
Directional Networking in GPS Denied
Environments—Time Synchronization

Derya Cansever and Gilbert Green

Army CERDEC
Aberdeen Proving Ground MA, USA

Jun Sun, Carl Fossa, Laura Herrera, and Devin Kelly

MIT Lincoln Laboratory
Lexington MA, USA

Distribution A: Public Release; unlimited distribution

Abstract—Mobile networks using directional antennas have

many desirable properties such as Low Probability of Detection
(LPD) and concentration of electromagnetic energy, resulting in
improved range and data rates. To function properly,
directional networks heavily depend on GPS use. This paper
describes a decentralized algorithm, called “Fast RTSR”, for
directional networking to re-construct time and position data
when GPS is not available. We show that the Fast RTSR
algorithm allows the entire network to achieve time
synchronization with convergence time of O(n), where n is the
number of nodes in the network. In our simulation experiments,
the Fast RTSR algorithm can improve the convergence time by
as much as 400 times over the previous baseline RTSR algorithm
[1]. Our preliminary results also show that a constant timestamp
error and node mobility will not impact the accuracy of the Fast
RTSR algorithm.

Keywords—GPS; directional networking; wireless; algorithms;
tactical networks

I. INTRODUCTION

Mobile networks using directional antennas have many
desirable properties such as Low Probability of Detection
(LPD) and concentration of electromagnetic energy, resulting
in larger reception ranges and higher data rates. Also,
depending on the antenna beam width, directional networking
has the potential to significantly enhance spatial re-use of the
frequency spectrum. Given the scarcity of frequency
spectrum, this could be a very appealing property. These
advantages come with the challenge of keeping track of other
nodes’ locations in the network and, for Time Division
Multiplexing (TDMA) networks, for common precise timing
among participating nodes. Requirements for precise time and
location information become even more acute during the
initialization phase, where nodes need to discover and connect
with their peers to form a network. Note that these challenges,
especially those related to location determination, would be
less severe in networks driven by omni-directional antennas.
Many Directional Mobile ad hoc Networks (D-MANETS)
tend to rely on Global Positioning System (GPS) or its
variants to keep track of time and position of the nodes in the
network. The receive power for GPS signals is approximately

-160 dBW). This could make the received GPS signals
vulnerable to malicious or even unintentional interference.
This paper is concerned with methods for network nodes to re-
construct each other’s local clock times and converge upon a
common time with the high degree of precision needed in D-
MANET technologies. Toward the goal of identifying the best
methodology to reconstruct time information in the absence of
reliable GPS signals, we considered the following commonly
used techniques:

 RF-Based Solutions: Using RF-based measurements
to synchronize time and measure node range.

 Satellite Doppler: Using Doppler measurements from
multiple satellites along with satellite catalog data to
determine time and position.

 LTE: Use existing LTE base-stations for time and
position.

 Differential GPS: A receiver with a known location
broadcasts a correction signal to GPS receivers.

 GPS Relay (UAS): A set of unmanned aerial systems
(UAS) that transmit (or retransmit) the GPS signal at
a higher SNR than the original signal.

 Startracker: Using the precise location of one or more
stars.

 Opportunistic Signals: Opportunistically take
advantage of existing RF signals (i.e., FM radio,
DTV, LTE, etc.) transmitted from known locations.

 Localization with Anchors: Determine the location
(either absolute or relative) of at least three nodes,
and then use these known locations to localize the
rest of the network.

However, based on the analysis in [1], none of the
aforementioned solutions completely solves the time
synchronization problem. [1] developed a new approach
which we refer to as the Baseline RF Time Synchronization
and Ranging (RTSR) algorithm. The basic concept behind

baseline RTSR is to use a low data rate signal to transmit time
messages between adjacent nodes. Nodes transmit packets
with time information that allows neighbors to compute RTT.
This in turn allows nodes to calculate the time difference
between themselves and their neighbors and adjust their
clocks towards the average clock value of its neighbors.

We propose a Fast RTSR algorithm with a much faster
convergence speed than the baseline RTSR algorithm. We
show that the convergence time of the Fast RTSR algorithm is
O(n), where n is the number of nodes in the network. In our
simulation experiments, the time required for a network to
reach a certain time synchronization threshold when using
Fast RTSR is only 0.25% of the time required when using
baseline RTSR (an improvement by a factor of 400)Fast
RTSR is optimized in the following three areas: 1) The
fraction of nodes that are transmitting at any time; 2) The set
of antenna sectors on which a node will transmit or receive; 3)
The algorithm used by a node to update its clock based on its
neighbors’ time information.

When using Fast RTSR, each node needs to decide whether it
will transmit or receive for a given period of time, since it
cannot do both with the current antenna technology. If too
many nodes decide to transmit at the same time, most
transmissions will fail since only a small number of nodes are
listening. Here, we derive the optimal probability of a node
being in transmit mode.

During the first phase of the Fast RTSR algorithm, nodes will
obtain information about their neighbors. Once a node knows
the existence of some of its neighbors, it can choose to
transmit or receive only on the antenna sectors where a
neighbor currently exists. Compared with baseline RTSR, this
approach reduces wasted transmissions on antenna sectors
that do not point toward other nodes.

Lastly, using Fast RTSR nodes will propagate to each other a
randomly picked time (out of the set of times received from
neighbors) instead of attempting to converge to the average
clock value of the entire network as with baseline RTSR.
When applying the RTSR algorithm to a real communication
system, there are a number of additional issues which must be
considered, such as timestamp error and node mobility. Both
Fast RTSR and baseline RTSR require accurate estimation of
RTT, which in turn requires an accurate timestamp of a packet
that reflects the moment that packet transmission begins over
the channel. However, due to the random processing delay at
the operating system and the transmission chain, this
timestamp may not be accurate. A C++ discrete event
simulation was written to examine the impact of the random
processing delay on the performance of the RTSR algorithm.
We show that a constant random processing delay will not
impact the performance of RTSR. A non-deterministic
random processing delay, however, can impair the RTSR
algorithm such that the time may not converge to the desired
accuracy. We also demonstrate that node mobility, assuming

node speed is less than one thousand miles per hour, will not
impact the performance of RTSR algorithm.

The rest of this paper is organized as follows: Section II gives
a detailed description of our directional antenna model. In
Section III, an overview of the baseline RTSR algorithm is
presented first, followed by a description of the Fast RTSR
algorithm and its performance results. Section IV discusses
the impact of timestamp error and the impact of mobility on
the RTSR algorithm. Section V concludes the paper.

II. PRELIMINARIES

In this paper, we consider a tactical network where each node
has a directional antenna. We adopt the antenna model in [2].
The model assumes an antenna with S sectors. Each sector
has a conical radiation pattern, covering an angle of 2π/S. The
sectors are fixed with non-overlapping beam directions, hence
collectively covering the entire circular region surrounds the
antenna (shown in Figure 1). We also assume there is no
omni-directional mode of transmission. Before transmitting or
receiving data, the antenna must pick a sector to transmit or
receive the data.
To successfully decode a packet, the receiving node must be
located within a radius r of the transmitting node. We say
node A lies in sector k of node B if node A is within an angle
ሾ2ߨሺ݇ െ 1ሻ ܵ⁄ ݇ߨ2 , ܵ⁄ ሻ of node B and the distance between A
and B is less than r. As in any wireless communication
system, interference will occur when the signals of two or
more transmitters are colliding at the sector on which the
receiving node is listening. More specifically, let nodes A and
B lie in sector k of node C. Let node C lie in sector i of node
A and in sector j of node B. We say that packet collision
occurs at node C if the following events occur: node C is
receiving on sector k; node A is transmitting on sector i; node
B is transmitting on sector j. To communicate with neighbors,
a node needs to switch between transmitting and receiving
because it cannot transmit and receive at the same time.
Moreover, a node needs to switch from one sector to another
sector. The switching time from transmitting to receiving and
from sector i to sector j are both assumed to be negligible.
This assumption is reasonable for a fast switching directional
antenna.

Figure 1: Sectors in a directional antenna.

Although nodes in the network are unsynchronized initially,
we want to impose a transmission structure for each node to
opportunistically exchange whatever information they have

about both their own as well as their neighbors’ concept of
time. The transmission structure here consists of three levels:
epoch, frame and slot. An epoch is defined the period over
which a node gathers received time information from its
neighbors for the purpose of deciding how to modify its local
clock time. It may consist of 10’s or even 100’s of frames
depending on the expected density of the network. During
each frame, a node decides whether to transmit or receive. If
it chooses to receive, it will choose a sector and receive in that
sector for the entire frame duration. If it chooses to transmit,
the frame is further divided into a number of slots. The node
will transmit in a sector for the duration of an entire slot
before switching to another sector for transmission. The
structure of epoch, frame and slot can be different for different
node. That is, node A’s frame length can be different from
node B’s frame length. Note also that the aforementioned
timing structure is used for time synchronization purpose only.
The system may or may not use it for normal communication
(i.e., TDMA transmission) after the network is synchronized.

III. RTSR ALGORITHM

The basic idea behind RTSR is to use a low data rate signal to
transmit time messages between adjacent nodes. Each node, in
addition to its own time, transmits a subset of the time
measurements it has received from other nodes. These
additional measurements are used to enable “passive” Round
Trip Time (RTT) measurement which allows a node to
calculate its clock difference from the neighboring nodes.
After repeatedly adjusting their clocks based on clock
measurements of their neighbors, nodes can achieve network
wide time synchronization. The primary advantage of RTSR
is that there is no single node that has any more impact on the
synchronization algorithm than any other node. This
significantly limits the ability of a smart attacker to
compromise the time synchronization algorithm. In the
following, we first briefly describe a Baseline version of the
RTSR algorithm which was presented in [1]. We then
describe a Fast RTSR algorithm which exhibits significant
performance improvement in convergence time.

A. Baseline RTSR Algorithm

In Baseline RTSR, the number of time slots in a frame is S
(the number of sectors in the directional antenna). At the
beginning of a frame, a node decides whether to transmit or
receive for the entire frame according to the probability pT. If
a node choose to transmit, it sweeps through all of its antenna
sectors (i.e., one sector per time slot). On the other hand, if it
chooses to receive during that frame it will listen on one of its
antenna sectors for the entire frame. Most transmissions will
not be heard due to the mismatch between the transmitter’s
transmission direction and the receiver’s receiving direction.
However, once a while, transmission and reception directions
will align, which will result in a successful transmission of the
time information from the transmitter to the receiver. At the
end of epoch n, node i will use the equation below to update

its clock to a new value ݐሺ݊ሻ based on the time information
received from its neighbors during the previous epoch. [1]:

ሺ݊ሻݐ ൌ 	 ሺ݊ݐ െ 1ሻ െ ߙ ቆ
∑ ሾݐሺ݊ െ 1ሻ െ	ݐሺ݊ െ 1ሻሿ
ୀଵ

ܭ
ቇ

K is the total number of nodes from which node i has received
clock information in epoch n. Node i computes the clock
deviation between its own clock and each neighbor’s clock,
averages the the clock deviations, and updates its clock by
adding or subtracting a fraction of that time (governed by the
parameter ߙ) For the baseline algorithm to perform well, we
want as many exchanges of time information as possible in the
network. The following theorem will guide us on choosing
the optimal value of pT to maximize the number of successful
transmissions in the network.
Theorem 1: Given n nodes uniformly placed in an area of
size A, with antenna sector area AS, the optimal transmission
probability ்

∗ is given by:

்
∗ ൌ arg	max

ሺ1் െ ሻሾ݁ି்

ሺିଶሻఒ ሺିଶሻఒሺ1ି݁ߣ െ ሻሿݏ/்

where λ ൌ	ܣௌ ⁄ܣ .

Proof: Let Ns be the number of successful transmissions
occur in the network at a random instant. We then define Il as
follows:

ܫ ൌ ቄ1 if link ݈	has a successful transmission
0 otherwise

Let L be a random variable denoting the total number of
directional links in the network. We can write Ns as follows:

௦ܰ ൌ ܫ

ୀଵ

Our objective is to choose pT to maximize E[Ns]. E[Ns] can be
computed as follows:

ሾܧ ௦ܰሿ ൌ ሿܫሾܧ	 ∙ ሿܮሾܧ

Since ܧሾܮሿ does not depend on pT, we need to simply
maximize ܧሾܫሿ. We know that

ሿܫሾܧ ൌ 	Pr	ሺlink l has a successful transmissionሻ

Let (s, d) denote the two end points of link l, where s is the
transmitter. Without loss of generality, we assume node d is
receiving on sector k of its antenna. We then have

Prሺlink	݈	has	a	successful	transmissionሻ
																			ൌ 	Prሺܧଵሻ ∙ Prሺܧଶሻ ∙ Prሺܧଷሻ

where the events E1, E2, and E3 are defined as follows:

 E1 ≜ node s is transmitting
 E2 ≜ node d is receiving
 E3 ≜ no other node is interfering with node d’s

reception

Event E3 can be further divided into the following events:

 E4 ≜ node s is the only node located in the receiving
sector of node d

 E5 ≜ one or more additional nodes are located in the
sector k of node d, but none of them is transmitting
towards node d

Given n nodes are uniformly placed in an area of size A and
the area of a single antenna sector is AS, the probabilities are
computed as follows:

 Prሺܧଵሻ ൌ ்
 Prሺܧଶሻ ൌ 1 െ ்
 Prሺܧସሻ ൌ ሺ1 െ ௌܣ ⁄ܣ ሻିଶ ≃ ݁ିሺିଶሻఒ					where	ߣ ൌ

ௌܣ	 ⁄ܣ 	is small
 Prሺܧହሻ ≃ ሺିଶሻఒି݁ߣ ∙ ሺ1 െ ் ⁄ݏ ሻ

To get Prሺܧହሻ, we use the first order approximation. Instead
of computing the probability that one or more additional nodes
are located in sector k of node d, we simply calculate the
probability that one node is located in sector k of node d. Let
ܾ ൌ 	݁ିሺିଶሻఒ . The optimization problem becomes the
following:

max

ሺ1் െ ሻሾ்ܾ ሺ1ܾߣ െ ሻሿݏ/்

Q.E.D.

If the probability of E3 occurring is fairly large (i.e., the
interference in the network is small), we simply need to
maximize ்ሺ1 െ ் ሻ, resulting the optimal் ൌ 0.5.

Using the baseline RTSR algorithm, a transmitter will transmit
on all of its antenna sectors during a frame, even those that do
not point toward any neighbors. This can generate a lot of
wasted transmissions. The value of α and the epoch length (i.e.
the update interval) also impact the algorithms convergence
speed.

B. Fast RTSR Algorithm

The baseline RTSR algorithm can take a long time to
converge for certain choices of parameter values and certain
topologies. In this section, we will describe an improved
RTSR algorithm called Fast RTSR which achieves network
time synchronization much more quickly. The fast RTSR
algorithm consists of two stages: first, a Neighbor Discovery
stage during which each node needs to find as many neighbors
as possible; second, a Time Update stage during which nodes
will only transmit or receive on antenna sectors that point to at
least one neighbor. Our goal in the Neighbor Discovery stage
is to maximize the number of neighboring node pairs that are
aware of each other’s existence during a given interval. We
first describe a neighbor discovery algorithm which we call
NDA1.

In NDA1, when a node is trying to find its neighbors, it has to
transmit and receive on all of its antenna sectors since it has
not figured out where its neighbors are located. As in
Baseline RTSR, time is divided into frames comprised of S
slots. At the beginning of a frame, a node needs to decide
whether it will transmit or receive according to the probability
 is chosen such that the network will have ் The optimal .்
as many information exchanges as possible since the goal is to
find as many neighbors as possible. Therefore, the optimal ்
obtained from Theorem 1 still applies here. Also like Baseline
RTSR, nodes will transmit on one antenna sector for the
duration of an entire slot, or listen on one sector for the
duration of an entire frame. The information packet sent by a
transmitting node can consist simply of its unique node ID.
Once node B receives a packet is from node A on antenna
sector k B knows that the A is a neighbor on sector k. If node
A does not know that node B is a neighbor on sector k, A may
not transmit on that sector in which in the subsequent Time
Update stage. Hence, for knowledge of the neighboring node
to be useful, both the transmitting node and the receiving node
need to be aware of each other’s existence.

NDA1 described in the previous paragraph will yield a set of
node pairs that are aware of each other’s existence. A second
neighbor discovery algorithm, called NDA2, performs even
better for a network with small geographic coverage. In
NDA2, a transmitting node A still sends out a packet on
antenna sector k for an entire slot. However, once node A
finishes sending on sector k, it does not immediately move to a
new sector for transmission. Instead, in the next time slot, A
will switch to receiving on the same sector k. This gives
neighboring node B a chance to immediately transmit back to
A if B is located in sector k of node A. NDA2 takes
advantage of correct transmitter/receiver alignment by
allowing the receiver to transmit as well, which improves the
probability that both transmitter and the receiver learn of each
other’s existence.

Figure 3 validates the performance improvement of NDA2
over NDA1. For comparison, we consider a network formed
by placing 100 nodes uniformly over a square of 3300 meters
by 3300 meters. The transmission range of each node is
assumed to be 525 meters. The resulting network is shown
Figure 2 which contains 350 distinct neighbor nodes pairs.
After 160 time slots, 5.5 node pairs are discovered using
NDA1 compared with 48 discovered using NDA2. This trend
continues if more time slots are used for neighbor discovery.
NDA2 is able to consistently discover 50 to 60 more neighbor
pairs than NDA1.

NDA2 performs well in networks with small propagation
delays. The efficiency of NDA2 will decrease if the duration
of a time slot has to be enlarged to account for the propagation
delay (i.e., the transmitter needs to wait for the propagation
delay of its own packet and that of the replying packet). The
neighbor discovery algorithms described here not only can be
used to achieve time synchronization but also can be used for

periodic discovery of new neighbors after the network
achieved time synchronization.

Figure 2: Topology of a 100 nodes network.

Figure 3: The number of neighbor pairs that knew each other’s

existence at the end of the specified number of time slots.

In the subsequent Time Update stage which follows Neighbor
Discovery, each node will form its own frame structure. If a
node knows the existence of four neighbors, it will set its
frame duration to be four slots. At the beginning of each
frame, a node will decide whether to transmit or receive based
on ்

∗ . Let SN denote the set of sectors where at least one
neighbor exists. Once a node decides to transmit, it will
transmit on sectors that are in SN, one time slot for each sector.
If it decides to receive, it will randomly choose a sector from
SN on which to receive. This has the advantage of transmitting
or receiving only on sectors where neighbors exist. The time
update algorithm is defined as follows:

 At the start of the Time Update stage, node i
generates a random integer weight Wi from ሼ1, … , ሽܬ
where J is large such that the probability Wi equals
Wj is very small. For example, we can let J equal n2

or n3.
 Each node i will also have a pair of integers (Ui, Vi)

to keep track of the origin of node i’s clock.
Specifically, Ui denotes the original node from whom
node i derived its clock value; Vi denotes the number
of nodes that have the same clock value as node i.

(Ui, Vi) are used to determine when the algorithm will
stop.

 During each time slot, a transmitting node j will send
three pieces of information to its neighbors: its
current clock reading, (Uj, Vj), and Wj.

 Once anode i receives a time measurement from its
transmitting node j, node i will check whether its
clock is already synchronized with node j.

o If the two clocks are synchronized, node i
will set Vi = max{Vi, Vj}. Since node i and
node j are synchronized, both node i and
node j’s clock are based on the same node
Ui. If Vi ≥ Vj, this implies that node i has the
latest information on the number of nodes
which are synchronized with node Ui. If Vi
< Vj, node j has the latest information, hence
node i needs to update its value from node j.

o If the two clocks are not synchronized, node
i will compare Wi and Wj. If Wi ≥ Wj, node i
will do nothing. If Wi < Wj, , node i will
update its clock to synchronize with node j’s
clock. Node i will also let Ui = Uj and Vi =
Vj+1. Vi is increased to reflect the fact that
there is one more node in the network (i.e.,
node i) that is synchronized with node Ui.

 During the time slot when Vi is equal to n for the first
time, node i knows that the time synchronization is
achieved for the entire network. However, it needs to
let other nodes know that Vi = n. Hence, node i will
continually transmit its time information to its
neighbors for three additional frames after the first
time at which it computes that Vi equals n.

At the end of Fast RTSR, every node in the network will be
synchronized with a single clock value. Moreover, every node
will also have received a signal that informs it that the entire
network is synchronized (i.e., every node has the same clock
value). Note that knowing when the entire network
synchronizes is important since this information tells a node
whether the RTSR algorithm should be stopped.

Theorem 2: Given a network with n nodes where each node
has a finite number of neighbors, let ܶሺ݊ሻ be the expected
completion time of the Fast RTSR Algorithm. We have
ܶሺ݊ሻ ൌ 	ܱሺ݊ሻ.

We will briefly go over the major steps of the proof (see [3]
for detailed proof). To prove the above theorem, we need to
consider a random variable Ts, which is the amount of time
that it takes for a node to have a successful transmission to one
of its neighbors. For a node with finite number of neighbors,
Ts depends only the number of neighbors; hence, it is not a
function of n and is bounded. Consequently, E[Ts] is bounded
also. Without loss of generality, let node k be the node with
the largest weight (i.e., ܹ ൌ max	ሼ ଵܹ,⋯ , ܹሽ). As
information exchange with node k takes place, the number of

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

1
2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19
20

21

22

23

24

25

26
27

28
29

30

31

32

33

34

35

36

37

38

39
4041

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85
86

87

88
89

90

91

92

93

94

95

96

97

98

99

100

Topology (100 nodes)

meters

m
e
te

rs

160 320 480 640 800 960 1120 1280 1440 1600
0

50

100

150

200

250

300

Number of slots

N
u

m
b

e
r

o
f k

n
o

w
n

 n
e

ig
h

b
o

r
p

a
irs

NDA1

NDA2

nodes that are synchronized with node k will increase by one
every E[Ts] amount of time. Hence, We have ܶሺ݊ሻ ൌ 	ܱሺ݊ሻ.

The significant convergence speed improvement of Fast
RTSR over Baseline RTSR is shown in Figure 5. The
topology of the network is shown in Figure 4. We consider a
network of 20 nodes, each uniformly distributed in a 1500
meters by 1500 meters square. The transmission range of a
node is 525 meters. The convergence time is defined as the
time at which the maximum clock difference between any
node in the network is less than 1 μs. The baseline RTSR
algorithm uses an epoch length (update interval) of 800 time
slots and an α value of 0.4. Transmission collision is also
modeled in our simulation. Figure 5 shows the convergence
process of one run of Fast RTSR and one run of Baseline
RTSR. Fast RTSR converges in 240 time slots, while
Baseline RTSR converges in 120,784 time slots. Running
both algorithms twenty times, on average, the convergence
time of the Fast RTSR algorithm is 336 time slots, and the
convergence time of the baseline RTSR algorithm is 133,480
time slots. This is an improvement in convergence speed by
nearly a factor of 400.

Figure 4: Topology of a 20 node network.

Figure 5: Convergence process of the baseline RTSR algorithm

and the Fast RTSR algorithm.

Factors that impact RTSR algorithm: the number of neighbors
used in the algorithm

IV. PRACTICAL ISSUES OF RTSR

Our simulations indicate that the RTSR algorithm would be
able to synchronize time across a network with infrequent
signaling requirements. From analysis in the previous section,
we see that the Fast RTSR algorithm allows a large network to
achieve time synchronization quickly. However, throughout
our analysis, we made an implicit assumption that the RF
propagation delay from node i to node j can be measured
accurately. We also assume that our network is static. Both of
these assumptions, however, are unlikely to hold in reality. In
the following section, we will discuss the impact of the RF
propagation delay estimation and mobility on the performance
of the RTSR algorithm.

A. Time Stamp Error

RF propagation delay measurement is based on the time
difference between the moment that a timing packet is
received at the receiver and the moment that the timing packet
is leaving the transmitter. Ideally, the timing packet should
include the time at which the packet is leaving the transmitter
so that the receiver can use this information when it calculates
the propagation delay. This requires knowing exactly when a
timing packet will be sent out before this timing packet is even
created. Alternatively, we can generate a packet which
contains the current clock reading at the time of the packet
generation. This packet will be transmitted after Δp seconds.
Δp represents all of the Random Processing Delay (RPD)
before the timing packet gets transmitted. It includes random
latency in the operating system, scheduling delay, queueing
delay, and the processing time in the transmission chain.
Below we present our initial finding on the impact of Δp on the
performance of RTSR algorithm. A detailed C++ Discrete
Event Simulation (DES) is created to study the performance of
RTSR algorithm. Currently, the DES simulates Baseline
RTSR. Δp is first modeled as a constant and then as a
uniformly distributed random variable. The impact of a
constant Δp on the convergence of Baseline RTSR is shown in
Figure 6. Figure 6 shows the convergence processes of
constant random process delay of 10 ms, 1 ms, and 0.1 ms.
The time synchronization is unaffected by the constant
random processing delay.

Figure 6: Maximum time difference among nodes with a

constant random process delay (Baseline RTSR).

0 500 1000 1500
0

500

1000

1500

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Topology (20 nodes)

meters

m
e
te

rs

0 2 4 6 8 10 12 14

x 10
4

10
-6

10
-5

10
-4

10
-3

10
-2

Time slot

M
a
xi

m
u
m

 d
iff

e
re

n
ce

 b
e
tw

e
e
n
 c

lo
ck

s
(s

e
c)

Fast RTSR
Baseline RTSR

0 20 40 60 80 100
-7

-6

-5

-4

-3

-2

-1

0

1

2

Second

L
o

g
(t

im
e

 d
iff

e
re

n
ce

)

Const RPD 1e-2

Const RPD 1e-3

Const RPD 1e-4

When the random process delay is uniformly distributed
within a time interval of greater than [0 1e-5], Figure 7 shows
that the network time cannot converge to the desired accuracy
of 1 μs.

Figure 7: Maximum time difference among nodes with a

uniformly distributed random process delay (Baseline RTSR).

B. RTSR Algorithm in A Mobile Network

In a mobile network, the impact of mobility on the time
synchronization can be minimized by a properly designed
RTSR algorithm. First, consider the following example of
how round trip time is measured in the RTSR algorithm. Let
two nodes, A B, be placed six kilometers apart. Suppose node
A first sends a timing packet to node B. At the same time,
nodes A and B are moving toward each other at 25 meters per
second (56 miles per hour). After 20 μs, the timing packet
arrives at node B. Instead of immediately sending a reply
packet which contains node B’s clock information, node B
waits for five seconds before sending out its own timing
packet to node A. Node B’s timing packet takes 19.17 μs to
reach node A since the distance between node A and node B is
now 5750 meters. Upon receiving node B’s timing packet,
node A can deduce the round trip time between node A and
node B to be 39.17 μs, and the propagation delay is 19.6 μs.
The estimated propagation delay has an error of 19.17 – 19.6
= 0.4 μs. To reduce the estimation error, it is therefore critical
for node B to reply back node A within a short amount of time
after receiving node A’s initial timing packet. For different
node speed, Table 1 shows the propagation time estimation
error if node B replies back A after five seconds.

Figure 8: Round trip time estimation for mobile nodes.

Speed	(m/s)	
	

Speed	(mi/hr)	 Propagation	Delay	
Variation	(µs)	

25 56 0.4

50 112 0.85

340 760.5 5.67

Table 1: Variation on the propagation delay estimation for
mobile nodes.

V. PATH FORWARD

Based on our analysis and simulations, it appears that an
optimization enabled synchronization approach using RF
signals can successfully enable tactical directional networking
in a GPS denied environment. We are currently investigating
the integration of the RSTR distributed algorithm into a
directional networking environment for Army’s use.

VI. BIBLIOGRAPHY

[1] S. Pudlewski, "RF Based Time Synchronization and

Ranging for Communications in a GPS-Contested
Environment," in IEEE MILCOM, Tampa, 2015.

[2] R. R. Choudhury and N. H. Vaidya, "Ad Hoc Routing
Using Directional Antennas," in Technical Report,
University of Illinois at Urbana Champaign, 2002.

[3] J. Sun, C. Fossa, L. Herrera and D. Kelly, "Fast RF Time
Synchronization and Ranging Algorithm," in MIT Lincoln
Laboratory Technical Report, 2016.

0 20 40 60 80 100
-7

-6

-5

-4

-3

-2

-1

0

1

2

Second

L
o

g
(t

im
e

 d
iff

e
re

n
ce

)

Unif RPD 1e-3

Unif RPD 1e-4

Unif RPD 1e-5

Unif RPD 1e-6

Unif RPD 1e-7

