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Abstract—Mobile networks using directional antennas have 

many desirable properties such as Low Probability of Detection 
(LPD) and concentration of electromagnetic energy, resulting in 
improved range and data rates.  To function properly, 
directional networks heavily depend on GPS use.  This paper 
describes a decentralized algorithm, called “Fast RTSR”, for 
directional networking to re-construct time and position data 
when GPS is not available.  We show that the Fast RTSR 
algorithm allows the entire network to achieve time 
synchronization with convergence time of O(n), where n is the 
number of nodes in the network.  In our simulation experiments, 
the Fast RTSR algorithm can improve the convergence time by 
as much as 400 times over the previous baseline RTSR algorithm 
[1].  Our preliminary results also show that a constant timestamp 
error and node mobility will not impact the accuracy of the Fast 
RTSR algorithm. 

Keywords—GPS; directional networking; wireless; algorithms; 
tactical networks 

I. INTRODUCTION 

Mobile networks using directional antennas have many 
desirable properties such as Low Probability of Detection 
(LPD) and concentration of electromagnetic energy, resulting 
in larger reception ranges and higher   data rates.   Also, 
depending on the antenna beam width, directional networking 
has the potential to significantly enhance spatial re-use of the 
frequency spectrum.  Given the scarcity of frequency 
spectrum, this could be a very appealing property.  These 
advantages come with the challenge of keeping track of other 
nodes’ locations in the network and, for Time Division 
Multiplexing (TDMA) networks, for common precise timing 
among participating nodes.  Requirements for precise time and 
location information become even more acute during the 
initialization phase, where nodes need to discover and connect 
with their peers to form a network.  Note that these challenges, 
especially those related to location determination, would be 
less severe in networks driven by omni-directional antennas. 
Many Directional Mobile ad hoc Networks (D-MANETS) 
tend to rely on Global Positioning System (GPS) or its 
variants to keep track of time and position of the nodes in the 
network.  The receive power for GPS signals is approximately  

-160 dBW).  This could make the received GPS signals 
vulnerable to malicious or even unintentional interference.  
This paper is concerned with methods for network nodes to re-
construct each other’s local clock times and converge upon a 
common time with the high degree of precision needed in D-
MANET technologies. Toward the goal of identifying the best 
methodology to reconstruct time information in the absence of 
reliable GPS signals, we considered the following commonly 
used techniques: 
 

 RF-Based Solutions: Using RF-based measurements 
to synchronize time and measure node range. 

 Satellite Doppler: Using Doppler measurements from 
multiple satellites along with satellite catalog data to 
determine time and position. 

 LTE: Use existing LTE base-stations for time and 
position. 

 Differential GPS: A receiver with a known location 
broadcasts a correction signal to GPS receivers. 

 GPS Relay (UAS): A set of unmanned aerial systems 
(UAS) that transmit (or retransmit) the GPS signal at 
a higher SNR than the original signal. 

 Startracker: Using the precise location of one or more 
stars. 

 Opportunistic Signals: Opportunistically take 
advantage of existing RF signals (i.e., FM radio, 
DTV, LTE, etc.) transmitted from known locations. 

 Localization with Anchors: Determine the location 
(either absolute or relative) of at least three nodes, 
and then use these known locations to localize the 
rest of the network. 

However, based on the analysis in [1], none of the 
aforementioned solutions completely solves the time 
synchronization problem.  [1] developed a new approach 
which we refer to as the Baseline RF Time Synchronization 
and Ranging (RTSR) algorithm.  The basic concept behind 



baseline RTSR is to use a low data rate signal to transmit time 
messages between adjacent nodes. Nodes transmit packets 
with time information that allows neighbors to compute RTT.  
This in turn allows nodes to calculate the time difference 
between themselves and their neighbors and adjust their 
clocks towards the average clock value of its neighbors. 
 
We propose a Fast RTSR algorithm with a much faster 
convergence speed than the baseline RTSR algorithm.  We 
show that the convergence time of the Fast RTSR algorithm is 
O(n), where n is the number of nodes in the network.  In our 
simulation experiments, the time required for a network to 
reach a certain time synchronization threshold when using 
Fast RTSR is only 0.25% of the time required when using 
baseline RTSR (an improvement by a factor of 400)Fast 
RTSR is optimized in the following three areas: 1) The 
fraction of nodes that are transmitting at any time; 2) The set 
of antenna sectors on which a node will transmit or receive; 3) 
The algorithm used by a node to update its clock based on its 
neighbors’ time information.   
 
When using Fast RTSR, each node needs to decide whether it 
will transmit or receive for a given period of time, since it 
cannot do both with the current antenna technology.  If too 
many nodes decide to transmit at the same time, most 
transmissions will fail since only a small number of nodes are 
listening.  Here, we derive the optimal probability of a node 
being in transmit mode.   
 
During the first phase of the Fast RTSR algorithm, nodes will 
obtain information about their neighbors.  Once a node knows 
the existence of some of its neighbors, it can choose to 
transmit or receive only on the antenna sectors where a 
neighbor currently exists.  Compared with baseline RTSR, this 
approach  reduces wasted transmissions on antenna sectors 
that do not point toward other nodes.   
 
Lastly, using Fast RTSR nodes will propagate to each other a 
randomly picked time (out of the set of times received from 
neighbors) instead of attempting to converge to the average 
clock value of the entire network as with baseline RTSR.   
When applying the RTSR algorithm to a real communication 
system, there are a number of additional issues which must be 
considered, such as timestamp error and node mobility.  Both 
Fast RTSR and baseline RTSR require accurate estimation of 
RTT, which in turn requires an accurate timestamp of a packet 
that reflects the moment that packet transmission begins over 
the channel.   However, due to the random processing delay at 
the operating system and the transmission chain, this 
timestamp may not be accurate.  A C++ discrete event 
simulation was written to examine the impact of the random 
processing delay on the performance of the RTSR algorithm.  
We show that a constant random processing delay will not 
impact the performance of RTSR.  A non-deterministic 
random processing delay, however, can impair the RTSR 
algorithm such that the time may not converge to the desired 
accuracy.  We also demonstrate that node mobility, assuming 

node speed is less than one thousand miles per hour, will not 
impact the performance of RTSR algorithm. 
 
The rest of this paper is organized as follows:  Section II gives 
a detailed description of our directional antenna model.  In 
Section III, an overview of the baseline RTSR algorithm is 
presented first, followed by a description of the Fast RTSR 
algorithm and its performance results.  Section IV discusses 
the impact of timestamp error and the impact of mobility on 
the RTSR algorithm.  Section V concludes the paper. 
 

II. PRELIMINARIES 

In this paper, we consider a tactical network where each node 
has a directional antenna.  We adopt the antenna model in [2].  
The model assumes an antenna with S sectors.  Each sector 
has a conical radiation pattern, covering an angle of 2π/S.  The 
sectors are fixed with non-overlapping beam directions, hence 
collectively covering the entire circular region surrounds the 
antenna (shown in Figure 1).   We also assume there is no 
omni-directional mode of transmission.  Before transmitting or 
receiving data, the antenna must pick a sector to transmit or 
receive the data.   
To successfully decode a packet, the receiving node must be 
located within a radius r of the transmitting node.  We say 
node A lies in sector k of node B if node A is within an angle 
ሾ2ߨሺ݇ െ 1ሻ ܵ⁄ ݇ߨ2 , ܵ⁄ ሻ of node B and the distance between A 
and B is less than r.  As in any wireless communication 
system, interference will occur when the signals of two or 
more transmitters are colliding at the sector on which the 
receiving node is listening.  More specifically, let nodes A and 
B lie in sector k of node C.  Let node C lie in sector i of node 
A and in sector j of node B.  We say that packet collision 
occurs at node C if the following events occur:  node C is 
receiving on sector k; node A is transmitting on sector i; node 
B is transmitting on sector j.  To communicate with neighbors, 
a node needs to switch between transmitting and receiving 
because it cannot transmit and receive at the same time.  
Moreover, a node needs to switch from one sector to another 
sector.  The switching time from transmitting to receiving and 
from sector i to sector j are both assumed to be negligible.  
This assumption is reasonable for a fast switching directional 
antenna. 
 

 
 

Figure 1:  Sectors in a directional antenna. 

Although nodes in the network are unsynchronized initially, 
we want to impose a transmission structure for each node to 
opportunistically exchange whatever information they have 



about both their own as well as their neighbors’ concept of 
time.  The transmission structure here consists of three levels: 
epoch, frame and slot.  An epoch is defined the period over 
which a node gathers received time information from its 
neighbors for the purpose of deciding how to modify its local 
clock time.  It may consist of 10’s or even 100’s of frames 
depending on the expected density of the network.  During 
each frame, a node decides whether to transmit or receive.  If 
it chooses to receive, it will choose a sector and receive in that 
sector for the entire frame duration.  If it chooses to transmit, 
the frame is further divided into a number of slots.  The node 
will transmit in a sector for the duration of an entire slot 
before switching to another sector for transmission.  The 
structure of epoch, frame and slot can be different for different 
node.  That is, node A’s frame length can be different from 
node B’s frame length.   Note also that the aforementioned 
timing structure is used for time synchronization purpose only.  
The system may or may not use it for normal communication 
(i.e., TDMA transmission) after the network is synchronized. 
  

III. RTSR ALGORITHM 

The basic idea behind RTSR is to use a low data rate signal to 
transmit time messages between adjacent nodes. Each node, in 
addition to its own time, transmits a subset of the time 
measurements it has received from other nodes.  These 
additional measurements are used to enable “passive” Round 
Trip Time (RTT) measurement which allows a node to 
calculate its clock difference from the neighboring nodes.  
After repeatedly adjusting their clocks based on clock 
measurements of their neighbors, nodes can achieve network 
wide time synchronization.  The primary advantage of RTSR 
is that there is no single node that has any more impact on the 
synchronization algorithm than any other node.  This 
significantly limits the ability of a smart attacker to 
compromise the time synchronization algorithm.   In the 
following, we first briefly describe a Baseline version of the 
RTSR algorithm which was presented in [1].  We then 
describe a Fast RTSR algorithm which exhibits significant 
performance improvement in convergence time. 
   

A. Baseline RTSR Algorithm 

In Baseline RTSR, the number of time slots in a frame is S 
(the number of sectors in the directional antenna).  At the 
beginning of a frame, a node decides whether to transmit or 
receive for the entire frame according to the probability pT. If 
a node choose to transmit, it sweeps through all of its antenna 
sectors (i.e., one sector per time slot).  On the other hand, if it 
chooses to receive during that frame it will listen on one of its 
antenna sectors for the entire frame.  Most transmissions will 
not be heard due to the mismatch between the transmitter’s 
transmission direction and the receiver’s receiving direction.  
However, once a while, transmission and reception directions 
will align, which will result in a successful transmission of the 
time information from the transmitter to the receiver.   At the 
end of epoch n, node i will use the equation below to update 

its clock to a new value ݐሺ݊ሻ based on the time information 
received from its neighbors during the previous epoch.  [1]: 
 

ሺ݊ሻݐ ൌ 	 ሺ݊ݐ െ 1ሻ െ ߙ ቆ
∑ ሾݐሺ݊ െ 1ሻ െ	ݐሺ݊ െ 1ሻሿ
ୀଵ

ܭ
ቇ 

 
K is the total number of nodes from which node i has received 
clock information in epoch n.  Node i computes the clock 
deviation between its own clock and each neighbor’s clock, 
averages the the clock deviations, and  updates its clock by 
adding or subtracting a fraction of that time (governed by the 
parameter ߙ) For the baseline algorithm to perform well, we 
want as many exchanges of time information as possible in the 
network.  The following theorem will guide us on choosing 
the optimal value of pT to maximize the number of successful 
transmissions in the network.   
Theorem 1:  Given n nodes uniformly placed in an area of 
size A, with antenna sector area AS, the optimal transmission 
probability ்

∗  is given by: 

்
∗ ൌ arg	max


ሺ1் െ ሻሾ݁ି்

ሺିଶሻఒ  ሺିଶሻఒሺ1ି݁ߣ െ  ሻሿݏ/்

where λ ൌ	ܣௌ ⁄ܣ . 
 
Proof:  Let Ns be the number of successful transmissions 
occur in the network at a random instant.  We then define Il as 
follows: 
 

ܫ ൌ ቄ1 if link ݈	has a successful transmission
0 otherwise

 

 
Let L be a random variable denoting the total number of 
directional links in the network.  We can write Ns as follows: 

௦ܰ ൌ ܫ



ୀଵ

 

Our objective is to choose pT to maximize E[Ns].  E[Ns] can be 
computed as follows: 

ሾܧ ௦ܰሿ ൌ ሿܫሾܧ	 ∙  ሿܮሾܧ

Since ܧሾܮሿ  does not depend on pT, we need to simply 
maximize  ܧሾܫሿ.  We know that 

ሿܫሾܧ ൌ 	Pr	ሺlink l has a successful transmissionሻ 

Let (s, d) denote the two end points of link l, where s is the 
transmitter.  Without loss of generality, we assume node d is 
receiving on sector k of its antenna. We then have 

Prሺlink	݈	has	a	successful	transmissionሻ 
																			ൌ 	Prሺܧଵሻ ∙ Prሺܧଶሻ ∙ Prሺܧଷሻ  

where the events E1, E2, and E3 are defined as follows: 
 

 E1 ≜ node s is transmitting 
 E2 ≜ node d is receiving 
 E3 ≜  no other node is interfering with node d’s 

reception  



 
Event E3 can be further divided into the following events: 
 

 E4 ≜ node s is the only node located in the receiving 
sector of node d 

 E5 ≜ one or more additional nodes are located in the 
sector k of node d, but none of them is transmitting 
towards node d 

 
Given n nodes are uniformly placed in an area of size A and 
the area of a single antenna sector is AS, the probabilities are 
computed as follows: 
 

 Prሺܧଵሻ ൌ  ்
 Prሺܧଶሻ ൌ 1 െ  ்
 Prሺܧସሻ ൌ ሺ1 െ ௌܣ ⁄ܣ ሻିଶ ≃ ݁ିሺିଶሻఒ					where	ߣ ൌ

ௌܣ	 ⁄ܣ 	is small 
 Prሺܧହሻ ≃ ሺିଶሻఒି݁ߣ ∙ ሺ1 െ ் ⁄ݏ ሻ 

 
To get Prሺܧହሻ, we use the first order approximation.  Instead 
of computing the probability that one or more additional nodes 
are located in sector k of node d, we simply calculate the 
probability that one node is located in sector k of node d.  Let 
ܾ ൌ 	݁ିሺିଶሻఒ .  The optimization problem becomes the 
following: 

max


ሺ1் െ ሻሾ்ܾ  ሺ1ܾߣ െ  ሻሿݏ/்

Q.E.D. 
 
If the probability of E3 occurring is fairly large (i.e., the 
interference in the network is small), we simply need to 
maximize ்ሺ1 െ ் ሻ, resulting the optimal் ൌ 0.5. 
 
Using the baseline RTSR algorithm, a transmitter will transmit 
on all of its antenna sectors during a frame, even those that do 
not point toward any neighbors.  This can generate a lot of 
wasted transmissions.  The value of α and the epoch length (i.e. 
the update interval) also impact the algorithms convergence 
speed.    

B.  Fast RTSR Algorithm 

The baseline RTSR algorithm can take a long time to 
converge for certain choices of parameter values and certain 
topologies.  In this section, we will describe an improved 
RTSR algorithm called Fast RTSR which achieves network 
time synchronization much more quickly.  The fast RTSR 
algorithm consists of two stages:  first, a Neighbor Discovery 
stage during which each node needs to find as many neighbors 
as possible; second, a Time Update stage during which nodes 
will only transmit or receive on antenna sectors that point to at 
least one neighbor.  Our goal in the Neighbor Discovery stage 
is to maximize the number of neighboring node pairs that are 
aware of each other’s existence during a given interval. We 
first describe a neighbor discovery algorithm which we call 
NDA1.   
 

In NDA1, when a node is trying to find its neighbors, it has to 
transmit and receive on all of its antenna sectors since it has 
not figured out where its neighbors are located.  As in 
Baseline RTSR, time is divided into frames comprised of S 
slots.  At the beginning of a frame, a node needs to decide 
whether it will transmit or receive according to the probability 
 is chosen such that the network will have ் The optimal  .்
as many information exchanges as possible since the goal is to 
find as many neighbors as possible.  Therefore, the optimal ் 
obtained from Theorem 1 still applies here.  Also like Baseline 
RTSR, nodes will transmit on one antenna sector for the 
duration of an entire slot, or listen on one sector for the 
duration of an entire frame.  The information packet sent by a 
transmitting node can consist simply of its unique node ID.  
Once node B receives a packet is from node A on antenna 
sector k B knows that the A is a neighbor on sector k.  If node 
A does not know that node B is a neighbor on sector k, A may 
not transmit on that sector in which in the subsequent Time 
Update stage.  Hence, for knowledge of the neighboring node 
to be useful, both the transmitting node and the receiving node 
need to be aware of each other’s existence.    
 
NDA1 described in the previous paragraph will yield a set of 
node pairs that are aware of each other’s existence.  A second 
neighbor discovery algorithm, called NDA2, performs even 
better for a network with small geographic coverage.  In 
NDA2, a transmitting node A still sends out a packet on 
antenna sector k for an entire slot.  However, once node A 
finishes sending on sector k, it does not immediately move to a 
new sector for transmission.  Instead, in the next time slot, A 
will switch to receiving on the same sector k.  This gives 
neighboring node B a chance to immediately transmit back to 
A if B is located in sector k of node A.  NDA2 takes 
advantage of correct transmitter/receiver alignment by 
allowing the receiver to transmit as well, which improves the 
probability that both transmitter and the receiver learn of each 
other’s existence. 
 
Figure 3 validates the performance improvement of NDA2 
over NDA1.  For comparison, we consider a network formed 
by placing 100 nodes uniformly over a square of 3300 meters 
by 3300 meters.  The transmission range of each node is 
assumed to be 525 meters.  The resulting network is shown 
Figure 2 which contains 350 distinct neighbor nodes pairs.  
After 160 time slots, 5.5 node pairs are discovered using 
NDA1 compared with 48 discovered using NDA2.  This trend 
continues if more time slots are used for neighbor discovery.  
NDA2 is able to consistently discover 50 to 60 more neighbor 
pairs than NDA1.   
 
NDA2 performs well in networks with small propagation 
delays.  The efficiency of NDA2 will decrease if the duration 
of a time slot has to be enlarged to account for the propagation 
delay (i.e., the transmitter needs to wait for the propagation 
delay of its own packet and that of the replying packet).  The 
neighbor discovery algorithms described here not only can be 
used to achieve time synchronization but also can be used for 



periodic discovery of new neighbors after the network 
achieved time synchronization.      
 

 
Figure 2:  Topology of a 100 nodes network. 

 
Figure 3:  The number of neighbor pairs that knew each other’s 

existence at the end of the specified number of time slots. 

In the subsequent Time Update stage which follows Neighbor 
Discovery, each node will form its own frame structure.  If a 
node knows the existence of four neighbors, it will set its 
frame duration to be four slots.  At the beginning of each 
frame, a node will decide whether to transmit or receive based 
on ்

∗ .  Let SN denote the set of sectors where at least one 
neighbor exists. Once a node decides to transmit, it will 
transmit on sectors that are in SN, one time slot for each sector.  
If it decides to receive, it will randomly choose a sector from 
SN on which to receive.  This has the advantage of transmitting 
or receiving only on sectors where neighbors exist.  The time 
update algorithm is defined as follows: 
 

 At the start of the Time Update stage, node i 
generates a random integer weight Wi from ሼ1, … ,  ሽܬ
where J is large such that the probability Wi equals 
Wj is very small. For example, we can let J equal n2 

or n3. 
 Each node i will also have a pair of integers (Ui, Vi) 

to keep track of the origin of node i’s clock.  
Specifically, Ui denotes the original node from whom 
node i derived its clock value; Vi denotes the number 
of nodes that have the same clock value as node i.  

(Ui, Vi) are used to determine when the algorithm will 
stop.  

 During each time slot, a transmitting node j will send 
three pieces of information to its neighbors:  its 
current clock reading, (Uj, Vj), and Wj.  

 Once anode i receives a time measurement from its 
transmitting node j, node i will check whether its 
clock is already synchronized with node j.   

o If the two clocks are synchronized, node i 
will set Vi = max{Vi, Vj}.  Since node i and 
node j are synchronized, both node i and 
node j’s clock are based on the same node 
Ui.  If Vi ≥ Vj, this implies that node i has the 
latest information on the number of nodes 
which are synchronized with node Ui.  If Vi 
< Vj, node j has the latest information, hence 
node i needs to update its value from node j.   

o If the two clocks are not synchronized, node 
i will compare Wi and Wj. If Wi ≥ Wj, node i 
will do nothing. If Wi < Wj, , node i will 
update its clock to synchronize with node j’s 
clock.  Node i will also let Ui = Uj and Vi = 
Vj+1.  Vi is increased to reflect the fact that 
there is one more node in the network (i.e., 
node i) that is synchronized with node Ui.  

 During the time slot when Vi is equal to n for the first 
time, node i knows that the time synchronization is 
achieved for the entire network.  However, it needs to 
let other nodes know that Vi = n.  Hence, node i will 
continually transmit its time information to its 
neighbors for three additional frames after the first 
time at which it computes that Vi equals n. 

 
At the end of Fast RTSR, every node in the network will be 
synchronized with a single clock value.  Moreover, every node 
will also have received a signal that informs it that the entire 
network is synchronized (i.e., every node has the same clock 
value).   Note that knowing when the entire network 
synchronizes is important since this information tells a node 
whether the RTSR algorithm should be stopped.   
 
Theorem 2: Given a network with n nodes where each node 
has a finite number of neighbors, let ܶሺ݊ሻ be the expected 
completion time of the Fast RTSR Algorithm.  We have 
ܶሺ݊ሻ ൌ 	ܱሺ݊ሻ. 
 
We will briefly go over the major steps of the proof (see [3] 
for detailed proof).  To prove the above theorem, we need to 
consider a random variable Ts, which is the amount of time 
that it takes for a node to have a successful transmission to one 
of its neighbors.   For a node with finite number of neighbors, 
Ts depends only the number of neighbors; hence, it is not a 
function of n and is bounded.  Consequently, E[Ts] is bounded 
also.  Without loss of generality, let node k be the node with 
the largest weight (i.e., ܹ ൌ max	ሼ ଵܹ,⋯ , ܹሽ ).  As 
information exchange with node k takes place, the number of 
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nodes that are synchronized with node k will increase by one 
every E[Ts] amount of time.  Hence, We have ܶሺ݊ሻ ൌ 	ܱሺ݊ሻ. 
 
The significant convergence speed improvement of Fast 
RTSR over Baseline RTSR is shown in Figure 5.   The 
topology of the network is shown in Figure 4. We consider a 
network of 20 nodes, each uniformly distributed in a 1500 
meters by 1500 meters square.  The transmission range of a 
node is 525 meters.  The convergence time is defined as the 
time at which the maximum clock difference between any 
node in the network is less than 1 μs.  The baseline RTSR 
algorithm uses an epoch length (update interval) of 800 time 
slots and an α value of 0.4.  Transmission collision is also 
modeled in our simulation.  Figure 5 shows the convergence 
process of one run of Fast RTSR and one run of Baseline 
RTSR.  Fast RTSR converges in 240 time slots, while 
Baseline RTSR converges in 120,784 time slots.  Running 
both algorithms twenty times, on average, the convergence 
time of the Fast RTSR algorithm is 336 time slots, and the 
convergence time of the baseline RTSR algorithm is 133,480 
time slots.  This is an improvement in convergence speed by 
nearly a factor of 400. 
 

 
Figure 4:  Topology of a 20 node network. 

 
 
Figure 5:  Convergence process of the baseline RTSR algorithm 

and the Fast RTSR algorithm. 

Factors that impact RTSR algorithm: the number of neighbors 
used in the algorithm 
 

IV. PRACTICAL ISSUES OF RTSR 

Our simulations indicate that the RTSR algorithm would be 
able to synchronize time across a network with infrequent 
signaling requirements. From analysis in the previous section, 
we see that the Fast RTSR algorithm allows a large network to 
achieve time synchronization quickly.  However, throughout 
our analysis, we made an implicit assumption that the RF 
propagation delay from node i to node j can be measured 
accurately. We also assume that our network is static.  Both of 
these assumptions, however, are unlikely to hold in reality.  In 
the following section, we will discuss the impact of the RF 
propagation delay estimation and mobility on the performance 
of the RTSR algorithm.   
 

A. Time Stamp Error 

RF propagation delay measurement is based on the time 
difference between the moment that a timing packet is 
received at the receiver and the moment that the timing packet 
is leaving the transmitter.   Ideally, the timing packet should 
include the time at which the packet is leaving the transmitter 
so that the receiver can use this information when it calculates 
the propagation delay.  This requires knowing exactly when a 
timing packet will be sent out before this timing packet is even 
created.  Alternatively, we can generate a packet which 
contains the current clock reading at the time of the packet 
generation.  This packet will be transmitted after Δp seconds.  
Δp represents all of the Random Processing Delay (RPD) 
before the timing packet gets transmitted.  It includes random 
latency in the operating system, scheduling delay, queueing 
delay, and the processing time in the transmission chain.  
Below we present our initial finding on the impact of Δp on the 
performance of RTSR algorithm.  A detailed C++ Discrete 
Event Simulation (DES) is created to study the performance of 
RTSR algorithm.  Currently, the DES simulates Baseline 
RTSR.  Δp is first modeled as a constant and then as a 
uniformly distributed random variable.  The impact of a 
constant Δp on the convergence of Baseline RTSR is shown in 
Figure 6.  Figure 6 shows the convergence processes of 
constant random process delay of 10 ms, 1 ms, and 0.1 ms.  
The time synchronization is unaffected by the constant 
random processing delay.     

 
Figure 6:  Maximum time difference among nodes with a 

constant random process delay (Baseline RTSR). 
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When the random process delay is uniformly distributed 
within a time interval of greater than [0 1e-5], Figure 7 shows  
that the network time cannot converge to the desired accuracy 
of 1 μs. 

 
Figure 7:  Maximum time difference among nodes with a 

uniformly distributed random process delay (Baseline RTSR). 

B. RTSR Algorithm in A Mobile Network 

In a mobile network, the impact of mobility on the time 
synchronization can be minimized by a properly designed 
RTSR algorithm.  First, consider the following example of 
how round trip time is measured in the RTSR algorithm.   Let 
two nodes, A B, be placed six kilometers apart.  Suppose node 
A first sends a timing packet to node B.  At the same time, 
nodes A and B are moving toward each other at 25 meters per 
second (56 miles per hour).  After 20 μs, the timing packet 
arrives at node B.   Instead of immediately sending a reply 
packet which contains node B’s clock information, node B 
waits for five seconds before sending out its own timing 
packet to node A.   Node B’s timing packet takes 19.17 μs to 
reach node A since the distance between node A and node B is 
now 5750 meters.  Upon receiving node B’s timing packet, 
node A can deduce the round trip time between node A and 
node B to be 39.17 μs, and the propagation delay is 19.6 μs.  
The estimated propagation delay has an error of 19.17 – 19.6 
= 0.4 μs.  To reduce the estimation error, it is therefore critical 
for node B to reply back node A within a short amount of time 
after receiving node A’s initial timing packet.  For different 
node speed, Table 1 shows the propagation time estimation 
error if node B replies back A after five seconds. 
 

 
 

Figure 8:  Round trip time estimation for mobile nodes. 

Speed	(m/s)	
	

Speed	(mi/hr)	 Propagation	Delay	
Variation	(µs)	

25  56  0.4  

50  112  0.85  

340  760.5  5.67  
 

Table 1:  Variation on the propagation delay estimation for 
mobile nodes. 

V. PATH FORWARD 

Based on our analysis and simulations, it appears that an 
optimization enabled synchronization approach using RF 
signals can successfully enable tactical directional networking 
in a GPS denied environment. We are currently investigating 
the integration of the RSTR distributed algorithm into a 
directional networking environment for Army’s use. 
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