
Hide and Seek: Exploiting and Hardening Leakage-Resilient Code Randomization�

Robert Rudd
MIT Lincoln Laboratory

Thomas Hobson
MIT Lincoln Laboratory

Richard Skowyra
MIT Lincoln Laboratory

David Bigelow
MIT Lincoln Laboratory

Veer Dedhia
MIT Lincoln Laboratory

Stephen Crane
University of California, Irvine

Christopher Liebchen
TU Darmstadt

Per Larsen
University of California, Irvine

Lucas Davi
TU Darmstadt

Michael Franz
University of California, Irvine

Ahmad-Reza Sadeghi
TU Darmstadt

Hamed Okhravi
MIT Lincoln Laboratory

Abstract
Information leakage vulnerabilities can allow adversaries
to bypass mitigations based on code randomization. This
discovery motivates numerous techniques that diminish
direct and indirect information leakage: (i) execute-only
permissions on memory accesses, (ii) code pointer hid-
ing (e.g., indirection or encryption), and (iii) decoys (e.g.,
booby traps). Among the proposed leakage-resilient de-
fenses, Readactor is the most comprehensive solution
that combines all these techniques. In this paper, we con-
duct a systematic analysis of recently proposed execute-
only randomization solutions including Readactor, and
demonstrate a new class of attacks that bypasses them
generically, highlighting their limitations. We analyze
the prevalence of opportunities for such attacks in pop-
ular code bases and build three real-world exploits to
demonstrate their practicality. We then implement and
evaluate a new defense against our attacks. Our evalua-
tion shows that our new technique is practical and adds
little additional performance overhead (9.7% vs. 6.4%).

1 Introduction
Return-oriented programming (ROP) [53] emerged in
response to the widespread adoption of defenses such
as W�X (Write�eXecute) [46]. Despite numerous ad-
vances in this domain, comprehensively protecting native
code written in C/C++ from ROP and other code-reuse at-
tacks remains an open area of research [58].

Two classes of code-reuse defenses have been studied
in the literature, one based on enforcement [1, 37, 44]
and the other based on randomization [8, 38]. In this pa-
per, we focus on randomization-based defenses. These
defenses have the advantage of being efficient and scal-
able to complex software such as browsers but are less
effective in the presence of information leakage vulnera-
bilities [52, 57] that reveal the effects of randomization.

�Distribution A: Public Release; unlimited distribution. This
work is sponsored by the Department of Defense under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the author and are not nec-
essarily endorsed by the United States Government.

Direct leakage of memory content (a.k.a., memory dis-
closure) [55, 57], indirect leakage of addresses from the
stack or heap [21], and remote side-channel attacks [51]
are different forms of information leakage that have been
used successfully to bypass recent randomization-based
defenses [16, 21, 24].

In response to information-leakage attacks, re-
searchers have used execute-only memory (X-only) to
build leakage-resilient, randomization-based defenses [5,
19, 27]. These schemes deploy some or all of the fol-
lowing techniques: they a) enforce execute-only permis-
sions on code pages to mitigate direct information leak-
age, b) introduce an encryption or indirection layer (e.g.
by routing calls and returns through trampolines) to pre-
vent code pointers from indirectly leaking the code lay-
out, and finally c) they randomize the trampoline lay-
out to create uncertainty for an attacker. Defenses such
as XnR [5] and HideM [27] mitigate direct code leak-
age, but remain vulnerable to indirect leakage and re-
mote side-channel attacks. ASLR-Guard [41] prevents
indirect leakage through code pointers but remains vul-
nerable to direct leakage. So far, the most comprehen-
sive X-only defense is Readactor [19], which combines
all of the above mentioned techniques. A recent exten-
sion to Readactor, called Readactor++ [20] additionally
mitigates whole-function reuse attacks such as COOP at-
tacks that inject counterfeit objects into memory [50] and
detects brute-force guessing attacks by inserting decoy
trampolines also known as booby traps [18].

Goals and Contributions. In this paper, we system-
atically investigate the effectiveness of randomization-
based schemes that deploy execute-only and code pointer
hiding techniques. We demonstrate a new class of
code-reuse attacks which we call Indirect Code Pointer-
Oriented Programming (ICPOP)1 that can generically
bypass execute-only defenses. The intuition behind
ICPOP is that execute-only permissions apply just to

1Pronounced “Icy Pop”

code, not code pointers (e.g., function pointers and re-
turn addresses). Code pointers must be readable for pro-
grams to function correctly. Various execute-only de-
fenses use some form of hiding (indirection or encryp-
tion) to protect these code pointers, but these alternative
code pointer representations remain useful to an attacker.

We demonstrate that an attacker can profile this layer
of indirection in code pointers by observing the state of
the protected program remotely, and extract these indi-
rect code pointers. We then show that solely by reusing
these indirect code pointers, an attacker can achieve ma-
licious behavior without explicitly requiring read access
to the diversified code. We call our attack Indirect Code
Pointer-Oriented Programming (ICPOP) because it is a
type of code reuse, but at the abstraction of indirect code
pointers.

In order to accurately profile indirect code pointers in
a running process remotely, we devise a new attack tech-
nique which we call Malicious Thread Blocking (MTB).
To chain indirect code pointers, we generalize the COOP
technique [50] to imperative programming languages
lacking object orientation, in what we call Counterfeit
Procedural Programming (CPP).

Using these techniques, we build two real-world
ICPOP exploits against Nginx and one against Apache
to hijack the control flow in the presence of full-featured
Readactor. These attacks are not limited to Readactor;
we discuss the generality of these attacks against other
recent defenses and show that many of them are also vul-
nerable to ICPOP.

Using the lessons learned from these attacks, we build
and evaluate a countermeasure against them. We cre-
ate a technique called Code Pointer Authentication that
prevents ICPOP by establishing a form an authentica-
tion over the layer of indirection used to protect the code
pointers. We directly augment the Readactor system2 to
demonstrate the feasibility and effectiveness of our tech-
nique.

Finally, we discuss and mitigate some implementation
flaws in modern X-only defenses such as using mem-
ory access channels not mediated by page permissions
(e.g., malicious software-based direct memory access
(DMA)).

In summary, our contributions are as follows:

� We present a new class of attacks that can generi-
cally bypass X-only defenses. We build three real-
world exploits against Nginx and Apache.

� We present two techniques to accurately profile
(Malicious Thread Blocking) and chain (Counter-
feit Procedural Programming) ICPOP gadgets.

� We present and discuss some implementation chal-
lenges in modern X-only defenses.

2Crane et al. [19] kindly shared their implementation with us.

� We propose and implement a countermeasure
against our attacks, and evaluate its performance
and effectiveness.

� We discuss the generality of our attacks against
other recent leakage-resilient defenses.

2 Threat Model
Our threat model assumes that a remote attacker uses
a memory corruption vulnerability to access arbitrary
memory and achieve remote code execution on the vic-
tim machine. We assume W�X is deployed to pre-
vent code injection and modification. Moreover, we
assume that the software executing on the target sys-
tem is protected by a leakage-resilient randomization-
based defense capable of stopping conventional code
reuse [15, 53] and just-in-time code-reuse attacks [55].
In particular, we assume that the target system:

1. maps code pages with execute-only permissions to
prevent direct leakage [5, 19, 27],

2. hides, encrypts or obfuscates code pointers to pre-
vent indirect leakage [19, 41],

3. randomizes the code layout at any granularity up to
individual instructions [19, 31, 35, 47], and

4. randomizes the entries of function tables [20]
rendering whole-function reuse attacks cumber-
some [50].

Our threat model is consistent with related work on
leakage-resilient randomization-based defenses against
code reuse.

While strong enforcement-based and randomization-
based defenses in the literature have assumed that the
adversary can read and write arbitrary memory (modulo
page permissions), we demonstrate that practical attacks
can in fact be mounted by a less powerful adversary.

3 Indirect Code Pointer-Oriented
Programming (ICPOP) Attack

3.1 Overview
Current state-of-the-art randomization-based de-
fenses [5, 6, 12, 19, 20, 27, 41] aim to prevent
code-reuse attacks by limiting an attacker’s ability to
disclose the code layout, either by leaking the code itself
or by leaking code pointers. As noted in Section 2, the
adversary is assumed to have arbitrary read and write
capabilities. Two primary techniques are employed to
stop these adversaries:

� Execute-only permissions prevent read accesses to
code pages (existing W�X policies already prevent
writes to code pages). Thus, any attempts by an at-
tacker to directly disclose the locations and contents
of code pages will lead to a segmentation violation.

� Code pointer hiding seeks to prevent indirect mem-
ory disclosure by changing how pointers to code are

2

stored in attacker-observable memory. Some ap-
proaches alter the pointer representation using fast
XOR encryption [12, 17, 41]. Others use indirec-
tion mechanisms [6, 19]. For instance, Readactor
replaces all observable code pointers with pointers
to trampolines. A forward trampoline is simply a di-
rect jump to a function stored in execute-only mem-
ory. Because the location of the forward trampoline
and the function it jumps to are randomized inde-
pendently, attackers cannot infer the function layout
by observing the trampoline layout.

In this section, we describe a code-reuse attack that
generically circumvents execute-only memory defenses,
even under the strong assumption that execute-only per-
missions are universally enforced. In strong execute-
only defenses, in addition to additional page permissions,
encryption or indirection is used to protect code point-
ers during execution. We show how an attacker can in-
deed use these indirect code pointers to launch meaning-
ful exploits. This is achieved by profiling the indirect
code pointers to determine the underlying original code
to which they point. We demonstrate how multiple pro-
filed indirect code pointers can be used together to launch
a chained attack (ICPOP) akin to traditional ROP, but at
the granularity of code segments pointed to by these in-
direct code pointers.

3.2 Profiling & Malicious Thread Blocking

The goal of profiling is to determine the original function
F() that is invoked by an indirect code pointer icptr.
Various X-only defenses use different names for these in-
direct code pointers. For example, Readactor [19] calls
them trampoline pointers, while ASLR-Guard [41] calls
them encryption code locators. We use the generic name
“indirect code pointers”, but the discussions apply to
these and similar defenses.

An attacker who can identify the mapping of
icptr!F can redirect control flow to F in an indirect
way via icptr. “!” denotes that icprt is the pointer
to the indirection layer (trampoline or encrypted pointer)
that corresponds to function F.

To infer this mapping, we exploit the fact that pro-
grams execute in a manner that inherently leaks infor-
mation about the state of execution. Knowledge about
the execution state of a program at the time of a mem-
ory disclosure enables us to infer the icptr!F mapping
from a leaked icptr.

An attacker can use her knowledge about function ad-
dresses in the unprotected version of the program to in-
fer the locations of indirect code pointers in the pro-
tected version. We illustrate this idea in Figure 1. By
observing what functions pointers are placed in observ-
able memory (i.e., stack or heap) in the unprotected ver-

No Hiding

F:

ptr

RW stack

Observable

RX code
Hiding

t_F: …

F:

icptr

RW stack

Hidden

Observable

Observable

Adversary

XO code

XO trampolines

attacker infers that icptr → F()

Figure 1: Profiling of Indirect Code Pointers

sion, an attacker can infer that the pointers observed in
the protected version must be the corresponding indirec-
tion pointers of the same functions.

At a high-level, to perform the profiling, the attacker
collects a list of function pointers from an unprotected
version of the application offline, then she collects some
indirect code pointers from the protected application in
an online manner by sending the victim a few queries
and observing parts of its data memory (e.g., stack). This
allows the attacker to create a mapping between the dis-
covered indirect code pointers and their underlying func-
tions. The attacker can then chain these indirect code
pointers to achieve the desired malicious behavior. Since
the code snippets pointed to by these indirect code point-
ers behave like traditional ROP gadgets we call them
ICPOP gadgets. Although these steps sound straightfor-
ward, in practice the attack faces a number of technical
challenges. Here, we describe the techniques we devised
to overcome these challenges.

A naı̈ve approach to create an accurate mapping of in-
direct code pointers to underlying functions can rely on
repeated stack disclosures and precise timing of the leak-
age. However, since the state of the system changes very
rapidly, this can result in inaccuracies in the mappings
which eventually causes a crash at exploitation time. To
enhance the precision of the mapping, we devised a tech-
nique which we call Malicious Thread Blocking (MTB).

In the case of programs that utilize threading, we can
employ MTB to enable us to profile a broader range of
indirect code pointers and avoid dependence upon strict
timing requirements for triggering the disclosure vulner-
ability.

The approach of MTB is to use one thread, TA, to cause
another thread, TB, to hang at an opportunistic moment
by manipulating variables that cause TB’s execution to
block, e.g., by maliciously locking a mutex. By oppor-

3

lock(mutex)
…
unlock(mutex)
…

lock(mutex)
…
unlock(mutex)
…

lock(mutex)
…
unlock(mutex)
…

time1

time2

time3

mutex = 1

mutex = 0

mutex = 1

Thread TA

Malicious
Thread

Blocking

Thread TB

Figure 2: Normal vs. Malicious Thread Blocking

tunistically blocking a thread, we can more easily locate
and map desired trampoline pointers without worrying
about rapid changes in memory. A memory disclosure
vulnerability may be triggered in TA that enables mem-
ory inspection at a known point in execution in TB. Note
that this technique gets around any timing unpredictabil-
ity that the attacker may face when trying to trigger a
disclosure in thread TA at the appropriate time in execu-
tion for thread TB. The idea of this approach is illustrated
in Figure 2.

As one example of this technique in practice, we show
in Section 4 how an attacker can lock a mutex in Nginx
to cause a thread to block upon returning from a system
call. Triggering a memory disclosure vulnerability in an-
other thread at any point after the system call enables
the attacker to inspect a memory state that she knows
contains trampoline pointers relevant to the system call.
To more easily distinguish one system call from another,
the attacker can supply a unique input and scan disclosed
memory for that input.

3.3 Passing Proper Arguments
After the attacker has mapped relevant indirect code
pointers to their underlying functions, it is straightfor-
ward to redirect control flow to one of the functions. For
the purpose of control flow hijacking, knowing an indi-
rect code pointer address is just as good as knowing the
address of a function.

Consider the following code fragment:

call(int arg1, int arg2) {

fptr(arg1, arg2); }

call_with_defaults() {

fptr(default_arg1, default_arg2); }

If the attacker modifies the region of memory
containing fptr, the next invocation of call or

call with defaults will be redirected to an indirect
code pointer chosen by the attacker. Unlike ROP and
similar attacks, this redirection is consistent with the
high-level semantics of C, thus unaffected by any under-
lying randomization (instruction-level, basic block-level,
function-level, or library-level). In a valid C program
fptr can potentially point to any function in the pro-
gram.

Hijacking control flow in this manner does have lim-
itations. If the attacker ends up hijacking a call like the
one in call, the attacker will have very limited ability
to control the arguments. The x86 64 ABI mandates a
calling convention in which the first few arguments must
be passed via register. It is much more difficult to con-
trol a value in a register than it is to control a value in
memory. Some diversity techniques further complicate
this by randomizing how registers are allocated to vari-
ables and how registers are saved to and restored from
the stack [19, 47].

An attacker can overcome these defenses by
concentrating on hijacking calls like the call in
call with defaults. call with defaults invokes
fptr on global variables. As global variables are stored
in memory, they are trivial to modify. If an attacker is
able to locate a function like call with defaults, she
will be able to redirect control to a function of her choos-
ing, with up to two arguments of her choosing.

In our experiment with Nginx and Apache, we ob-
served many such opportunities as we will discuss in our
real-world exploits in Section 4.

3.4 Chaining via
Counterfeit Procedural Programming

An attacker wishing to chain multiple ICPOP gadgets to-
gether faces another challenge: after calling an indirect
code pointer, the execution returns to the original call
site. This makes it difficult for the attacker to take the
execution control back after a single function call. For
example, in Readactor, trampolines consist of a call im-
mediately followed by a jump to the original call site; any
redirected call will end with a return to normal program
execution. Theoretically, there is a window, potentially
very narrow, between the invocation of a redirected call
and the return of the redirected call in which an attacker
may modify the return address to maintain control. This
approach requires a very precise level of timing which
may be difficult to achieve in practice.

To overcome this, we introduce a technique we call
Counterfeit Procedural Programming (CPP), which only
depends on the semantics of language-level abstractions,
similar to COOP [50], but which does not depend on a
dynamic dispatch implementation based on vtables.

In a COOP attack, an attacker chains a set of vir-
tual function gadgets (vfgadgets) together using main-

4

while (task) {

task->fptr(task->arg);

task = task->next;

}

Figure 3: A loop with a corruptible call site

next

fptr
RW non-code

arg

next

fptr
arg

...

write_tramp

open_tramp

func_tramp_01

func_tramp_03

XO trampolines

next

fptr
RW non-code

arg

next

fptr
arg

...

write_tramp

open_tramp

func_tramp_01

func_tramp_03

XO trampolines

Before Attack During Attack
Figure 4: Counterfeit Procedural Programming

loop gadget (ML-G). The attack abuses language-level
semantics widely found in C++ applications (loops over
virtual functions).

The CPP attack is the generalization of COOP to non-
object-oriented programming languages such as C. In
a CPP attack, an attacker chains a set of indirect code
pointers (i.e., ICPOP gadgets) using loops that contain
indirect call sites in their body analogous to a main-
loop gadget. The attack abuses language-level seman-
tics widely found in C applications (loops over function
pointers).

An appropriate main-loop gadget in CPP is a loop that:

1. has a loop condition that can be subverted by an at-
tacker (e.g., the loop condition is in RW memory)

2. has code pointers in its body

A simple example is presented in Figure 3. If task
points to attacker controllable memory, the attacker can
cause the program to perform calls to multiple functions
of her choosing by creating several counterfeit task

structures and setting up their task->next pointers to
point to the next ICPOP gadget. When the loop runs,
ICPOP gadgets are executed one by one without loss of
control on attacker’s side. We depict this attack graphi-
cally in Figure 4.

While some defenses implement register randomiza-
tion to prevent chaining computations together, it does
not prove to be an effective deterrent in this situation.
The high-level semantics of the call dictate that the first

argument will be taken from task->arg. Thus, any
randomization technique that preserves the x86 64 ABI
will generate code which moves the value located at
task->arg into RDI. As a result, our method of chain-
ing ICPOP gadgets using CPP succeeds regardless of any
underlying randomization that might be deployed.

4 Real-World Exploits
In this section we present three real-world exploits com-
bining various techniques described earlier. The first two
exploits target Nginx and the third targets the Apache
HTTP Server. The attacks are tested on Readactor as
a proof-of-concept, but they are generally applicable to
other execute-only defenses as we discuss in Section 9.
Nginx attack 1 uses profiling to locate call trampolines
for open and IO new file overflow and uses these
to hijack control. Nginx attack 2 and the Apache attack
use profiling to locate call trampolines for functions that
eventually reach exec.

4.1 Nginx Attack 1
Our setup consists of Nginx 1.9.4 configured with sup-
port for thread-based asynchronous I/O.

The aim of our attack is to cause Nginx to perform a
malicious write to a file from a buffer located in execute-
only memory. This requires locating addresses of func-
tions that open and write files. We must also locate an
indirect call site with enough corruptible arguments to
call our target functions.

We began by inspecting the Nginx source code for
suitable corruptible call sites. We were able to find an
indirect call site which retrieved both of its arguments
from memory in Nginx’s main loop for worker threads.
On line 335 of core/ngx thread pool.c, the follow-
ing call is made:
task->handler(task->ctx, tp->log);

This call site is ideal for our purposes: both the func-
tion pointer itself and the arguments are obtained by ref-
erencing a field of a struct retrieved from memory, and
are thus corruptible.

While this call site is suitable for calling open, which
only requires two arguments, it does not allow us to
call write, which requires three. As it seemed un-
likely that we would find a better callsite, we began
searching for ways to perform a write via a function
that only takes two arguments. We eventually found
IO new file overflow, an internal function in the

GNU C Library (glibc) used when a write to a file is
about to overflow its internal buffer. The signature for
this function is included below:

IO new file overflow(IO FILE *f,int ch)

f is a pointer to an IO FILE, glibc’s internal version
of the C standard library type FILE. ch is the character
that was being written when the overflow occurred. If
a pointer to an attacker controlled IO FILE were to be

5

passed to this function, they would be able to reliably
perform a write from an arbitrary buffer of arbitrary size
to an arbitrary file descriptor.

To locate the indirect code pointers of these func-
tions we perform profiling as described in Section 3.
IO new file overflow can be located using only

analysis of in-memory values. Locating open, however,
requires the use of the MTB technique. At a high level
this attack proceeds in four phases:

1. Locate a mutex for MTB
2. Profile a call trampoline for open (our first ICPOP

gadget)
3. Profile a trampoline for IO new file overflow

(our second ICPOP gadget)
4. Corrupt Nginx’s task queue so that a worker thread

makes calls to our profiled trampolines using the
CPP technique

For the sake of brevity, we describe the details of this
attack in Appendix A.

4.2 Nginx Attack 2
We now illustrate the generality of our techniques by per-
forming a second attack against Nginx which both (1)
targets different functions and (2) corrupts a different call
site.

This attack relies on invoking Nginx’s master process
loop from an attacker-controlled worker in order to trig-
ger a specific signal handler and cause arbitrary process
execution. There are three phases to this attack:

1. Use profiling to get the address of the master pro-
cess loop

2. Use MTB to corrupt a function pointer to point at
the master process loop

3. Set global variables via MTB to cause the master
process loop to call exec under attacker-chosen pa-
rameters

For the sake of brevity, we describe the details of this
attack in Appendix B.

4.3 Apache Attack
Finally, we describe an attack using similar techniques
against the Apache HTTP Server. While previous attacks
have focused on Nginx, MTB and profiling are general
and can be applied to other targets. Arbitrary process ex-
ecution can be achieved on the Apache web server using
a similar approach:

1. Use profiling to find the indirect code pointer of the
exec-like function ap get exec line

2. Use MTB to corrupt a function pointer to point at
ap get exec line and cause an exec call under
attacker control

For the sake of brevity, we describe the details of this
attack in Appendix C.

All exploits succeeded in control hijacking while
Apache and Nginx were protected by full-featured
Readactor.

5 X-Only Implementation Challenges
This section describes the imperfections of enforcing
execute-only permissions in modern systems. We dis-
cuss two attacks that are widely available in x86 UNIX-
based systems. Rather than indicating weaknesses in a
particular execute-only technique, we highlight the intri-
cacies of enforcing execute-only permissions universally.

5.1 Forged Direct Memory Access Attack
Execute-only defenses protect code pages from direct
read accesses by applying additional permissions to
memory pages in software [5] or hardware [19, 27]. This
enforcement, however, applies only to regular memory
accesses (i.e., TLB-mediated). Accesses performed by
devices capable of Direct Memory Access (DMA), e.g.,
GPUs, disk drives, and network cards, do not undergo
translation by the MMU and are unaffected by page per-
mission. We call these accesses “non-TLB-mediated.”

The idea of exploiting systems via DMA is well stud-
ied, especially in the context of DMA-capable interfaces
with external connectors, e.g., IEEE 1394 “Firewire” and
Thunderbolt [49]. DMA attacks have been successfully
used against systems in both physical and virtualized en-
vironments.

As described in the threat model (Section 2), we are
mainly concerned about a remote attacker. For that, the
attacker must be able to perform software-based DMA
from a user space application. Typically, user space
applications cannot directly make requests to DMA-
capable devices. However, some user space functionality
is implemented via the kernel requesting a device to per-
form a DMA against a user space controlled address. Ex-
amples of this include OpenCL’s CL MEM USE HOST PTR

flag and Linux’s O DIRECT flag.
An attacker can use Linux’s O DIRECT flag to mali-

ciously request software-based DMA to bypass execute-
only, thus alleviating the need for compromised periph-
eral devices or hardware attacks. We call such an attack
a Forged DMA (FDMA) attack, and briefly demonstrate
its feasibility. The novelty of FDMA is its broad applica-
bility remotely and from user space applications. Unlike
well-studied DMA attacks such the one used in bypass-
ing Xen [61], FDMA does not require a malicious device
or kernel permissions.

Applications that use the O DIRECT flag natively are
vulnerable to our FDMA attack. More surprisingly
though, even applications that never use the O DIRECT

flag, but pass the flags to file read or write operations
through the flags variable residing in data memory are
also vulnerable to this attack. An attacker can perform
a simple data-only attack to maliciously change the flags

6

variable to O DIRECT in order to force a regular file op-
eration to become a DMA access.

We investigated the prevalence of direct I/O and flags
variables is in popular real-world software packages.
Our analysis focused on Internet-facing web servers
(AOLserver, Apache, Boa, lighttpd, Nginx, OpenSSH,
Squid, and Firebird) due to their exposure and database
managers (Hypertable, MariaDB, Memcached, Mon-
goDB, MySQL, PostgreSQL, Redis, and SQLite) due to
their focus on fast I/O. The results indicate that the ma-
jority of web servers and database managers (13 out of
16) do not natively use the O DIRECT flag; however, 10
out of 16 of them (AOLserver, Nginx, OpenSSH, Squid,
Firebird, Hypertable, MongoDB, MySQL, PostgreSQL,
and SQLite) use variables to store flags that can be cor-
rupted by an attacker to set the O DIRECT flag. As such,
an attacker can use an FDMA attack in these applica-
tions to read X-only code pages to build a traditional
ROP attack even in the presence of X-only defenses. The
FDMA attack would obviate the exploit, and does not re-
quire an ICPOP attack to bypass X-only.

5.2 Procfs Attack
The proc filesystem is another implementation chal-
lenge that can obviate X-only bypasses.

The proc filesystem is a file-like structure that con-
tains information about each process. It is implemented
for a variety of UNIX-like operating systems [26, 36].
In this paper, we focus on the Linux implementation of
procfs [11].

The Linux kernel creates a directory for each pro-
cess which can be accessed via /proc/<process

id>/. Processes can access their own directory via
/proc/self/. The files within the procfs directory are,
for the most part, treated in the same way as any other
file in a filesystem. They have ownership settings and as-
signed permissions, and are accessed via the same mech-
anisms as any other file. Through them, a wealth of infor-
mation about the process is made available: details about
program invocation, processing status, memory access,
file descriptors, networking, and other internal details.

Several of the procfs files (e.g., auxv, maps,

numa maps, pagemaps, smaps, stat, syscall,

exe, stack, and task) include memory addresses
that reveal information about the randomized code
layout. The mem file even allows direct disclosure of the
process memory regardless of memory permissions.

To carry out a procfs attack, the attacker needs to (1)
discover the location of a suitable piece of executable
memory, and (2) leak executable memory directly by cor-
rupting the filename argument to a file read operation.
The maps and smaps files provide, among other things,
the starting and ending addresses of each mapped mem-
ory region, along with that region’s memory permissions
and the file (if any) with which the region is associated.

After that, reading the mem file directly leaks the exe-
cutable regions. Note that even when the vulnerability
does not allow arbitrary file reads, the procfs attack can
be mounted by performing a data-only corruption on any
file read operation.

The procfs attack also allows a leakage of the actual
code pointers followed by a traditional ROP attack, with-
out requiring the sophistication of an ICPOP attack.

6 Code Pointer Authentication
We carefully considered how to best mitigate the
execute-only bypass presented in Section 3. The pointer
harvesting technique can be prevented by isolating con-
trol data from non-control data [37]. The control-flow
hijacking step can be mitigated by using control-flow in-
tegrity. These enforcement-based techniques come with
their own set of challenges and weaknesses as demon-
strated by numerous recent bypasses [13, 24, 25, 39].
Rather than swapping one set of challenges for another,
we explore whether leakage-resilient diversity can be ex-
tended to mitigate ICPOP attacks.

Recall that code pointer hiding via trampolines already
limits the set of addresses that are reachable from an
attacker-controlled indirect branch. Even if an attacker
discloses all trampoline pointers, only function entries,
return sites, and individual instructions inside trampo-
lines are exposed. We therefore implemented an exten-
sion to the Readactor code pointer hiding mechanism,
which we call Code Pointer Authentication (CPA). CPA
adds authentication after direct calls and before indirect
calls to prevent the control-flow hijacking step explained
in Section 3.3 and thus mitigate ICPOP attacks. One of
the benefits of randomization-based defenses is that they
do not rely on static program analysis which helps them
scale to complex, real-world code bases. Without static
program analysis, however, we must use different tech-
niques to authenticate direct and indirect calls since we
do not know the set of callees in the latter case.

6.1 Authenticating Direct Calls & Returns
Our general approach to authenticate direct calls uses
cookies. A cookie is simply a randomly chosen value
that is loaded into a register by the caller and read out and
checked against an expected value by the callee. Sim-
ilarly, the callee loads a separate cookie into a register
before returning, and the register is checked for the ex-
pected value right after the return. Each function has
two unique, random cookies: one to authenticate direct
calls to the function (forward cookie, FC) and another
to authenticate returns (return cookie, RC). Our proto-
type implementation chooses cookie values at compile
time; a full-featured implementation would randomize
the cookie values at load time so they vary between ex-
ecutions. Because the instructions that set and check
cookies are stored in execute-only memory and the reg-

7

foo:

jump t_bar
r_foo:

t_bar: call bar
jump r_foo

bar:
…

ret

3

41

2

set r9 ← RC

check r9 = RC

check r9 = FC

set r9 ← FC
foo:
rax = t_base[idx]

jump t_foo
r_foo:

t_foo: call *rax
jump r_foo

bar:
…

ret

8

95

6

set r9 ← RC

check r9 = RC

check r9 = FC

check HMAC

t_base: jump …
jump bar + Δ

7

idx

HMAC idx

addr' idx'HMAC'

addr

hidden by X-only

observable

authenticating
direct calls and returns

authenticating indirect calls and returns

RW dataXO code and trampolines

32

XO code and trampolines

SipHash(addr|idx,key) = HMAC?

Figure 5: Code pointer authentication. Direct calls and returns are illustrated in the leftmost third of the figure; indirect
calls and returns are shown in the rightmost two thirds. Light grey boxes contain execute-only code and white boxes
contain data. Dark grey labels show where we insert additional instructions to prevent address harvesting attacks. The
=

32 operator in the check after edge 9 indicates that we only check the lower 32-bits of the return cookie.

ister storing the cookie is cleared directly after the check,
attackers cannot leak or forge the cookies.

The left-hand side of Figure 5 shows how we authen-
ticate an example direct function call from foo to bar.
Dark grey labels indicate how we extend the Readactor
code pointer hiding technique with authentication cook-
ies. Before transferring control to the direct call tram-
poline t bar along control flow edge 1 , we load bar’s
forward cookie into a scratch register. Edge 2 transfers
control from t bar to bar. The prologue of bar checks
that the register contents match the expected forward
cookie value and clears the register to prevent spilling
its contents to memory. Before the bar function re-
turns along edge 3 , we load the backward cookie for bar
into the same scratch register. At the return site in foo,
we check that the register contains the backward cookie
identifying bar as the callee. The return site then clears
the register.

The return address pushed on the stack by the call
instruction in t bar leaks the location of the following
jump instruction as well as the direct call itself. If the ad-
versary manipulates an indirect branch to execute control
flow edge 2 , the check at the target address will cause
the forward cookie check to fail and thus the attack to
fail. Analogously, redirecting control to flow along edge
4 will cause the check at r foo to fail.

6.2 Securing Indirect Calls & Returns
Without fine-grained static program analysis, we cannot,
at compile-time, know the target of an indirect call and
thus enforce bounds on the program control flow. Cook-
ies, as we use in the direct call case, are therefore not ap-
plicable to indirect calls. However, we can still authen-
ticate that the function pointer used in an indirect calls
was correctly stored and not maliciously forged without

requiring any static analysis.

All function pointers in a Readactor protected pro-
gram are actually pointers to trampolines which obscure
the true target address. Inspired by the techniques of
CCFI [42], we change the representation of trampoline
pointers (which are stored in attacker observable mem-
ory) to allow for authentication. In Readactor’s code
pointer hiding mechanism, a trampoline pointer is sim-
ply the address of the forward trampoline. With CPA,
the trampoline pointer representation is composed of a
16-bit index (idx) into a table of trampolines (starting at
t base) and a 48-bit hash-based message authentication
code, HMAC. We show two such pointers in the right-
hand side of Figure 5. Using a trampoline index pre-
vents leakage of the forward trampoline pointer address
since the base address of the array of forward trampo-
lines t base can be hidden in execute-only code. We
found that programs need less than 216 forward pointers
in practice, so it suffices to use the lower 16 bits of a 64-
bit word for the index (this can be adjusted as needed for
larger applications). We compute the HMAC by hashing
the index along with the least significant 48 bits of its vir-
tual memory address. With this HMAC we can detect if
the adversary tries to replace a code pointer with another
pointer harvested from a different memory location. We
find that SipHash [4], which is optimized for short mes-
sages, is a good choice of HMAC for our approach.

The middle third of Figure 5 illustrates the case where
the function foo calls bar indirectly through a function
pointer. Again, dark grey labels highlight our extensions
to Readactor’s code pointer hiding technique. The indi-
rect call site in foo loads the (HMAC, index) pair from
memory, recomputes the HMAC using the (address, in-
dex, key) tuple, and compares the two (see rightmost

8

third of Figure 5). If HMACs match, the index is used to
lookup the address of the forward pointer which is sub-
sequently used to execute control-flow edge 6 . Notice
that the forward trampoline that creates edge 7 does not
target the first instruction in bar; instead, we add a delta
to the address of bar to skip the forward cookie check
that authenticates direct calls to bar (e.g., edge 2).

As explained in Section 3.3, our attack against per-
fect execute-only memory swaps two pointers to hi-
jack the program control flow. Because the address of
the pointer is used to compute the HMAC, moving the
pointer without re-computing the HMAC will cause the
HMAC check before all indirect calls to fail unless the
two (address, index) pairs collide in the hash. Attackers
can still harvest and swap (HMAC, index) pairs stored to
the same address at different times. See Section 8.1 for a
more complete security analysis.

Returns from indirect calls make up the fourth and fi-
nal class of control flows that we must authenticate. The
callee sets a return cookie before the callee returns and
check the cookie at the return site; see edges 8 and 9 in
Figure 5. We again clear the cookie register directly after
the check to prevent leaks. The cookie check at the end
of arrow 9 must pass for all potential callees. There-
fore, we set the lower 32-bits of all backward cookies to
the same global random value and only check the lower
halfword of the backward cookie at the return site. This
ensures that returns only target return sites; however,
any return instruction can target indirect call-preceded
gadgets under this scheme. We did not reuse any indi-
rect call-preceded gadgets in our harvesting attack since
these are also protected by register randomization and
callee-saved stack slot randomization. It is possible to
further restrict returns from indirect calls by taking func-
tion types into account. Rather than setting the 32 lower
bits of return cookies to the same random value, we can
use different random values for different types of func-
tions. We did not restrict backward control flows based
on types in our prototype implementation of code pointer
authentication since we would have had to manually find
and whitelist any return sites following indirect calls to a
type-incompatible callee.

7 Mitigating Implementation Challenges
As shown in Section 5, implementing a comprehen-
sive execute-only memory protection policy is challeng-
ing. In contrast to our ICPOP attack, the FDMA and
procfs attacks do not target conceptual but implementa-
tion weaknesses of execute-only memory defenses. Nev-
ertheless, these issues must be addressed as they allow an
attacker to completely bypass the deployed mitigation.

The FDMA and /proc/self/mem attack are the most
imminent threat to execute-only defenses because they
undermine the memory protection enforcement. The root
cause for both attacks is that the DMA controller does

not respect the set memory permissions. A straightfor-
ward approach is to use an IOMMU [3] because it was
designed for exactly this purpose. However, not all plat-
forms that support DMA feature an IOMMU; hence, we
explored an alternative way to mitigate the FDMA at-
tack. Our solution is based on the fact that an adversary
cannot directly configure DMA controllers, since this re-
quires kernel privileges, but relies on the kernel as a con-
fused deputy. In general, the kernel already considers
every input from the user mode as untrusted and checks
pointers to memory against certain policies, but since
current operating systems do not consider execute-only
memory protection, read accesses to valid user memory
do not violate any policy. We extend the policy check for
user-mode pointers by iterating through meta-data struc-
tures of allocated memory regions and check whether
they are allocated as execute-only memory. In partic-
ular, we apply our patch (38 LoC) to the access ok()

macro in the Linux kernel and check for the VM READ per-
mission in the vm area data structure that corresponds
to the address provided by the user mode before allow-
ing read access. We further add a check that uses the
patched access ok() macro for addresses provided to
the /proc/self/mem device before reading or writing
the memory.

Providing a general defense against the other procfs
attacks is challenging because it is baked into the Linux
ecosystem as the needed native interface for many sys-
tem utilities and programs. Hence, blocking access to
it would disrupt a major kernel API and break a Linux
distribution. The exposed nature of procfs has long
been recognized and attacks proposed to exploit it espe-
cially with regard to differential privacy [34, 64]. While
the impact on fine-grained code randomization, as de-
ployed in Readactor, is limited because the granularity
of the leaked information is coarser than the applied ran-
domization3, it can be exploited to bypass conventional
ASLR. Although procfs cannot be removed entirely due
to legitimate uses, some defenses have attempted to re-
strict access to procfs. Notably, GRSecurity’s kernel
patchset [56] has several configuration options to restrict
access to procfs entries by user or group, with the intent
that different critical processes can run as different users
and be unable to compromise other processes. A recent
defense [62] proposes falsifying information in procfs to
mitigate other types of attacks. However, no defense pre-
vents access by a program to its own procfs entry set, and
any finer-grained procfs restriction by username would
result in breaking benign applications.

3For example, maps, numa maps, smaps can disclose the addresses
of executable memory regions, however, fine-grained code randomiza-
tion (e.g., function permutation [35], basic block permutation [60], reg-
ister randomization [47], etc.) hides the memory layout within this re-
gion.

9

8 Evaluation
8.1 Security
Code pointer authentication prevents reuse of the remain-
ing exposed trampoline pointers, even if the attacker has
harvested all available trampoline locations. Naturally,
this authentication mitigates the attacks on ideal execute-
only enforcement that we show in this work. To further
demonstrate the security of code pointer authentication,
we systematically consider each possibly exposed indi-
rect branch target in turn.

Direct call trampoline entry (edge 1 in Figure 5) An
attacker can harvest the location of the backwards jump
(jump r foo) in the call trampoline from the return ad-
dress on the stack. In the original Readactor defense, she
can compute the address of the previous instruction from
this pointer and invoke t bar.

In direct call authentication, each direct callee func-
tion checks that its specific, per-function cookie is set
prior to calling it. If the attacker cannot forge the callee
function’s cookie, this check will fail. We store the
cookie as an immediate value in execute-only memory
and pass it to the callee in a register. After performing
the cookie check, the callee clears the register. Thus,
direct call cookies cannot leak to an adversary, and the
attacker has a 2�64 chance of successfully guessing the
correct 64-bit random cookie value. Since the attacker
cannot forge a correct cookie before an indirect branch
to a direct call cookie, direct call trampoline entry points
are unavailable as destinations for an attack.

Direct call trampoline return (edge 3 in Figure 5)
Harvesting a return address corresponding to a direct call
trampoline gives the attacker the location of the back-
wards jump in a call trampoline. In Readactor, this desti-
nation allows the attacker to invoke a call-preceded gad-
get beginning at r foo in the example.

We also protect these destinations with an analo-
gous, function-specific return cookie. Directly before a
callee function returns, it sets its function-specific return
cookie. The return site verifies that the expected callee’s
return cookie was set before continuing execution. As in
the forward case, this prevents the attacker from reusing
this destination, since she cannot forge a correct cookie.

Indirect call trampoline entry (edge 5 in Figure 5)
Similarly, an attacker can harvest indirect call trampoline
locations from the stack and dispatch to the beginning of
an indirect call trampoline. However, this destination is
trivial to the attacker, since she must set another valid,
useful destination for the indirect call before invoking the
trampoline. The attack could always dispatch straight to
this final destination instead of the indirect call trampo-
line. Thus, we do not need to protect indirect call tram-
poline entry points from reuse.

Indirect call trampoline return (edge 8 in Figure 5)
Analogous to the direct call case, the attacker can dis-

patch to the backwards edge of an indirect call trampo-
line to invoke an indirect-call proceeded gadget. This is a
more challenging edge to protect without static analysis,
since the indirect call site cannot know which function-
specific return cookie to check.

Since the caller does not know the precise callee, we
enforce a weaker authentication check on indirect call
return destinations. By splitting return cookies into a
global part and function-specific part, we can still ensure
that the return site must be invoked by a return, not an
indirect call.

We note that the fine-grained register randomization
implemented in Readactor largely mitigates the threat of
indirect-call proceeded gadget reuse, since the attacker
cannot be sure of the semantics of the gadget due to
execute-only memory.

Function trampolines (edge 6 in Figure 5) Func-
tion trampoline harvesting and reuse is the easiest attack
vector against code-pointer hiding schemes. In Readac-
tor, after harvesting function trampolines, the attacker
can overwrite any return address or function pointer
with a valid function trampoline destination and perform
whole-function reuse.

We prevent reuse of function trampolines by changing
the function pointer format to include an HMAC tying
the function pointer to a specific memory address. This
prevents reuse of function pointers from returns as well
as swapping of function pointers in memory.

Since function pointers are no longer memory ad-
dresses in our authentication scheme, the attacker cannot
use a function pointer as a return address at all. The re-
turn would interpret the address as an HMAC—Idx pair
and fail to verify the HMAC, crashing the program.

Function pointers cannot be swapped arbitrarily un-
der this defense, since the pointer is tied to its address
in memory by the HMAC. If a pointer P at address A is
moved to address B, the HMAC check when it loaded
from address B will fail. Thus the attacker must either
forge a valid HMAC or have harvested P from the tar-
geted location in memory at a previous point in execu-
tion.
HMAC Forgery We first address the possibility of forg-
ing a valid HMAC for a function and pointer address
pair without ever having seen a valid HMAC for that
pair. SipHash is designed to be forgery-resistant, thus
the probability of correctly forging a valid HMAC for
a pointer at an address not previously HMACed is ex-
pected to be 2�48, based on the size of the HMAC
tag. Additionally, since we can store the HMAC key
in execute-only memory, an attacker cannot disclose the
128-bit key, and thus is limited to brute-forcing this key.
Replay Attacks As in other pointer encryption
schemes [17, 42], HMACs do not provide temporal
safety against replay attacks on function pointers. That

10

perlb
ench

bzip
2gccmcf

gobmk

hmmer
sje

ng

lib
quantum

h264ref
asta

r

xalancb
mk

milc
namd

dealII

soplex
lbm

sp
hinx3

Geo M
ean

0

10

20

30

40

50
P
e
rf

o
rm

a
n
ce

 S
lo

w
d
o
w

n
 (

%
)

DCA

ICA

Full CPA

Figure 6: Performance overhead of code pointer authen-
tication on SPEC CPU2006. All measurements include
the overhead of the Readactor++ transformations.

is, a function pointer can be harvested at one point in pro-
gram execution and later rewritten to the same address.

If we augmented the defense with the capability to
track all function pointers in memory, we could re-key
all HMACs at random times to prevent replay attacks.
However, such instrumentation would require substantial
bookkeeping overhead.

8.2 Performance
Code Pointer Authentication To evaluate the perfor-
mance of our defensive techniques, we applied our im-
proved protections on top of the Readactor++ system. We
measured the performance overhead of both direct call
authentication and function pointer authentication on the
SPEC CPU2006 benchmark suite. These results are sum-
marized in Figure 6. All benchmarks were measured on a
system with two Intel Xeon E5-2660 processors clocked
at 2 Ghz running Ubuntu 14.04.

With all protections enabled, we measured a geometric
mean performance overhead of 9.7%. This overhead in-
cludes the overhead from basic Readactor call and jump
trampolines and compares favorably with the 6.4% av-
erage overhead reported by Crane et al. [19]. We also
measured the impact of direct call authentication and in-
direct call authentication individually (labeled DCA and
ICA in the figure, respectively). We found that indirect
code pointer authentication generally adds more over-
head (6.7% average) than direct code pointer authentica-
tion (5.9% average), although this is strongly influenced
by the program workload, specifically the percentage of
calls using function pointers.

We observed that h264ref stands out as an interesting
outlier for indirect call authentication. This benchmark
repeatedly makes a call through a function pointer in a
hot loop. To make matters worse, the target function is
a one-line getter, thus our instrumentation dominates the
time spent in the callee. This benchmark in particular
benefits greatly from inlining the HMAC verification to
avoid the extra call overhead. To speed up HMAC veri-

fication, especially in this edge case, we implemented a
small (128 byte), direct-mapped, hidden cache of valid
HMAC entries. This hidden cache is only accessed via
offsets embedded in execute-only memory and is thus
tamper-resistant. Before recomputing an HMAC, the
verification routine checks the cache to see if the HMAC
is present.

We found three corner cases in SPEC where we could
not automatically compute a new HMAC when a func-
tion pointer was moved. This is because the program
first casts away the function pointer type then copies the
pointer inside a struct. We had to insert a single manual
HMAC in gcc and another in povray to handle these edge
cases. perlbench stores function pointers in a growable
list, which is moved during reallocation. Since our pro-
totype does not yet instrument the libc realloc function
(although it could), we had to manually instrument these
operations. The CCFI [42] HMAC scheme requires sim-
ilar modifications. Finally, Readactor is not fully com-
patible with C++ exception handling, so we were not able
to run omnetpp and povray which require exception han-
dling.

DMA Mitigation Our patch to the kernel
access ok() macro has no measurable performance
impact. Specifically, we measured no average perfor-
mance overhead on the SPEC CPU2006 benchmark
suite, as is expected since the benchmarks interact
minimally with the kernel. To test real-world perfor-
mance, we ran three performance measurements tools
(weighttp, httperf, httpress) against the web server
Nginx. Similar to the SPEC CPU2006 benchmarks we
observed in some cases a performance improvement
or degradation by a few hundredths of a percent which
again is indistinguishable from measurement noise.

9 Generality of Attacks
The attacks described in this paper are generally appli-
cable to many randomization-based defenses. Defenses
that do not provide leakage resilience are generally vul-
nerable to various forms of information leakage attacks.
Therefore, we focus on those that offer (some) resilience.

Direct leakage refers to attacks that read code pages,
while indirect leakage refers to attacks that leak code
addresses from stack or heap during execution. Since
ICPOP attacks leak hidden or indirection (e.g., trampo-
line) pointers indirectly from stack or heap, they are a
form of indirect leakage attacks. Also, since non-TLB-
mediated leakages directly read code pages (using mech-
anisms not protected by memory permissions), they are
a form of direct information leakage. Accordingly, there
are four sub-classes of information leakage: direct leak-
age via TLB-mediated code reads, direct leakage via
non-TLB-mediated code reads, indirect leakage of code
pointers, and indirect leakage of indirect code pointers.

11

Table 1: Defenses protecting against different classes of
information leakage attacks

Direct Leaks Indirect Leaks

Defenses

TLB-
Mediated
(e.g.,
buffer
over-
read [57])

Non-
TLB-
Mediated
(e.g.,
DMA/
procfs
x 5)

Code
Pointer
Leaks
(e.g.,
Ret
addr.
leak [21])

Indirect
Code
Pointer
Leaks
(e.g.,
ICPOP
x 3)

PointGuard [17]
Oxymoron [6]
Isomeron [21]

XnR [5]
HideM [27]

Readactor [19, 20]
Heisenbyte [59]

ASLR-Guard [41]
TASR [8] 4 4 4 4

CPA x 6

Our attacks are applicable to randomization defenses
regardless of the granularity or type of randomization.
For example, various randomization defenses propose
library-level [48], function-level [35], or instruction-
level [31] randomization approaches. In ICPOP, we
abuse and chain indirect code pointers to achieve control
flow hijacking. Regardless of how the underlying code
has been randomized, as long as the semantics remain
intact, our profiling attack remain applicable. In attacks
that use implementation challenges (FDMA or procfs),
the exact contents of code pages are read (via non-TLB-
mediated accesses), so regardless of the how intrusive the
randomization is, we can disclose the randomized code
and can then perform a traditional ROP attack.

Table 1 summarizes leakage-resilient randomization
defenses and their vulnerabilities to various types of at-
tacks. We briefly discuss each defense and how our at-
tacks apply in the following.

PointGuard [17] protects all pointers stored in mem-
ory by masking them with an XOR key. It therefore pre-
vents leakage of code addresses via pointers. However,
indirect leakage of encrypted pointers and direct leakage
attacks remain possible.

Oxymoron [6] attempts to prevent JIT-ROP attacks
by adding a layer of indirection to instructions such as
branches that reference other code pages. While Oxy-
moron thwarts the recursive disassembly step of the orig-
inal JIT-ROP attack, it does not protect all pointers to
code. Davi et al. [21] show an attack against Oxymoron,
exploiting indirect address leakage. They then propose
Isomeron that combines execution-path randomization
with code randomization to build indirect leakage resis-
tance. Neither of these techniques prevent direct code
reads.

XnR [5] and HideM [27] perform permission checks
on memory accesses to implement execute-only, thus
preventing TLB-mediated code reads. They, however, do
not check non-TLB-mediated code reads. They are also
vulnerable to indirect leakage attacks, since code point-
ers are not hidden or protected in any way during exe-
cution. Leakage of return addresses or function pointers
from the stack or heap remains possible during execu-
tion.

Readactor [19] utilizes Extended Page Table permis-
sions to enforce execute-only permission and adds a
layer of indirection (trampolines) to prevent indirect
leaks. Therefore, it prevents TLB-mediated direct code
reads and indirect leaks of code pointers (e.g., return ad-
dresses and function pointers). Its permissions, how-
ever, do not apply to non-TLB-mediated accesses as
demonstrated in Section 5. Moreover, leakage of trampo-
line pointers (i.e., indirect code pointers) are possible as
demonstrated by our ICPOP attack against Apache and
Nginx.

Heisenbyte [59] prevents executable region leakages
by making any code-area read destructive. It can
only mitigate TLB-mediated direct leakages. Non-TLB-
mediated memory accesses do not cause a byte destruc-
tion; thus, they are not mitigated. Indirect leakages also
remain possible because code pointers are not protected
in any way.

ASLR-Guard [41] provides leakage resistant ASLR by
decoupling code and data, storing code locators in a se-
cure region of memory, and encrypting code locators that
are stored in observable memory. As a result, code loca-
tors themselves cannot leak because they are encrypted
whenever placed in regular memory. However, the en-
crypted forward pointers can be profiled and reused by
an attacker. This is hinted at in the paper itself: “... at-
tackers may reused [sic] the leaked encrypted code lo-
cators to divert control flow.” Direct code reads, whether
they are through TLB (e.g., buffer over-reads) or not, also
remain possible in ASLR-Guard.

TASR [8] re-randomizes code regions at every I/O sys-
tem call pair to mitigate any potential information leak-
age. It also fixes the code pointers on the stack and
heap for every re-randomization. It can potentially miti-
gate all classes of remote leakage attacks, but it requires
source code for compilation and it cannot mitigate leak-
ages within the application boundary (e.g., in JIT-ROP
attacks).

4TASR is only applicable to ahead-of-time compiled code and mit-
igates exfiltration-style information leakage that cross the system call
boundary. TASR is not applicable to leaks in interpreted code (e.g.,
scripts in browser) that do not cross the system call boundary, such as
the JIT-ROP [55] attack.

12

10 Related Work
Our work mainly relates to memory corruption attacks
and defenses. The literature in the areas of software di-
versity, control-flow integrity, and code pointer protec-
tion is vast. We refer the interested reader to the relevant
surveys [38, 58] and focus on closely related work.

Automatic Software Diversity Address Space Lay-
out Randomization (ASLR) is the most widely used
randomization-based defense [10, 48]. However, ASLR
provides insufficient entropy on 32-bit systems [54] and
brute force attacks are sometimes possible even against
64-bit systems [9]. ASLR can also be bypassed via
information leakage attacks [16, 52, 57]. This moti-
vated approaches that randomize the code at a finer-
granularity, e.g. at the level of functions [30, 35], basic
blocks [23, 60], or instructions [31, 32, 47]. The as-
sumption that finer-grained diversity addresses the short-
comings of ASLR was undermined by JIT-ROP [55] and
side-channel attacks [7, 33, 51] that directly or indirectly
disclose the randomized code layout. This motivated
work on leakage-resilient code randomization. The Oxy-
moron defense [6] prevents the recursive disassembly
while later approaches more generally prevent read ac-
cesses to code pages [5, 12, 19, 27]. An alternative strand
of research explores techniques that tolerate leakage by
periodically re-randomizing the code layout [8, 28, 40],
randomizing or restricting the control-flow [21, 43], or
by implementing destructive reads [59].

Code Pointer Protection Directly reading the code is
not the only way adversaries can disclose the code lay-
out. Davi et al. demonstrated that virtual method ta-
bles can be used to indirectly disclose enough code to
mount a JIT-ROP attack [21]. PointGuard [17] was the
first defense to protect pointers by XOR’ing them with a
secret key. PointGuard, however, is not secure in our
threat model which assumes that adversaries can read
and write arbitrary memory. Readactor [19] introduced
code pointer hiding in which decouples the function lay-
out from pointers in attacker-observable memory thanks
to X-only memory. ASLR-Guard [41] uses the vestiges
of x86 segmentation to encrypt code pointers (code lo-
cators) in attacker-observable memory. As mentioned
in our analysis of leakage-resilient defenses (Section 9),
code locators can still be profiled and used for ICPOP
attacks.

General memory safety approaches such as Soft-
bound [44] and CETS [45] prevent corruption of code
pointers but incur high performance overheads. The re-
cent code-pointer integrity (CPI) technique demonstrates
that providing memory safety for code pointers by isolat-
ing them in a safe region is more efficient than providing
complete memory safety [37]. However, it was later dis-
covered that information hiding is not a safe way to iso-
late code pointers even in a 64-bit address space [24]. In

contrast to CPI, cryptographically-enforced CFI (CCFI)
protects code pointers without isolating them in mem-
ory [42]. Similar to our CPA approach, CCFI [42] com-
putes HMACs for code pointers. CCFI protects all point-
ers with cryptographically-secure HMACs generated us-
ing 128-bit AES encryption. We do not use AES en-
cryption to generate HMACs due to its high overhead;
the authors of CCFI report an average SPEC-CPU2006
overhead of 52% and worst case slowdowns of a factor
of 2.7x. Since we layer CPA on top of the protection of-
fered by execute-only memory and code pointer hiding,
we need only to protect forward (indirect) code point-
ers. Additionally we can store the HMAC inside a single
word-sized pointer, since we need only to store a tram-
poline index rather than a function’s memory address.
Finally, we chose to use SipHash [4] rather than a more
expensive AES HMAC which further decreases the cost
of our technique.

Other Related Work CFI validates the control flow
at each indirect branch instruction [1]. Most CFI imple-
mentations compute an approximate control-flow graph
(CFG) in an offline step and use it to validate indirect
branch targets at runtime. Hence, CFI is not directly af-
fected by our attacks and is in principle immune against
information disclosure [2]. However, implementing CFI
in a production compiler is very challenging and seem-
ingly small errors or coverage gaps can allow adver-
saries to avoid enforcement [39]. The granularity of CFI
policies is an even bigger challenge. Efficient, coarse-
grained CFI approaches [63, 65] allow so many super-
fluous edges that adversaries still construct so called
gadget-stitching attacks that adhere to the enforcement
policy [14, 22, 29]. The inherent imprecision in static
program analysis means that even fine-grained CFI poli-
cies are not always sufficient to prevent code-reuse at-
tacks against applications with large code bases [13, 25].

The recent COOP technique also questions the secu-
rity of binary-only CFI schemes as they lack type and
class hierarchy information for C++ programs which is
necessary to enforce fine-grained CFI [50]. Our CPP
technique demonstrates that the COOP technique even
applies to procedural languages.

11 Conclusion
In this paper, we evaluated the effectiveness of leakage-
resilient code randomization. We presented two generic
classes of attacks that can bypass ideal and practi-
cal execute-only defenses including the state-of-the art
scheme, Readactor, and built three realistic exploits.
Moreover, we proposed, implemented, and evaluated a
new defense called code pointer authentication. Our
mitigation adds little additional overhead. Our findings
show that preventing information leakage is surprisingly
hard because execution alone leaks valuable information.

13

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.

Control-flow integrity. In ACM SIGSAC Conference on Computer
and Communications Security (2005), CCS.

[2] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J. A
theory of secure control flow. In 7th International Conference on
Formal Methods and Software Engineering (2005), ICFEM’05.

[3] AMD, I. I/O virtualization technology (IOMMU) specification.
AMD Pub 34434 (2007).

[4] AUMASSON, J.-P., AND BERNSTEIN, D. J. SipHash: A fast
short-input PRF. In 13th International Conference on Cryptology
in India (2012), INDOCRYPT.

[5] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P.,
NÜRNBERGER, S., AND PEWNY, J. You can run but you can’t
read: Preventing disclosure exploits in executable code. In ACM
SIGSAC Conference on Computer and Communications Security
(2014), CCS.

[6] BACKES, M., AND NÜRNBERGER, S. Oxymoron: Making fine-
grained memory randomization practical by allowing code shar-
ing. In 23rd USENIX Security Symposium (2014), USENIX Sec.

[7] BARRESI, A., RAZAVI, K., PAYER, M., AND GROSS, T. R.
CAIN: Silently breaking aslr in the cloud. In 9th USENIX Secu-
rity Symposium (2015), WOOT’15.

[8] BIGELOW, D., HOBSON, T., RUDD, R., STREILEIN, W., AND
OKHRAVI, H. Timely rerandomization for mitigating memory
disclosures. In ACM SIGSAC Conference on Computer and Com-
munications Security (2015), CCS.

[9] BITTAU, A., BELAY, A., MASHTIZADEH, A. J., MAZIÈRES,
D., AND BONEH, D. Hacking blind. In 35th IEEE Symposium
on Security and Privacy (2014), S&P.

[10] BOJINOV, H., BONEH, D., CANNINGS, R., AND MALCHEV,
I. Address space randomization for mobile devices. In ACM
Conference on Wireless Network Security (2011), WiSec.

[11] BOWDEN, T., BAUER, B., NERIN, J., FENG, S., AND SEIBOLD,
S. The /proc filesystem, 2009.

[12] BRADEN, K., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P.,
LIEBCHEN, C., AND SADEGHI, A.-R. Leakage-resilient layout
randomization for mobile devices. In 23rd Annual Network and
Distributed System Security Symposium (2016), NDSS.

[13] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In 24th USENIX Security Symposium
(2015), USENIX Sec.

[14] CARLINI, N., AND WAGNER, D. ROP is still dangerous: Break-
ing modern defenses. In 23rd USENIX Security Symposium
(2014), USENIX Sec.

[15] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.,
SHACHAM, H., AND WINANDY, M. Return-oriented program-
ming without returns. In ACM SIGSAC Conference on Computer
and Communications Security (2010), CCS.

[16] CHEN, X. ASLR bypass apocalypse in recent zero-day exploits,
2013.

[17] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P.
Pointguard: protecting pointers from buffer overflow vulnerabili-
ties. In 12th USENIX Security Symposium (2003), USENIX Sec.

[18] CRANE, S., LARSEN, P., BRUNTHALER, S., AND FRANZ, M.
Booby trapping software. In New Security Paradigms Workshop
(2013), NSPW.

[19] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI, L.,
LARSEN, P., SADEGHI, A.-R., BRUNTHALER, S., AND
FRANZ, M. Readactor: Practical code randomization resilient
to memory disclosure. In 36th IEEE Symposium on Security and
Privacy (2015), S&P.

[20] CRANE, S., VOLCKAERT, S., SCHUSTER, F., LIEBCHEN, C.,
LARSEN, P., DAVI, L., SADEGHI, A.-R., HOLZ, T., SUTTER,
B. D., AND FRANZ, M. It’s a TRaP: Table randomization and
protection against function-reuse attacks. In ACM SIGSAC Con-
ference on Computer and Communications Security (2015), CCS.

[21] DAVI, L., LIEBCHEN, C., SADEGHI, A.-R., SNOW, K. Z., AND
MONROSE, F. Isomeron: Code randomization resilient to (Just-
In-Time) return-oriented programming. In 22nd Annual Network
and Distributed System Security Symposium (2015), NDSS.

[22] DAVI, L., SADEGHI, A., LEHMANN, D., AND MONROSE, F.
Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In 23rd USENIX Security Sym-
posium (2014), USENIX Sec.

[23] DAVI, L. V., DMITRIENKO, A., NÜRNBERGER, S., AND
SADEGHI, A. Gadge me if you can: secure and efficient ad-hoc
instruction-level randomization for x86 and ARM. In 8th ACM
Symposium on Information, Computer and Communications Se-
curity (2013), ASIACCS.

[24] EVANS, I., FINGERET, S., GONZALEZ, J., OTGONBAATAR, U.,
TANG, T., SHROBE, H., SIDIROGLOU-DOUSKOS, S., RINARD,
M., AND OKHRAVI, H. Missing the point(er): On the effec-
tiveness of code pointer integrity. In 36th IEEE Symposium on
Security and Privacy (2015), S&P.

[25] EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-
NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.
Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In ACM SIGSAC Conference on Computer and Com-
munications Security (2015), CCS.

[26] FAULKNER, R., AND GOMES, R. The process file system and
process model in unix system v. In USENIX Technical Confer-
ence (1991), ATC.

[27] GIONTA, J., ENCK, W., AND NING, P. HideM: Protecting the
contents of userspace memory in the face of disclosure vulnera-
bilities. In 5th ACM Conference on Data and Application Security
and Privacy (2015), CODASPY.

[28] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S.
Enhanced operating system security through efficient and fine-
grained address space randomization. In 21st USENIX Security
Symposium (2012), USENIX Sec.

[29] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In 35th IEEE Symposium on Security and Privacy (2014),
S&P.

[30] GUPTA, A., KERR, S., KIRKPATRICK, M., AND BERTINO, E.
Marlin: A fine grained randomization approach to defend against
ROP attacks. In Network and System Security, Lecture Notes in
Computer Science. 2013.

[31] HISER, J., NGUYEN, A., CO, M., HALL, M., AND DAVIDSON,
J. ILR: Where’d my gadgets go. In 33rd IEEE Symposium on
Security and Privacy (2012), S&P.

[32] HOMESCU, A., JACKSON, T., CRANE, S., BRUNTHALER, S.,
LARSEN, P., AND FRANZ, M. Large-scale automated software
diversity—program evolution redux. IEEE Transactions on De-
pendable and Secure Computing PP, 99 (1 2015), 1. Pre-Print.

[33] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side
channel attacks against kernel space ASLR. In 34th IEEE Sym-
posium on Security and Privacy (2013), S&P.

[34] JANA, S., AND SHMATIKOV, V. Memento: Learning secrets
from process footprints. In 33rd IEEE Symposium on Security
and Privacy (2012), S&P.

[35] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress space layout permutation (ASLP): towards fine-grained ran-
domization of commodity software. In 22nd Annual Computer
Security Applications Conference (2006), ACSAC.

[36] KILLIAN, T. J. Processes as files. In USENIX Association Soft-
ware Tools Users Group Summer Conference (1984), STUG.

[37] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (2014), OSDI.

[38] LARSEN, P., HOMESCU, A., BRUNTHALER, S., AND FRANZ,
M. SoK: Automated software diversity. In 35th IEEE Symposium
on Security and Privacy (2014), S&P.

14

[39] LIEBCHEN, C., NEGRO, M., LARSEN, P., DAVI, L., SADEGHI,
A.-R., CRANE, S., QUNAIBIT, M., FRANZ, M., AND CONTI,
M. Losing control: On the effectiveness of control-flow integrity
under stack attacks. In ACM SIGSAC Conference on Computer
and Communications Security (2015), CCS.

[40] LU, K., NÜRNBERGER, S., BACKES, M., AND LEE, W. How
to make aslr win the clone wars: Runtime re-randomization. In
23rd Annual Network and Distributed System Security Sympo-
sium (2016), NDSS.

[41] LU, K., SONG, C., LEE, B., CHUNG, S. P., KIM, T., AND
LEE, W. Aslr-guard: Stopping address space leakage for code
reuse attacks. In ACM SIGSAC Conference on Computer and
Communications Security (2015), CCS.

[42] MASHTIZADEH, A. J., BITTAU, A., BONEH, D., AND
MAZIÈRES, D. CCFI: cryptographically enforced control flow
integrity. In ACM SIGSAC Conference on Computer and Com-
munications Security (2015), CCS.

[43] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN, K.,
AND FRANZ, M. Opaque control-flow integrity. In Annual Net-
work and Distributed System Security Symposium (2015), NDSS.

[44] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. SoftBound: Highly compatible and complete
spatial memory safety for C. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (2009),
PLDI.

[45] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. CETS: compiler enforced temporal safety for
C. In International Symposium on Memory Management (2010),
ISMM.

[46] OPENBSD. Openbsd 3.3, 2003.
[47] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.

Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In 33rd IEEE Symposium on
Security and Privacy (2012), S&P.

[48] PAX. PaX address space layout randomization, 2003.
[49] SANG, F. L., NICOMETTE, V., AND DESWARTE, Y. I/O attacks

in Intel PC-based architectures and countermeasures. In SysSec
Workshop (2011), SysSec.

[50] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks
in C++ applications. In 36th IEEE Symposium on Security and
Privacy (2015), S&P.

[51] SEIBERT, J., OKHRAVI, H., AND SÖDERSTRÖM, E. Informa-
tion leaks without memory disclosures: Remote side channel at-
tacks on diversified code. In ACM SIGSAC Conference on Com-
puter and Communications Security (2014), CCS.

[52] SERNA, F. J. cve-2012-0769, the case of the perfect info leak,
2012.

[53] SHACHAM, H. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In ACM
SIGSAC Conference on Computer and Communications Security
(2007), CCS.

[54] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J.,
MODADUGU, N., AND BONEH, D. On the effectiveness of
address-space randomization. In Proc. of ACM CCS (2004),
pp. 298–307.

[55] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A. Just-in-time code reuse: On
the effectiveness of fine-grained address space layout randomiza-
tion. In 34th IEEE Symposium on Security and Privacy (2013),
S&P.

[56] SPENGLER, B. Grsecurity. Internet [Nov, 2015]. Available on:
http://grsecurity.net (2015).

[57] STRACKX, R., YOUNAN, Y., PHILIPPAERTS, P., PIESSENS, F.,
LACHMUND, S., AND WALTER, T. Breaking the memory se-
crecy assumption. In 2nd European Workshop on System Security
(2009), EUROSEC.

[58] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. Sok: Eter-
nal war in memory. In Proc. of IEEE Symposium on Security and
Privacy (2013).

[59] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. Heisen-
byte: Thwarting memory disclosure attacks using destructive
code reads. In ACM SIGSAC Conference on Computer and Com-
munications Security (2015), CCS.

[60] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: self-randomizing instruction addresses of legacy
x86 binary code. In ACM SIGSAC Conference on Computer and
Communications Security (2012), CCS.

[61] WOJTCZUK, R. Subverting the xen hypervisor. In Blackhat USA
(2008), BH US.

[62] XIAO, Q., REITER, M. K., AND ZHANG, Y. Mitigating stor-
age side channels using statistical privacy mechanisms. In ACM
SIGSAC Conference on Computer and Communications Security
(2015), CCS.

[63] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity and randomization for binary executables. In 34th
IEEE Symposium on Security and Privacy (2013), S&P.

[64] ZHANG, K., AND WANG, X. Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems. In 18th USENIX
Security Symposium (2009), USENIX Sec.

[65] ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In 22nd USENIX Security Symposium (2013), USENIX
Sec.

Appendix A: Nginx Attack 1 Details
11.0.1 Locating a mutex
During execution, Nginx makes several open system
calls. During these calls, the address of the trampoline
(i.e., indirect code pointer) for open is vulnerable to be-
ing read by an attacker. However, in practice, deter-
mining the exact address of this trampoline is difficult.
Furthermore, the attacker would have to perform a read
within the very narrow window of opportunity in which
the address is on the stack. We overcome this difficult by
employing MTB. glibc’s threading implementation sup-
ports a feature known as thread cancellation. There are
two forms of cancellation: asynchronous, which means
a thread’s execution can be cancelled at any point in its
execution and deferred which means any cancellation re-
quests are deferred until a special predetermined point
known as a cancellation point.

Every thread in a program contains a Thread Control
Block (TCB). This structure contains thread-specific in-
formation and is used by glibc for keeping track of things
such as thread local storage, the current extent of the
thread’s stack, and thread cancellation. Inside the TCB
is a field named cancelhandling. This field contains
flags representing various aspects of a thread’s cancella-
tion state. We are concerned with the following flags:

� TCB CANCELTYPE: can this thread be cancelled
asynchronously via a signal?

� TCB CANCELING: is the thread’s cancellation
state being mutated?

� TCB CANCELED: has the thread successfully can-
celed?

15

Before entering a cancellation point, glibc
executes pthread enable asynccancel, a
function that enables asynchronous cancella-
tion by setting TCB CANCELTYPE to true. Af-
ter exiting a cancellation point, glibc executes
pthread disable asynccancel, a function

that disables asynchronous cancellation by setting
TCB CANCELTYPE to false. A thread’s cancellation can
be requested by calling pthread cancel which will
set TCB CANCELED to true if asynchronous cancellation
is disabled. If asynchronous cancellation is enabled
the requesting thread will send a signal to the target
thread and a signal handler will mark the thread for
cancellation. This use of signals creates the possibility
of a data race: if a thread is in the process of requesting a
cancellation and the target thread disables asynchronous
cancellation before the requesting thread sends its
signal, the target thread will be forced to execute its
cancellation handler while in an unexpected state. To
prevent this, before sending a signal, the requesting
thread uses a Compare and Exchange instruction that
can ensure TCB CANCELING is false, TCB CANCELTYPE

is true and set TCB CANCELING to true atomically.
pthread cancel performs this instruction in a loop
until it succeeds.

Analogously, upon exiting a cancellation point,
a thread uses a Compare and Exchange instruc-
tion to both ensure TCB CANCELING is false and to
set TCB CANCELTYPE to false. This instruction is
also executed in a loop until it succeeds. This
makes TCB CANCELING a Mutual Exclusion Device
(mutex) that prevents concurrently disabling asyn-
chronous cancellation and sending an asynchronous
cancellation signal. By setting TCB CANCELING to
true, an attacker can force a thread to loop in
pthread disable asynccancel, forever waiting for

a signal that will never come.
Many cancellation points map directly to

system calls and these system calls are sur-
rounded by pthread enable asynccancel and
pthread disable asynccancel. A simplified

example of glibc’s implementation of open is presented
below:

__pthread_enable_asynccancel();

open syscall;

__pthread_disable_asynccancel();

Since glibc’s open function uses a cancellable sys-
tem call we can profile a trampoline for open by setting
TCB CANCELING to true and reading it off the stack when
it hangs in the pthread disable asynccancel after
open.

Having identified a suitable mutex for MTB, we
then determine a way to locate it at runtime. As

cancelhandling is a field of a thread’s TCB, given
the base address of a TCB, it is trivial to locate
cancelhandling. In glibc every TCB contains a header
with the type tcbhead t. The first field of this struc-
ture is defined as void *tcb; which is, actually, just
a pointer to itself. The fact that the TCB begins with a
pointer to itself makes it easily distinguishable in mem-
ory. Once we locate a thread’s TCB we can leverage
cancelhandling to execute MTB against the thread.
Additionally, since all TCBs are connected via linked list
pointers, locating a single TCB allows us to locate the
TCBs of all other threads.

11.0.2 Profiling open

Using the mutex found in the previous section, we can
cause a thread of our choosing to hang at a nondetermi-
nate system call. By modifying TCB CANCELING to false
then true in quick succession, we can permit that thread’s
execution to continue and then stop again at a nonde-
terminate system call. As Nginx makes many system
calls which involve cancellation points, locating open re-
quires the ability to distinguish when a thread is hung at
open versus when it is hung at some other cancellable
system call. We distinguish these situations by exploit-
ing knowledge of how Nginx responds to requests for
static files.

When Nginx receives an HTTP GET request for static
content, it transforms the requested path into a path on
the local filesystem. It calls open on this path and, if
successful, responds with the file’s contents. If the open
fails, it responds with HTTP 404 Not Found. During
this process, a pointer to a string containing the path will
be present on the stack. To determine whether or not Ng-
inx is hung at an open call we craft an HTTP request
with a unique string and examine all strings pointed to
from Nginx’s stack. An example request is provided be-
low.

GET /4a7ed3b71413902422846 HTTP/1.1

11.0.3 Profiling IO new file overflow

We profile IO new file overflow by taking advan-
tage of glibc’s implementation of the stdio FILE type.
Every FILE contains a file descriptor, pointers to the
file’s buffers, and a table of function pointers to various
file operations. IO new file overflow is included
among these function pointers. By locating a valid FILE,
we can easily locate IO new file overflow as the or-
dering of functions within the table is fixed. Finding a
valid FILE pointer in Nginx proved to be a challenge as
Nginx uses file descriptors instead of FILE. In this situa-
tion, scanning the stack will not yield a pointer to a valid
FILE. To overcome this, we locate glibc’s FILE for the
standard output stream stdout. stdout is a global vari-
able and is always automatically initialized on startup.

16

Since stdout is a global variable defined by glibc, it is
located in glibc’s data segment. Due to ASLR, the loca-
tion of glibc’s data segment cannot be known a priori;
nor can it be directly inferred from the address of the
stack. Attack is further complicated by the fact that we
cannot dereference random stack values due to the risk
of causing a segmentation fault.

Instead, we find a pointer into the heap, which oc-
cur more frequently in the stack. While pointers into
the heap are common, they are not easily distinguishable
from non-pointer values. To distinguish heap pointers we
perform a simple statistical analysis on the values of the
stack, the details of which we will present in a Technical
Report for the sake of brevity. We found that, for Nginx,
2 pages of values collected at a single point in time is
enough to reliably distinguish heap pointers.

Now that we have pointers into the heap, it becomes
possible for us to analyze the heap. We leverage this to
find a pointer to main arena, a glibc global variable.
main arena is a structure used by glibc to maintain in-
formation on allocated chunks of memory. To speed up
allocation operations, glibc partitions chunks into pre-
sized bins and stores them in main arena. Every heap
chunk allocated via malloc, calloc, or realloc is
prefixed with metadata containing a pointer back to the
main arena bin it came from. We take advantage of this
do locate a pointer into main arena.

Starting from the smallest pointer in our bin of heap
pointers, we collect 8-byte values from a 20 page range
of the heap. We then filter out values unlikely to be point-
ers.

Finally, we partition the remaining values into bins of
size 0x100000. The most common pointer of the largest
bin will be a pointer into main arena. This is due to
most chunks of the heap being allocated out of the same
bin.

Now that we have a pointer into glibc’s data section
we can search for stdout. We identify stdout by scan-
ning backwards from main arena, and looking for a re-
gion that is both a valid FILE and has the value 1 for
its underlying file descriptor. At this point, the location
of IO new file overflow can be trivially read off of
stdout.

11.0.4 Corrupting the Nginx task queue
The main loop for Nginx worker threads is located in
ngx thread pool cycle. All new worker threads spin
in this loop, checking if new tasks have been added to
their work queue. A simplified version of this loop is
presented below:

for (;;) {

task = queue_get(tp->task_queue);

task->handler(task->ctx, tp->log);

}

To carry out our attack, we craft a fake task structure.
We construct our fake task in the region of the stack that
originally contained Nginx’s environment variables. At
startup Nginx copies these to a new location and the orig-
inal location goes unused.

We initialize our fake task such that task->handler
points to open and task->ctx points to
html/index.html. We also modify tp->log to
be equal to (O DIRECT | O SYNC | O WRONLY |

O TRUNC) . While this invalidates the tp->log pointer,
in practice, threads do not seem to log unless Nginx is
compiled in debug mode. When the worker thread goes
to execute this task, it will open the file in O DIRECT

mode, allowing us to perform an FDMA attack.
Once we have our counterfeit task structure, we can

append it to the task queue and wait for Nginx to execute
the task. This usually happens instantaneously, so after
a few seconds we can be confident our call has occurred.
We repeat this process 100 times so that there will be at
least 100 file descriptors in O DIRECT mode opened by
the Nginx process.

For the call to IO new file overflow, we begin by
creating a fake FILE that matches stdout except for the
following fields:

1. file->file_ fileno = 75
2. file->file_IO write base =

file->vtable-> overflow & 0xFFF
3. file->file_IO write ptr =

file->file_IO write base + 0x1000
4. file->file_IO read end =

file->file_IO write base

Next, we modify our fake task such that task->handler
points to IO new file overflow and task->ctx points to
our fake FILE. We also modify tp->log to be -1 EOF.
This will cause IO new file overflow to think the write
buffer overflowed just as the end of the file was reached, so it
will immediately flush the buffer via a write. Once we have
crafted our fake arguments we append the fake task to the
task queue and wait for the task to be executed. Conceptu-
ally IO new file overflow will be executing the equivalent
of the following code:

write(75, _IO_FILE_Overflow & ~0xFFF, 0x1000);

Which results in an FDMA from execute only mem-
ory into the file html/index.html. We can then re-
trieve this page of code by sending GET /index.html

HTTP/1.1. We now have the contents of a page of code
at a known location and can proceed with a standard ROP
attack. If necessary, we can perform this as many times
as we want to leak more pages of memory.

Appendix B: Nginx Attack 2 Details
Nginx’s design employs a master process, which pro-
vides signal handling and spawns worker processes to
handle requests via fork calls. This processing loop
is implemented by the ngx master process cycle

17

ngx_argv[0] = "/usr/bin/python3"

ngx_argv[1] = "-c"

ngx_argv[2] = "import os,socket,subprocess;

s=socket.socket(socket.AF_INET,

socket.SOCK_STREAM);

s.connect((\\\'127.0.0.1\\\',1234));

[os.dup2(s.fileno(),i) for i in range(3)];

subprocess.call([\\\'/bin/sh\\\',\\\'-i\\\']);"

ngx_argv[3] = 0

Figure 7: Reverse Shell in Nginx with ICPOP

function, which is called from main after Nginx con-
figures itself. The trampoline address of this function
can be determined via profiling after causing a system
call to hang. Since ngx master process cycle

forks, worker processes inherit the parent’s current
stack. This includes the return address trampoline
of ngx master process cycle. Recall that return
addresses are replaced with a pointer to a trampoline
whose code resembles the following:

call ngx master process cycle

jmp callsite main

The return address points to the jmp instruction. From
that address, we can easily derive where the call in-
struction is.

Identifying the relevant return address on the stack
is straightforward, as Nginx’s initial execution is pre-
dictable. The ngx master process cycle frame will
be near the base of the stack, immediately after the main
stack frame.

Once the address of ngx master process cycle is
found, we can take advantage of a function pointer in
the Nginx worker’s log handler. The log error core

function contains a pointer to a log handler function tak-
ing three arguments: p = log -> handler(log, p,

last-p). There are multiple system calls in the func-
tion prior to the pointer being dereferenced during a log-
ging event, which enables us to hang the program via
mutex-based MTB and corrupt the handler to point in-
stead at ngx master process cycle. In order to pre-
vent a program crash, we must also modify the first ar-
gument (log) to resemble the ngx cycle t expected
by ngx master process cycle. The parameter is not
used in our attack, so any non-crashing value suffices.

Once we have pointed the log handler at
ngx master process cycle, we must ensure that
the target function’s execution causes an exec under our
control. This can be achieved via the range of signals
that Nginx can handle in ngx master process cycle.
In particular, Nginx provides a new binary signal
used to provide rolling updates to a new version of the
server without compromising availability. This signal
handler is invoked whenever a global integer variable
named ngx change binary is non-zero. The path

to the binary is stored in ngx argv, another global
variable. By corrupting the first global value we ensure
that an exec call will eventually be made when the
log handler pointer is dereferenced. By corrupting the
latter, we ensure that a binary of our choice is executed.
For example, setting ngx argv to the values shown in
Figure 7 will create a reverse shell bound to a chosen IP
address (127.0.0.1 in this case).

Appendix C: Apache Attack Details
In order to maintain portability across operating systems
Apache uses its own portable runtime libraries (APR and
APR-Util) instead of directly calling functions in libc.
However, modules may call functions in this library that
the base Apache process does not. Each of these files
contains function pointers to every function in that li-
brary. They are linked to the executable during program
compilation, and loaded into the data section of memory
on execution.

One of these exported functions is
ap get exec line in Apache’s server utility li-
brary (httpd.h), which takes three arguments: a pointer
to a valid memory pool, a command to run, and the
arguments to supply that command. We recover the
trampoline for this function by profiling while hang-
ing execution via mutex-based MTB. The region of
memory containing pointers from exports.c is easily
identified, as it contains nothing but function pointers
(with common higher-order bits) pointing to functions
in one library. The order in which function pointers are
declared in exports.c is deterministic, so recovering
the pointer for ap get exec line is straightforward.

Next, we corrupt a function pointer to point to the re-
vealed address. When choosing the pointer, we must en-
sure that the parameters passed to ap get exec line

are passed correctly, as this attack does not rely on global
variables like the Nginx variant. Additionally, our abil-
ity to modify memory is limited to the periods surround-
ing system calls. Only functions which pass parame-
ters via pointers to memory addresses are viable. Given
these criteria we chose to corrupt the errfn pointer
in sed reset eval, part of Apache’s mod sed. The
errfn pointer is dereferenced in the eval errf func-
tion, which pulls all of its parameters from pointers to
memory. Similar functions are available in other mod-
ules, should mod sed not be available.

Finally, we set errfn to point to ap get exec line.
The first argument pointer is corrupted to point at a valid
apr pool t object, which the attacker-controller worker
will likely already have. (APR pools are used to handle
memory allocation in Apache.) The second pointer is
made to point at a string containing the path to a binary
of our choice. When the errfn pointer is dereferenced,
the binary is executed.

18

This material is based upon work supported by the Department of Defense under Air Force Contract No.
FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Department of Defense.

© 2016 Massachusetts Institute of Technology.

Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014
(Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
	

