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Abstract
Large unstructured audio data sets have become ubiquitous and
present a challenge for organization and search. One logical
approach for structuring data is to find common speakers and
link occurrences across different recordings. Prior approaches
to this problem have focused on basic methodology for the link-
ing task. In this paper, we introduce a novel trainable non-
parametric hashing method for indexing large speaker record-
ing data sets. This approach leads to tunable computational
complexity methods for speaker linking. We focus on a scal-
able clustering method based on hashing—canopy-clustering.
We apply this method to a large corpus of speaker recordings,
demonstrate performance tradeoffs, and compare to other hash-
ing methods.

Index Terms: speaker recognition, clustering, hashing, locality
sensitive hashing.

1. Introduction
We assume that a large corpus of audio recordings with re-
occurring speakers is given. Our goal is to structure this corpus
in two ways. First, we want to explore methods for quickly per-
forming speaker query-by-example (QBE). I.e., given a record-
ing from a speaker, find all recordings by the same speaker in
our corpus. Second, given a QBE method, how can we perform
speaker clustering—each clustering should be a single speaker,
and a cluster should contain all recordings from that speaker in
the corpus. The result of these two steps is a structured organi-
zation of the corpus by speaker—we can quickly find the same
speaker in multiple recordings.

Two critical tools for speaker linking in large corpora are
speaker diarization and speaker embedding. For the first part,
since we want to focus on the speaker linking aspect, we assume
that diarization has been performed and each recording in our
corpus contains only a single speaker. For speaker embedding,
we convert our recordings to a (single) speaker vector. This
process can be performed with many approaches [1, 2]. For this
paper, we focus on using i-vectors [2], but the methods apply to
any embedding.

For the task of speaker QBE and recognition, multiple
methods have been proposed. First, the most straightforward
method [3] is—given a query vector, xq , perform inner prod-
ucts with all vectors in the corpus, X = {x1, . . . ,xn}. This
approach is O(n) computation and O(n) storage, so it grows
linearly with the corpus size. A second approach, graph-based
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query by example uses a graph structure along with random
walks to perform retrieval [4]. This approach is computationally
O(1) for retrieval, and requires O(n) for storage. A drawback
of the method is that it requires an O(n2) computation for set-
ting up the retrieval data structure. A third approach for QBE
is to use (locality-sensitive) hash function methods. Speaker
vectors are first converted to binary form via a hash function,
and then retrieval is performed using standard computer sci-
ence hash table methods. Multiple authors have explored this
approach [5, 6, 7]. The advantage of this approach is that stor-
age is O(n) and average retrieval complexity is O(1).

For this paper, we use the hash function approach to speaker
QBE. Prior approaches have used locality sensitive hashing
via random projection [5, 6]. In this paper, we look at non-
parametric trainable methods to hashing. The goal is to create
data-specific hashing functions with better performance. Non-
parametric methods offer the advantage of being a consistent
estimator of the underlying probability density function of the
data without any prior knowledge [8, 9]. Note that for this pa-
per, we focus on speaker QBE for speaker clustering by using
hash functions only and no graph structure. But, speaker QBE
with hash functions can be combined with random walks by re-
trieving a local k-hop graph in the same manner as [4].

Our speaker application combines speaker QBE with link-
ing and clustering. Prior methods for linking and cluster-
ing speakers have been studied in multiple contexts including
speaker content graphs [10], as a corpus level linking prob-
lem [11], as a diarization problem [12], and as a graph clustering
problem [13]. The basic approach is to find speaker links—i.e.,
are two recordings from the same speaker. Putting this all to-
gether gives a graph where nodes are recordings and weighted
edges represent the confidence of the links. Clustering can be
considered an extension of this process where the links must be
transitively consistent. I.e., given that recording A and B are the
same speaker, B and C are the same speaker, then A and C are
the same speaker. Another way to say this is that the speaker
content graph is a union of cliques [14].

Our approach to speaker linking and clustering consists of
three parts. First, we convert all recordings in the data set to
speaker vectors and then use a hash function to convert the data
to a binary representation. Second, we index this binary repre-
sentation using hash tables. Third, we use multiple retrievals to
calculate a subset of the full distance matrix to reduce computa-
tion by a tunable amount. This approach is inspired by canopy
clustering [15]. The resulting speaker method can be tuned both
computationally and storage-wise to achieve different levels of
performance.

The outline of the paper is as follows. In Section 2, we
cover speaker QBE using hashing methods. We review the stan-
dard random projection approaches as well as introducing our
non-parametric approaches. In Section 3, we discuss clustering
and detail the combination of hashing and canopy clustering.



Finally, in Section 4, we apply our methods to a large NIST
speaker corpus and detail experimental results, trade offs, and
performance.

2. Hashing Techniques
Hashing is a common technique for finding nearest neighbors
of a given vector, x. A hashing function is defined,

h(x) : Rd −→ Bl (1)

where B = {0, 1} and l is the number of bits. The hashing
function should have the property that if x and y are close, their
corresponding hash values h(x) and h(y) have close Hamming
distance.

A common technique used in hashing is to define m ran-
domly selected hashing functions hi from a family of hash func-
tions all with the same number of output bits l. Given a set of
vectors X = {xi}, i = 1, . . . , n, the data are encoded using all
of the hash functions, hi(x). A retrieval function,

Hi(b) : B
l −→ P({1, . . . , n})

Hi(b) = {j|hi(xj) = b}
(2)

maps bits to the set of indices of the data; P(·) denotes the
power set. Multiple functions can be used to ensure that a close
neighbor vector will be eventually retrieved. The retrieval can
be implemented with O(1) average search complexity using an
inverted index. More details on multiple hash functions and
implementation can be found in [16].

2.1. Locality Sensitive Hashing (LSH)

A standard baseline method for vector-based hashing is Local-
ity Sensitive Hashing (LSH) [17, 18]. LSH provides probabilis-
tic bounds for near items having the same hash value. A typical
method for implementing LSH for vectors is to use random pro-
jection.

In more detail, assume that we want to encode a unit norm
vector x. A random matrix, Mi, with l columns Mi,j of dimen-
sion d is generated. Then hash values for the ith hash function,
hi(), are generated by,

hi,j(x) =

{
1 if Mt

i,jx > 0

0 otherwise
(3)

where j indicates the jth bit of the output. Intuitively, each bit
represents the side of the hyperplane where the vector lies.

2.2. Distance Based Hashing (DBH)

An alternate to LSH is distance-based hashing (DBH). Our im-
plementation closely follows the original algorithm [19] with
the exception of compute performance optimizations. Distance
based hashing was chosen for comparison because of its simi-
larities with other non-parametric methods.

As with non-parametric hashing presented in the next sec-
tion, distance-based hashing is initialized by selecting a set of
2l seed vectors that will serve as a basis for a hashing function
to encode a target vector. These seed vectors should be chosen
from a set of data that will be representative of the target data to
be encoded.

The base function used for hashing is the pseudo-line-
projection proposed in [19],

dx1,x2(x) =
d(x,x1)

2 + d(x1,x2)
2 − d(x,x2)

2

d(x1,x2)2
(4)

Algorithm 1 Non-Parametric Hashing (NPH)
Input: Speaker vector, x
Outputs: Encoded vector, hNPH,i(x), of l bits for i =
1, . . . ,m
For each hashing function, choose Si = {si,1, . . . , si,l}
seed speaker vectors from an initialization data set and
Ti = {Ti,1, . . . , Ti,l} tolerance intervals using the k-nearest
neighbors
for i = 1, . . . ,m do

for j = 1, . . . , l do
if d(x, si,j) < Ti,j then

hNPH,i,j(x) = 1
else

hNPH,i,j(x) = 0
end if

end for
end for

where d(·, ·) is the Euclidean distance between two vectors. The
vectors xi and xj are (fixed) seed vectors. Encoding of an input
vector is accomplished in a similar manner to LSH in (3) using
the pseudo-line-projection (4),

hDBH,i,j(x) =

{
1 if dxi,j,1,xi,j,2(x) ∈ [ti,j,1, ti,j,2]

0 otherwise
(5)

Points are encoded depending on if they fall within or out-
side an interval. The interval is defined by thresholds tj,1 and
tj,2. In order to form two reference points for the pseudo-line-
projection equation, the 2l initialization vectors are randomly
selected to form l pairs. The bits of the hash are computed by
equation (5) over the 2l pairs forming an l-bit hash.

2.3. Non-Parametric Hashing (NPH)

Non-parametric pattern recognition/clustering methods have
the advantage of being an unbiased representation of the data
set modeled. The disadvantage of these techniques is that they
are computationally expensive. The construction of our non-
parametric hashing (NP-hashing) leverages the computational
speed of hashing with the desirable modeling qualities of a non-
parametric approach.

The basic encoding approach is shown in Algorithm 1. As
with distance-based hashing, the first step of NPH is the selec-
tion of a set, S, of l seed vectors. Also, the seed vectors should
be chosen from a set of vectors that are closely representative of
the target data. Tolerance intervals or hyperspheres are formed
by using the S seed vectors as a set of centers. The set of tol-
erance intervals, T , is then formed by using the largest distance
from the k nearest neighbors to these centers.

The input speaker vectors are encoded into a l-bit hash by
comparing against these tolerance intervals. An input speaker
is compared against each tolerance interval. If the input falls
with the tolerance interval it is coded as a 1. If it lies outside the
tolerance intervals it is coded as a 0. In this manner, the l-bit
hash is encoded.

3. Clustering Techniques
3.1. Prior Methods

The computation and storage involved in clustering is a major
issue for large-scale implementation. The two basic steps in-
volved are—the distance matrix computation and the clustering



Algorithm 2 Canopy Construction Algorithm
Inputs: Speaker vectors, {xi}, i = 1, . . . , n; hashing re-
trieval methods,Hi(·), i = 1, . . . ,m; and a similarity thresh-
old Ts

Outputs: A canopy (set of sets), C = {C1, . . . , Cnc}
Let C = {}, I = {1, . . . , n}, and i = 1
while I is not empty do

Pick a random i1 ∈ I
Perform retrievals, Rj = Hj(hj(xi1)) for j = 1, . . . ,m
Ci = (∪Rj) ∩ I; add Ci to C
Calculate a similarity score for each p in Ci, s(p) =
1
m
|{j|p ∈ Rj}|

Remove all p from I with s(p) ≥ Ts

i = i+ 1
end while

algorithm. In this paper we address the former and consider the
latter an area with many choices; see, for example, the many
graph-based and standard methods in [13].

A straightforward approach to distance matrix computation
is to compute all pairs of distances d(x,y) and store them in a
matrix. This involves O(n2) storage and O(n2) flops where n
is the number of vectors to cluster. These resource requirements
become large quickly; for 100K vectors, we require 80 GBs to
store the distance matrix.

A step in the right direction is to sparsify the distance matrix
by selecting the k closest neighbors. This approach was used
with success in [10, 13]. This results in a matrix with storage
O(n) for fixed k, but computation requirements are still O(n2).

To reduce the computation burden, we use the hashing tech-
niques from Section 2 to limit computation. Specifically, our
approach is to use hashing to retrieve a candidate set of nearest
neighbors and then compute the distance only for those neigh-
bors; we detail this canopy clustering approach more in the next
section.

3.2. Canopy Clustering

Canopy clustering consists of three basic parts. First, we con-
struct canopies, C, using hashing functions. Second, distances
are constructed based on the canopies. Third, a clustering tech-
nique is performed using the computed distances.

The first step, canopy construction, is shown in Algo-
rithm 2. The basic flow of the algorithm is to pick a random
member of the vectors to cluster and retrieve everything close
using hashing. This process is repeated until the entire set is
covered by the resulting canopy, C, which is a set of sets.

The second step of canopy clustering is distance computa-
tion. For each canopy, Ci, all the of distances are computed
exhaustively in that canopy—i.e., d(xi,xj) for all i, j in Ci.
Note that distinct canopies may have common members so the
resulting distance matrix has a block diagonal component with
some out-of-block distances computed also.

The third step with canopy clustering is to perform clus-
tering. In this paper, we use standard greedy agglomerative
clustering (GAC) with a stopping threshold. Multiple standard
link criteria were considered including minimum, maximum,
and average. Although GAC is computationally expensive, it
is a standard well-performing approach that serves as a base-
line. Alternate approaches may have lower computational bur-
den [13]. Another comment on our GAC approach is that the
interpretation of sparsity in the distance matrix is non-standard.
If a distance in D is not specified, it is assumed to be∞ not the

standard convention of zero.

4. Experiments
4.1. Experimental Setup

The experimental setup was to perform speaker clustering us-
ing data from the NIST Speaker Recognition Evaluation (SRE)
years 2004, 2006, 2008, 2010 and 2012 [20]. I-vectors were
generated with our standard I-vector system [21, 22].

The data was subdivided into training and testing partitions.
Table 1 shows the partitioning of the speech corpora used in the
experiments. The training data was used for all hyper-parameter
training of the I-vector system as well all of the pre-trained pa-
rameters of the clustering and hashing functions.

Table 1: Training and testing partitions of the speech corpora
Partition SRE # of # of

Years Speech Cuts Speakers
Training 2004, 2005, 2006 17894 2166
Testing 2008, 2010, 2012 18250 1835

4.2. Clustering Experiments

Clustering and hashing both require the setting of pre-trained
parameters such as: 1) the number of hashes used, 2) the num-
ber of bits used in the hash l, 3) the GAC clustering threshold,
and 4) the similarity threshold Ts. To construct a fair cluster-
ing experiment, the pre-trained parameters were tuned with the
training partition and then applied to the testing data.

Two metrics were used to assess performance of the clus-
tering experiments: 1) adjusted mutual information (AMI) [23],
and 2) sparsity of the distance computations. AMI measures the
performance of the clustering algorithm. The AMI calculation
used is,

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

max{H(U), H(V )} − E{MI(U, V )} (6)

where MI(U, V ) is the mutual information between putative
clustering set U and ground truth clustering set V . H(U) is
defined as the entropy of the set U . Note that an AMI of zero
corresponds to chance.

The experiments in this section required multiple experi-
ment sweeping: 1) number of hash bits, 2) number of hash func-
tions, 3) GAC threshold, and 4) similarity clustering threshold.
All were conducted by taking random draws of 1000 I-vectors
and then conducting clustering experiments over the 1000 vec-
tors. The results were then ensemble averaged.

The sparsity of distance computations is the percentage of
distances not computed over the entire set to be clustered. Most
clustering methods require full matrix of distance computations
or O(n2) computations. This metric evaluates the computa-
tional savings of our proposed clustering algorithm.

Figure 1 plots two sets of clustering results using the base-
line LSH function. Similar trends are seen for the two other
hashing methods, DBH and NPH. The first plot is of adjusted
mutual information versus number of bits with a varying num-
ber of hash functions. A trend can be seen as the number of bits
increases for the hash—the AMI performance decreases as the
number of bits increases for a single hash function. This prop-
erty is due to the fact that the hash becomes too specific and
the input points only hash to themselves and not to a locality of



Figure 1: Plots of LSH for adjusted mutual information and
sparsity versus number of bits for various number hash func-
tions.

Figure 2: Plots of NPH for adjusted mutual information and
sparsity versus number of bits for various number hash func-
tions.

points. This specificity of the retrieval can be controlled by us-
ing multiple randomly selected hash function [16]. The retrieval
in this case is the union of the retrievals (cf., Algorithm 2).

The second plot of Figure 1 presents the sparsity of dis-
tance computations versus the number of bits in the hash. This
is also plotted with a varying number of total hash functions.
As the number of bits increases the sparsity of distance com-
putations increases. Again this is due to the fact that the hash
function is becoming too specific with the increase in the num-
ber of bits. The canopy clustering algorithm computes distances
over smaller canopies.

Plots of AMI and sparsity versus number of bits for the non-
parametric hashing method are shown in Figure 2. Comparing
the first plot of Figure 2 with the AMI versus bits of Figure 1,
the clustering performance drops off much slower with the in-
crease in the number of hashing bits. Comparing sparsity versus
number of bits in Figures 1 and 2, the sparsity of distance com-
putations increases at a slower rate for canopy clustering with
non-parametric hashing.

AMI and sparsity of distance computations are a trade-off
between clustering performance and computational efficiency.
This trade-off can be explored directly by plotting AMI against
sparsity. Figure 3 shows two plots for LSH for AMI versus spar-
sity over a variety of number of hash functions. The first plot is
a clustering experiment on the training set of data and the sec-
ond plot is on the testing set. Better performing systems have
curves tending more the upper right of the plot. As expected
the system performs better on the training set of data since the
systems I-vector hyper-parameters were tuned on the training
data. However the clustering system of Figure 3 used clustering
parameters greedy agglomerative clustering stopping threshold
(GAC) and similarity threshold, that were set to some reason-
able settings. A more pragmatic approach would be to set the
clustering parameters on the training set of data and then apply
the parameters to a cluster experiment.

Figure 3: Oracle plots for adjusted mutual information versus
sparsity for LSH. The plots are results of the training set and
testing set over a varied number of hash functions

Figure 4: Plot of AMI versus sparsity number hash functions=250

Figure 4 presents results for AMI versus sparsity on the test
data set. The solid lines (oracle) are results when the clustering
experiment used hyper-parameters trained on test. The dashed
lines (fair) are results when the clustering experiment was on
the testing data set and clustering parameters are tuned from
the training data. Figure 4 shows that the performance drops
off slightly in the fair experiments but the parameter tuning is
robust. Additionally, the figure shows that the new NPH ap-
proach has superior performance to the other methods. Finally,
we note that there is still room for significant improvement at
high sparsity—further improvements in hashing are possible.

5. Conclusions
In this paper we have introduced a new locality sensitive hash-
ing technique, non-parametric hashing. We have also presented
a unique method of speaker clustering using canopy cluster-
ing. When combined with hashing, these methods proved to
be a fast and effective way of clustering data. The trade-off
between computational efficiency and clustering performance
was explored with adjusted mutual information versus compu-
tational distance sparsity plots. Future work will explore apply-
ing these techniques to other modalities such as clustering audio
and video data.

Since the non-parametric hashing was constructed with de-
fined tolerance intervals or hyperspheres, we conjecture that the
non-parametric hashing method should be a non-biased estima-
tor of the underlying density function of the input data. Future
work will endeavorer to prove this by extending the proof of [8]
to non-parametric hashing.
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