  Section 3 describes the proposed 
approaches for addressing the domain mismatch problem.  
Section 4 presents system performance using the proposed 
methods, and Section 5 draws conclusions. 

2. Experimental setup 

2.1. Corpus 

The data used for the experiments is a set of 9 languages 
identified from pooling together most data sources available to 
us from previous evaluation campaigns and includes only the 
languages for which data is available in two sources of data: 
conversational telephone speech (CTS) and broadcast news 
(BN). The CTS data includes multiple collections from mainly 
the Linguistic Data Consortium (LDC) while the BN news 
consists almost exclusively of data collected from Voice of 
America (VoA).  In order to simulate the mismatch scenario, 
all languages that are available in both CTS and VoA are 
included in this new subset and used for the mismatch 
scenario. In particular, the 9 languages that include data from 
both sources include: Cantonese, Farsi, Hindi, Korean, 
Mandarin, Russian, Spanish, Urdu and Vietnamese.  The 
experimental setup is to use the CTS data as the available 
labeled set from which a baseline out-of-domain system is 
trained. A portion of the VoA data is then used to evaluate in-
domain performance with another VoA partition available as 
unlabeled data.  Hereafter, we will use VoA and CTS 
interchangeably with in- and out-of-domain, respectively. 

2.2. LID systems 

The mismatched domain alternatives proposed here are 
assessed using LID systems based on the i-vector framework 
[1].  Figure 1 illustrates a generic block diagram of the i-vector 
system used in this paper.  Speech is processed following the 
process described in [2]. For the systems under evaluation, 
cosine distance scoring is used as the evaluation metric. 
       In this work, two different i-vector systems are 
considered, which differ in their feature extraction mechanism. 
The first, which we refer to as the standard i-vector, or simply 
i-vector system, uses Shifted Delta Cepstra (SDC) features [3]. 
The second system uses DNN bottleneck features, and is 
referred to here as the hybrid DNN/i-vector, or simply DNN 
system.  The bottleneck features are generated by training a 
DNN to predict senone classification labels generated by Kaldi 
from frame-level perceptual linear prediction coefficients as 
input.  An intermediate bottleneck layer within the DNN is 
used as a dimensionality reduction technique, whose outputs 
serve as frame-level feature vectors.  For more info on the 
DNN system, we refer the reader to [4]. 



Figure 1: I-vector LID system block diagram  

3. Proposed approaches 

Addressing the mismatched domain problem in this context 
can be broken into two tasks.  The first task involves labeling 
the unlabeled, but in-domain, training data partition, whereas 
the second task considers the means by which the newly 
labeled training data is combined with labeled out-of-domain 
training data to thereby retrain a new system.   

3.1. In-domain data labeling 

The first task required in order to address the domain 
mismatch problem involves accurately labeling the unlabeled 
VoA partition.  As such, it can essentially be viewed as an 
unsupervised learning problem, in which one expects LID 
performance to improve with labeling accuracy, and approach 
best-case system performance with perfect knowledge of the 
VoA training data labels.  The approaches considered here to 
automatically label the unlabeled VoA training data partition 
involve the use of an LID system itself.  To this effect, three 
strategies are considered. 
 
1) Score thresholding: this approach begins by labeling the 

VoA data using an entirely CTS-trained LID system.  
Next, the speech cuts with scores in some top percentile 
are selected in an attempt to minimize the labeling error.  
A new LID system is then trained with the retained scores 
and speech cuts.  The notion of the score thresholding is 
that cuts with higher scores have a higher degree of 
certainty, as the average class purity increases as the 
score threshold is increased.  Here, we consider the top 
50%, 75% and 100% (i.e. all the data) as score thresholds 
to demonstrate the performance gains of pruning labels in 
this manner. 

2) Iterative relabeling: this approach again begins by 
labeling the VoA data using an entirely CTS-trained LID 
system.  Next, the newly labeled VoA data is 
incorporated into training a new LID system, which 
relabels the VoA data, and this process is iterated.  The 
notion is that hopefully, the labeling should be improving 
with each iteration, improving overall system 
performance.  Relative to the score thresholding 
approach, the potential advantage of the iterative 
relabeling approach is that class purity can be improved 
at each iteration without having to reduce the number of 
training samples.  However, its success is ultimately 
dependent on the way in which labeling errors propagate 
over time, and may intrinsically assume that the initial 
labeling is already quite good. 

3) Hybrid labeling: this approach is actually a combination 
of the previous two approaches.  Now, the VoA training 
data is iteratively relabeled, and only the VoA speech 
cuts with scores above a threshold are retained to retrain a 
new system. 

 
Note that standard clustering techniques, like k-means, could 
have alternatively been used to label the data, though we have 
experimentally found that it is not as fruitful.  In some sense, 
the use of the LID system itself for labeling is simply a more 
informed unsupervised learning mechanism, though the degree 
to which this is true will vary with the extent of the mismatch 
between domains. 

3.2. Data pooling 

The second task for addressing the mismatch problem involves 
effectively integrating the newly labeled VoA data to train a 
new system.  To this end, there are three groups of training 
data that will be used: CTS only, VoA only, and CTS+VoA.  
When training the system hyperparameters, it has generally 
been observed that the training data used for the universal 
background model (UBM) should be coupled with that used to 
train the T-matrix, whereas the training data used to calculate 
within-class (WC) covariance matrices should be coupled to 
those used to generate the target models (TMs).  Hereafter, we 
will refer to the UBM/T-matrix training and WC/TMs training 
stages as the front-end and back-end, respectively, as indicated 
in Figure 1.  Accordingly, for each group of training data, 
three different strategies are considered: 
 
1) Back-to-Front: this approach only retrains the back-end 

with the specified group of training data and leaves the 
front-end untouched (CTS-trained).  This method is 
particularly attractive because the back-end can generally 
be trained relatively quickly, but requires labeled data. 

2) Front-to-Back: this approach only retrains the front-end 
with the specified group of training data and leaves the 
back-end untouched (CTS-trained).  These 
hyperparameters actually do not require labeled data for 
training so the VoA data can be used as is when it makes 
up a subset of the specified training data.  This method is 
inherently included within the baseline experiments we 
have conducted. 

3) Hybrid training: this approach is actually a combination 
of the previous two approaches. Now, all 
hyperparameters of the system can be retrained but with 
various combinations of data. 

4. Results and discussion 

This section presents the results for the different mismatched 
environment alternatives that were outlined in the previous 
section.  In each instance, performance is assessed by means 
of the equal error recognition (EER) rate.  In general, there are 
many combinations of labeling and data pooling schemes 
which can be considered.  Here we highlight some of the main 
findings which demonstrate the effectiveness of the proposed 
approaches. 



Table 1. Baseline mismatched environment experiments. 
     Standard i-vector system     Hybrid DNN/i-vector system 

WC, TMs 

UBM, 
T-matrix 

CTS CTS+VoA VoA 

CTS 4.85% 2.53% 2.18% 

CTS+VoA 5.58% 1.94% 1.82% 

VoA 7.27% 1.82% 1.58% 
 

WC, TMs 

UBM, 
T-matrix

CTS CTS+VoA VoA 

CTS 3.39% 2.06% 2.05% 

CTS+VoA 3.41% 1.55% 1.46% 

VoA 6.20% 1.67% 1.62% 

Table 3. Score thresholding/hybrid training results. 
     Standard i-vector system     Hybrid DNN/i-vector system 

WC, TMs 

UBM, 
T-matrix 

CTS CTS+VoA VoA 

CTS 4.85% 4.00% 3.85% 

CTS+VoA 5.58% 3.50% 3.11% 

VoA 7.27% 3.76% 3.24% 
 

WC, TMs 

UBM, 
T-matrix

CTS CTS+VoA VoA 

CTS 3.39% 2.96% 2.91% 

CTS+VoA 3.41% 2.67% 2.85% 

VoA 6.20% 2.49% 2.67% 

4.1. Baselines/domain mismatch proof-of-concept 

We begin by conducting a number of experiments to establish 
baseline performance, assuming perfect knowledge of the 
VoA training data whenever needed. We considered every 
combination of back-end and front-end training data source as 
per the training groups outlined in Section 3. These baselines 
serve to quantify best- and worst-case performance scenarios, 
and as a proof-of-concept to illustrate the potential gains of 
incorporating the in-domain training data partition if 
generating accurate labels for these samples were conceivable. 

The results of these baseline experiments are shown in 
Table 1. These results illustrate that one can greatly improve 
performance by incorporating the VoA data into the training, 
particularly when it is used in the back-end.  Using the data for 
training the front-end alone generally degrades performance, 
but again improves performance when accompanied with 
some training on the back-end components of the system.  
Generally speaking, the DNN system substantially 
outperforms the standard i-vector system. Interestingly 
enough, the best performing DNN baseline is when both CTS 
and VoA data are used to train the front-end.  One explanation 
for this is that the combination results in more training 
samples in overall, which despite some of the mismatch 
between domains, provides overall a richer training set for the 
DNN and subsequent LID system. 

4.2. Score thresholding 

4.2.1. Back-to-front training 

Experimental results highlighting the combination of score 
thresholding and back-end retraining approaches are shown in 
Table 2. In this case, both the standard and hybrid DNN           
i-vector systems perform best when only VoA speech cuts 
corresponding to the top 75% of scores are retained for 
retraining. When looking at the top 50% score results, the 
average class purity improved but the overall system 
performance did not.  This could be caused by the reduced 
sizes of some classes.  Since the labels and scores are not 
distributed uniformly, eliminating lower scores caused certain 
classes to lose more cuts than others.  In some cases, retraining 
with a combination of CTS and VoA data performed better 

than just training with CTS data. This is likely because the 
CTS data is compensating for the labeling errors in the VoA 
data. In this case, the best-performing DNN scenario 
outperforms the best-performing i-vector system scenario by 
24%. 

4.2.2. Hybrid training 

Experimental results highlighting the combination of score 
thresholding and the hybrid training approach are shown in 
Table 3.  In any case where VoA data labels are needed, the 
labels with the top 75% scores were used since they showed 
the best performance in the back-to-front experiments.  The 
best result for both the i-vector and DNN systems occur when 
both CTS and VoA data are somehow combined during 
training, though the exact combinations differ between 
systems. It appears that having the labeled but mismatched 
CTS data somewhere in the training somehow mitigates some 
of the VoA labeling errors, and in general, on the order of a 
25-35% improvement over the baseline mismatch scenario is 
achieved using this method between the different systems. 
Moreover, note that the DNN system outperforms the standard 
i-vector system by 20%.   

Table 2. Score thresholding/back-to-front results. 

Top 
Percentile 

VoA 
(EER) 

CTS+VoA 
(EER) 

Avg. VoA 
Class Purity

100th 4.48% 4.30% 80.6% 

75th 3.85% 4.00% 87.5% 

50th  4.72% 4.24% 88.2% 

Standard i-vector 

Top 
Percentile 

VoA 
(EER) 

CTS+VoA 
(EER) 

Avg. VoA 
Class Purity

100th 3.03% 3.03% 83.0% 

75th 2.91% 2.96% 86.9% 

50th  2.92% 2.96% 88.4% 

Hybrid DNN/i-vector system 



4.3. Iterative relabeling 

For conciseness, we only consider DNN system performance 
for the remainder of this paper as it has consistently 
outperformed the standard i-vector system until now.   

4.3.1. Back-to-front training 

Experimental results highlighting the combination of iterative 
relabeling and the back-end retraining approach are shown in 
Table 4.  Though this is not the case universally, we observed 
that the relabeling generally only improves performance if 
CTS data is also incorporated with VoA data to retrain the 
back-end. This is because the CTS data is again compensating 
for the labeling errors, which the relabeling mechanism may 
propagate from iteration to iteration. In the case where both 
CTS and VoA data is used, we do see an improvement in 
performance and improved VoA class purity at each iteration. 

4.3.2. Hybrid training 

Experimental results highlighting the combination of iterative 
relabeling and the hybrid training approach are shown in Table 
5. This approach also appears to be a viable method for 
integrating VoA data to improve performance relative to the 
native CTS-only system, though its performance is slightly 
worse than the score thresholding/hybrid training case. The 
best-case performance is achieved using CTS and VoA for 
both the front- and back-ends, implying that the CTS data is 
again helping to mitigate labeling errors despite the mismatch. 

4.4. Hybrid relabeling and training 

We now consider the combination of both the hybrid 
relabeling and hybrid training techniques. In each of 3 
iterations, the entire VoA training data partition is relabeled, 
and in any case where labeled VoA data is needed, the labels 
with the top 75% scores are retained. The results in Table 6 
illustrate that the combination of all the techniques proposed 
here gives rise to the best performance of any system, yielding 
a 2.42% EER which is achieved when CTS and VoA are used 
for both the front- and back-ends. This implies that in general, 
both the inclusion of CTS data and score thresholding are 
helping to mitigate some of the labeling error which the 
relabeling scheme may otherwise be particularly sensitive to. 

4.5. Out-of-set (OOS) experiment 

Until now, we have assumed the VoA training samples are 
within the 9 target classes of interest.  This is unlikely to be 
the case in practice.  Lastly, we conduct an out-of-set 
experiment where VoA data from 9 other languages (Amharic, 
Creole, Croatian, English, French, Georgian, Portuguese, 
Turkish, and Ukrainian) is appended to the unlabeled set.  We  

Table 4. Iterative relabeling/back-to-front results. 

Experiment EER 
Avg. VoA 

Class Purity

Initial label 3.03% 83.0% 

Relabeling (1 iteration) 2.96% 84.2%

Relabeling (3 iteration) 2.88% 85.2% 

Back-to-front baseline 2.06% 100% 

Table 5. Iterative relabeling/hybrid training results. 

WC, TMs 

UBM, 
T-matrix

CTS CTS+VoA VoA 

CTS 3.39% 2.88% 3.06% 

CTS+VoA 3.41% 2.59% 3.03% 

VoA 6.20% 2.65% 2.83% 

Table 6. Hybrid labeling/hybrid training results. 

WC, TMs 

UBM, 
T-matrix

CTS CTS+VoA VoA 

CTS 3.39% 2.91% 3.15% 

CTS+VoA 3.41% 2.42% 2.79% 

VoA 6.20% 2.61% 2.82% 

 
considered the most basic of the mismatch alternatives using 
score thresholding and back-to-front retraining, with results 
highlighted in Table 7.  In this case, a more stringent top 50% 
threshold performs best as it improves label certainty in light 
of the OOS problem.  Use of all the VoA data degrades 
performance relative to the 3.39% EER CTS baseline.    

5. Conclusions 

This paper explored alternatives for LID in mismatched 
environments for the case in which unlabeled in-domain data 
is available. The approaches varied in the ways in which data 
was labeled and pooled to retrain a new system. Of the two 
labeling schemes, score thresholding appeared to be more 
effective on its own. Although not the best performing 
scenario, improvement is gained by simply retraining the 
back-end only, which is useful for cases where retraining the 
front-end is not feasible.  On the closed-set, the best 
performing system employed a combination of all the data 
labeling and pooling approaches proposed here, improving 
baseline out-of-domain system performance by approximately 
30%. In this case, out-of-domain data must still be 
incorporated to counteract incurred labeling error.  
Experimental results also highlighted the general performance 
gains of the hybrid DNN/i-vector system. In the future, we 
intend to continue evaluating alternatives to improve the 
approach, particularly on the DNN side. Additionally, we plan 
to expand our work with the OOS case and move our 
experiments to harsher mismatch conditions. 

Table 7. OOS score thresholding/back-to-front results 

Top 
Percentile 

VoA 
(EER) 

CTS+VoA 
(EER) 

Avg. VoA 
Class Purity

100th 3.65% 3.44% 48.2% 

75th 3.24% 3.03% 61.5% 

50th  2.97% 3.03% 78.8% 
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