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Abstract
Modern missions of government and private organizations rely on computer networks to operate. As evidenced by sev-
eral well-publicized cyber breaches, these missions are under attack. Several cyber defensive measures have been pro-
posed to mitigate this threat, some are meant to protect individual hosts on the network, and others are designed to
protect the network at large. From a qualitative perspective, these mitigations seem to improve security, but there is no
quantitative assessment of their effectiveness with respect to a complete network system and a cyber-supported mission
for which the network exists. The purpose of this paper is to examine network-level cyber defensive mitigations and
quantify their impact on network security and mission performance. Testing such mitigations in an live network environ-
ment is generally not possible due to the expense, and thus a modeling and simulation approach is utilized. Our approach
employs a modularized hierarchical simulation framework to model a complete cyber system and its relevant dynamics
at multiple scales. We conduct experiments that test the effectiveness of network-level mitigations from the perspectives
of security and mission performance. Additionally, we introduce a novel, unified metric for mitigation effectiveness that
takes into account both of these perspectives and provides a single measurement that is convenient and easily accessible
to security practitioners.
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1 Introduction

Cyber attacks are increasing at an alarming rate.1,2 As

exhibited by a number of high-profile cyber breaches,3,4

the damage that these attacks can cause is substantial. To

counter this threat, agencies such as the SANS Institute,

Google, Microsoft, and the Information Assurance

Directorate of the National Security Agency, among oth-

ers, have proposed several cyber defensive mitigations.5–8

Some of these mitigations are meant to protect at the host

level via security controls deployed on individual network

devices, while others are designed to protect at the network

level via security controls deployed to the network at large.

Given sufficient resources, network administrators and

security practitioners could deploy all recommended miti-

gations to maximize a network’s security posture.

Unfortunately, the reality for most practitioners is one in

which allotted security resources are limited, and thus they

must choose mitigations that will provide the most security

benefit for their network. Proposed mitigations, however,

have not been quantitatively assessed for effectiveness

and, consequently, are not ranked or prioritized in any

way. This forces practitioners to rely on their own judge-

ment to select appropriate mitigations.

Another salient point is that networks do not exist for

their own sake, but rather exist to support an organiza-

tional mission. This means that practitioners must consider
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tradeoffs between security and mission performance.

Accordingly, mitigations should be examined in the con-

text of a complete network system where both security

and mission impact are taken into account.

It is important to note that cyber systems, like social

systems, include human actors and are thus stochastic in

nature. For this reason, a network system under a given set

of conditions (e.g., users, attackers, and defensive mitiga-

tions) will not always lead to the same outcome. Rather,

the pairing of a network system and a set of environmental

conditions that affect it will generate a distribution of out-

comes that represent the range of possible results. When

evaluating a mitigation for a particular network environ-

ment, it is therefore necessary to execute numerous tests

in order to determine which outcomes are probable and

which are improbable. Conducting a large number of

network-scale tests in a live environment requires signifi-

cant resources and is generally infeasible. We, thus, focus

on a modeling and simulation approach due to its relative

low cost.

This paper examines two proposed defensive mitiga-

tions designed to protect the network at large from

cyber attack: (i) Segregation of Networks and Functions

(SNF); and (ii) Limiting Workstation-to-Workstation

Communication (LWC). The purpose is to provide a quan-

titative assessment of these network-level mitigations in

the context of a complete network system and to consider

mitigation effectiveness with respect to two fundamental

network concerns, security and mission impact. To this

end, a modularized hierarchical simulation framework is

utilized to capture and integrate relevant dynamics at the

sub-net/enclave and full network scales. We also describe

a novel metric that combines results for security and mis-

sion performance into a single unified measure of mitiga-

tion effectiveness that is convenient and easily accessible

to security practitioners and network analysts.

The rest of this paper is organized as follows: Section 2

discusses the current state of the practice with respect to

the use of modeling and simulation in the cyber security

domain; Section 3 describes the network-level mitigations

examined; Section 4 provides details of the multi-scale

hierarchical simulation model, including component mod-

els capturing cyber threat, defense, and mission; Section 5

gives metrics quantifying security and mission impact and

describes our unified measure for mitigation effectiveness;

Section 6 discusses our simulation experiments; and

Section 7 concludes.

2 Domain characterization

Cyber systems contain a mix of computerized processes,

hardware entities, and human actors in an environment that

is constantly shifting. These complexities make it difficult

to predict the effects that policy changes will have on a

network system and the mission it is intended to support.

The cyber security community is charged with recom-

mending defensive measures to improve network security

and mitigate the threat of cyber attack. Currently, these

recommendations are put forth as security-related best

practices (e.g., see Microsoft’s Enterpise Security Best

Practices7). It is important to note that, generally, these

recommendations are made via the judgement of subject

matter experts and are not based on empirical analysis of

actual network tests. As mentioned in Section 1, the reason

for this is that executing security-related tests at the net-

work scale is oftentimes prohibitively expensive.

In response to this situation, the modeling and simula-

tion community has generated a body of work that is

focused on capturing and analyzing network systems with

the intent of improving their security. The following sec-

tion summarizes the current state of this work and dis-

cusses the contributions of this paper and its place within

this greater body of cyber modeling and simulation

research.

2.1 State of the practice

A large number of studies have used modeling and simula-

tion (mod/sim) as a tool to improve the detection of net-

work intrusions.9–11 These studies focus on network

situational awareness and use mod/sim to execute initial

tests of newly proposed intrusion detection techniques

before moving these techniques to the prototyping stage.

Another set of studies focuses on utilizing mod/sim for

the purpose of investigating network security in the context

of specific threats and corresponding defenses. A study

combining discrete event simulation with meta-heuristic

optimization to simulate network attacks and optimize net-

work defenses is provided in Kiesling et al.12 An agent-

based model investigating cooperative botnet attacks and

corresponding defenses is presented in Kotenko et al.13 A

Markov model is used to simulate worm attacks with simu-

lation splitting techniques for efficient simulation of rare

catastrophic network states in Masi et al.14 A model built

using OMNeT+ + to simulate distributed denial-of-

service attacks on networks is presented in Mina et al.15 In

Priest et al.16 an agent-based model is used to evaluate the

performance of candidate security techniques that rely on a

moving target strategy to defend against cyber attack. In

Toutonji et al.17 and Yu et al.18 epidemiological models are

employed to simulate malware propagation over networks.

An agent-based simulation examines the effectiveness of

security policies seeking to mitigate the threat posed by

unauthorized hardware on a network in Wagner et al.19

Another vein of research applies game theory to model

the interactions between attack and defense. Some recent

examples include Clark et al.20 and Pawlick et al.21 In
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Clark et al.20 a game-theoretic approach is applied to eval-

uate network IP address randomization strategies for their

ability to confuse attackers trying to locate network

devices to attack. In Pawlick et al.21 games are used to

model interactions between user devices and cloud-based

systems that are under attack and sometimes controlled by

the attacker.

This paper utilizes a mod/sim approach to examine the

effectiveness of two widely known network-level cyber

defensive mitigations. Our main contribution is to provide

a quantitative assessment of these mitigations’ effective-

ness at the network scale with respect to two fundamental

network concerns: security and mission impact. We also

use a novel metric to combine results of these concerns

into a single unified measure that is easily accessible to

security analysts and practitioners.

3 Network-level cyber defensive
mitigations

Cyber attacks have caused significant damage to enterprise

networks in recent years. Quantifying the performance of

defensive mitigations helps network administrators make

better decisions to improve the security posture of networks

against attack. This paper examines two defensive mitiga-

tions that seek to provide security at the network level, SNF

and LWC.8 Both of these mitigations attempt to thwart an

attacker’s ability to move within a network after he/she has

gained initial entry to the network.

3.1 SNF mitigation

The SNF mitigation is concerned with partitioning a net-

work into sections or segments to protect sensitive or valu-

able resources. Different cyber assets (e.g., hosts, servers,

sub-nets) are used for different organizational functions

(e.g., public-facing web services, financial transactions,

human resource management, etc.) having differing sensi-

tivity levels and security requirements. The idea is to seg-

regate these different groups of cyber assets based on their

function and restrict communications between the segre-

gated groups. This is thought to improve security by ham-

pering the ability of an attacker, who has already gained a

foothold on the network, to traverse the network, spread

compromise, and acquire further access to sensitive

resources. Segregation is typically implemented by fire-

walls, network egress and ingress filters, application-level

filters, and/or physical (hardware) infrastructure.22

3.2 LWC mitigation

The LWC mitigation picks up where SNF leaves off. The

idea is to regulate communications at a higher granularity.

LWC controls communications to a greater extent than

SNF, in which even devices within the same organiza-

tional function may have limited communications (or be

prevented from communicating outright). Here, the goal is

to enforce the principle of least privilege and to allow

communication privileges only when necessary for task

execution. LWC is implemented by setting device-level

firewall rules (e.g., Windows Firewall rules), disabling

remote logon access to devices, and using private virtual

LANs.23

Both mitigations are about partitioning a network into

segments and controlling communications between seg-

ments and between segments and the Internet. We refer to

an individual segment of a partitioned network as an

enclave, which is a group of network devices with homo-

geneous reachability.

4 Multi-scale hierarchical model

We wish to quantitatively assess the effectiveness of the

SNF and LWC mitigations in the context of a complete

network system. For this purpose a multi-scale model to

characterize dynamics at the enclave and network scales is

employed. The complete model is modularized via a hier-

archical framework in which enclave-scale dynamics (i.e.,

dynamics internal to a single enclave) are captured sepa-

rately in a single model, and simulation results from this

model are then used to inform a network-scale model. The

model is informed by a proprietary testbed environment in

which a partitioned network is captured at a coarse-

grained level of abstraction where only the vulnerability

level of individual network enclaves is measured. A gra-

phical overview of the full hierarchical model is given in

Figure 1. From the figure, the enclave model is parameter-

ized by outputs from testbed experiments (see Section

4.2). Simulation runs are executed on this enclave model,

results are aggregated, and these results are used to para-

meterize the network model (right of the figure), which

captures an abstracted full network system with attack/

Figure 1. Multi-scale, hierarchical model: Enclave model
captures dynamics internal to a single enclave, network model
captures network-scale dynamics of security and mission
performance.
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defense dynamics and mission users and their associated

operations (details provided in Section 4.3).

With respect to this study, the hierarchical model struc-

ture is beneficial for the following reasons:

• it allows the model to incorporate data gleaned

from testbed experiments;
• it provides for a reduction in model implementation

effort due to the modularity gained by dividing the

simulation model into multiple components; and
• it supports quicker simulation execution times due

to reduced complexity at the larger scale network

model.

With respect to future studies, this model structure pro-

vides a simulation framework that is flexible and re-usable:

flexible because different versions of one component

model can be substituted into the framework without hav-

ing to change the underlying implementation of the other

component model(s); re-usable because a component

model may be used as part of multiple complete simulation

models with potentially little or no modification. This

study takes advantage of the framework’s re-usability by

re-tooling a network component model capturing mission

users and operations from a previous study,24 which itself

was re-tooled from Priest et al.16 Planned future work will

take advantage of the framework’s flexibility—it will

focus on developing a simulation model to replace the

testbed environment so that more partitioning scenarios

can be easily examined, as the resource cost of executing

scenarios on the testbed is relatively high. The following

sections detail the components of the complete model and

their integration.

4.1 Testbed environment

As discussed above, the testbed is a proprietary environ-

ment that supports coarse-grained tests of a partitioned

network. A partitioning architecture that divides the net-

work into enclaves and restricts communications between

enclaves and between enclaves and the Internet can be

instantiated. The environment modeled by the testbed is

depicted in Figure 2. In this environment the attacker

residing on the Internet is restricted by the partitioning

architecture and can only communicate with enclaves as

allowed by the architecture. For example, as shown in the

figure, suppose a network is partitioned into three enclaves

where Enclave 1 is allowed communication with the

Internet and Enclaves 2 and 3 are not. Additionally, sup-

pose communications between Enclave 1 and Enclave 3

are disallowed by the architecture. As displayed in the fig-

ure, the attacker can penetrate the network only through

Enclave 1. If the attacker is successful at compromising

Enclave 1 (indicated by the enclave’s red color in the

figure), then he/she can attempt to spread to Enclave 2 via

the communication channel allowed by the architecture,

but cannot spread directly to Enclave 3 because the archi-

tecture blocks communications between Enclaves 1 and 3.

The testbed environment specifies communication chan-

nels by allowing or disallowing software services between

enclaves. The environment also includes the notion of

enclave cleansing by the defender (depicted in the upper

right graphic of the figure): compromised enclaves are

periodically cleansed and restored to an uncompromised

state.

The testbed uses data from real software vulnerabilities

and corresponding exploits to characterize the vulnerabil-

ity level of individual enclaves with respect to a given net-

work partitioning architecture and enclave-cleansing rate.

The environment measures the probability that an enclave

has been penetrated but does not capture instances of

actual device compromise within an enclave. This mea-

surement informs the enclave component model (depicted

in Figure 1).

4.2 Enclave model

The enclave model seeks to characterize the dynamics of

attack and defense, at the device level, within a single

enclave. The threat model is that of an attacker who pene-

trates the enclave by compromising a single enclave device

and attempts to spread to other enclave devices. This threat

model is depicted in Figure 3.

An epidemic model is used to capture device-to-device

infection spreading within an enclave. We utilize the

Figure 2. Testbed environment: Partitioning architecture
divides network into enclaves and restricts communications
between enclaves and between enclaves and the Internet.
Attacker resides on the Internet and attempts to compromise
enclaves via communication channels. Defender periodically
cleanses compromised enclaves.
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propagation model proposed by Yu et al.18 and given by

Equation (1):

I(t)= I(0)× eβNt ð1Þ

where t is time, I(0) is the number of infected devices at

t = 0, β is the infection propagation rate, N is the total

number of devices in the enclave, and I(t) computes the

total number of infected devices at time t. Initial enclave

penetration is modeled as compromise of a single device

(i.e., I(0)= 1 ).

The defense model is an abstraction of the protection

provided by the network partitioning architecture and

enclave cleansing rate captured in the testbed environment

but from the perspective of a single enclave. The model

specifies a random variable to capture the probability that

an enclave is in a vulnerable state (i.e., whether or not it

has been penetrated by the attacker). When the enclave is

vulnerable, infection can spread from device to device;

when the enclave is not vulnerable (i.e., it has been

cleansed by the defender), all enclave devices are unin-

fected. The full enclave model is given by Algorithm 1.

In Algorithm 1, the probability that an enclave is vul-

nerable, pvuln, is specified by the output of testbed

experiments for the enclave being modeled. The model

generates three outputs that characterize the security of

devices in the enclave: the expected number of devices

that are compromised at any given moment, the mean

duration time of compromise for devices when they are

compromised, and the standard deviation of compromise

duration times. As mentioned above, these outputs are

used to inform a network-scale model (depicted in

Figure 1 and detailed below).

4.3 Network model

The network model characterizes the dynamics of attack,

defense, and mission operations at the scale of a full net-

work system. As discussed in Section 4, we leverage the

re-usability of the hierarchical modeling to re-tool and re-

use a network component model which has been used in

two previous studies.16,24

Specifically, we utilize the network-scale mission model

from these studies, which is based on a military-style Air

Operations Center (AOC). The AOC mission is tasked with

gathering requests for air operations and processing these

into final flight plans. The mission model characterizes a

network-supported, time-sensitive mission that allows us

to examine a defensive mitigation’s ability to protect the

mission from attack. Any delay to the mission’s comple-

tion is undesired. A mission team involves three mission

users and three database servers existing on different net-

work devices. We assume each mission device has at most

one mission role. The abstracted AOC mission is shown in

Figure 4, where the mission users pass a payload from

Database 1 to Database 3. The network includes Nm mis-

sion user teams sharing three mission servers, meaning

that there are 3Nm + 3 total mission devices. Mission users

require a fixed amount of uninterrupted time, tM, to oper-

ate on the payload before passing it to the next step. Non-

mission operations, such as benign communications can

Algorithm 1: Enclave model

1: procedure Enclave pvuln,β,Nð Þ 8 pvuln: probability enclave is vulnerable, β: infection spread rate, N: no. of enclave devices
2: repeat
3: t 0
4: dcomp  ½empty set� 8Set of compromised enclave devices
5: duncomp  ½all enclave devices� 8Set of uncompromised enclave devices
6: r N½0,1� 8r is assigned a random value ∈ ½0,1�
7: I(0) 1
8: while r< pvuln do 8Enclave is vulnerable, infection spread can occur
9: I(t) f (I(0),β,N,t) 8Compute no. of infected devices using Equation (1)

10: if jdcompj< I(t) then
11: randomly remove I(t)� jdcompj devices from duncomp, add to dcomp

12: t t+ 1
13: r N½0,1�
14: until Total timesteps>Maximum timesteps

Figure 3. Enclave threat model: attacker compromises a single
device and then spreads throughout enclave.
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occur during this time, but suffering a compromise to a

mission device will delay the mission until that device is

cleansed and restored.

The threat/defense model is an abstraction of the attack

and defense dynamics captured in the enclave model but

from a full network perspective where attack/defense out-

comes vary depending on the micro-environment specified

for individual enclaves in the full network. The model speci-

fies a random variable to capture the probability that a device

in a given network enclave is compromised. At simulation

time t = 0, this variable is used to determine which devices

in a given enclave are compromised and, for those that are

compromised, a second random variable determines the dura-

tion of compromise. This initialization process is repeated

separately for each enclave of the network. As simulation

time progresses, compromised devices are cleansed and

restored when their compromise durations have completed.

After all compromised devices of an enclave have been

restored, the initialization process is re-executed on the

enclave, to set compromised devices and their corresponding

compromise duration times. The full model of attack and

defense at the network scale is given by Algorithm 2.

As discussed in the previous section, outputs from the

enclave model are used to inform the network model. In

Algorithm 2, the probability of device compromise, the

mean compromise duration time for compromised devices,

and the standard deviation of compromise duration times

for a particular enclave are specified by the output of

enclave model experiments for that enclave. Network

model outputs measure the overall security and mission

impact at the network scale. The following section pro-

vides details on the metrics used to measure these funda-

mental network concerns.

5 Measuring mitigation effectiveness

In this study we model attacks on device availability. A

device becomes inaccessible after a successful attack and

Algorithm 2: Network attack/defense model

1: procedure ENCLAVEINIT enclð Þ 8 Initialization of enclave encl
2: pdcomp  pdcomp for encl from global params list 8 pdcomp: probability of device compromise
3: tdcomp  tdcomp for encl from global params list 8 tdcomp: mean duration time of device compromise
4: σtdcomp  σtdcomp for encl from global params list 8 σtdcomp: standard deviation of device compromise duration times
5: devices ½all devices in encl�
6: for all device∈ devices do
7: r N½0,1� 8 r is assigned a random value ∈ ½0,1�
8: if r< pdcomp then 8 device should be marked as compromised
9: μ tdcomp

10: σ  σtdcomp

11: comptime N(μ,σ) 8Compute compromise duration time for device
12: Mark device as compromised for time comptime
13: procedure NETWORK 8Run network-scale attack/defense
14: t 0
15: enclaves ½all enclaves in network�
16: for all encl∈ enclaves do 8Initialize devices in each network enclave
17: ENCLAVEINIT(encl)

18: repeat
19: t t+ 1
20: for all encl ∈ enclaves do
21: devices ½all devices in encl�
22: for all device∈ devices do
23: if device compromise duration time is complete then
24: Mark device as uncompromised
25: if all devices in encl are uncompromised then
26: ENCLAVEINIT enclð Þ 8Re-initialize devices in enclave encl
27: until Total timesteps>Maximum timesteps

Figure 4. Abstracted AOC Mission Model: Three mission users
utilize three network hosts to interact with three database
servers to execute the mission.
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remains inaccessible until it is cleansed and restored. Our

goal is to measure the effectiveness of a defensive mitiga-

tion with respect to system security and mission impact.

For this purpose, we utilize the following two metrics as

in Wagner et al.24 and Priest et al.16

Definition 1. System Security Index, si The expected ratio

of device availability time (i.e., device uptime) to total

time, normalized to ½0, 1� :

si =E
Tup

T

� �
=
P3×Nm + 3

i= 1

T�ti
down

T

3×Nm + 3
ð2Þ

where ti
down = ti

comp + ti
cleanse is the total downtime for

device i, T is the total simulation time, and Tup is the total

uptime for device i (Tup = T � Tdown, Tdown =P3×Nm + 3
i= 1 ti

down). As discussed in Section 4, a device is

inaccessible when it is compromised or while it is in the

process of being cleansed. ti
comp and ti

cleanse represent the

total compromise and cleansing times for device i,

respectively.

Definition 2. Mission Delay, md The expected total time

of device compromise t(delayjcomp, d) and device cleansing

t(delayjcleanse, d) that impedes a mission.

As detailed in Section 4.3, we model time-sensitive

missions in which incurred delay is undesirable. When a

mission-critical device d is compromised, the correspond-

ing mission is delayed until the device has been cleansed.

Mission delay is computed as:

md = t(delayjcomp, d) + t(delayjcleanse, d) ð3Þ

The expected total time of mission-impeding device

compromise is computed as:

t(delayjcomp, d) =E½̂ti
(delayjcomp, d)�

=
PM

i= 1 t̂i
(delayjcomp, d)

M

ð4Þ

where t̂i
(delayjcomp, d)

is the delay for mission i due to com-

promise and M is the number of executed missions.

The expected total time of mission-impeding device

cleansing is computed as:

t(delayjcleanse, d) =E½̂ti
(delayjcleanse, d)�

=
PM

i= 1 t̂i
(delayjcleanse, d)

M

ð5Þ

where t̂i
(delayjcleanse, d)

is the delay for mission i due to

compromise.

5.1 A unified metric to evaluate mitigation
effectiveness

The mitigations given in Section 3 exist to support an orga-

nizational mission and thus they should be evaluated in the

context of the complete system where the goal is to maxi-

mize the system security index and to minimize the mis-

sion delay. These metrics evaluate different effects of a

given mitigation. It is convenient to have a unified metric

to evaluate the effectiveness of a mitigation and to com-

pare the effectiveness of multiple mitigations.

Definition 3. Unified Metric, mg. It is a measure to char-

acterize the security and mission delay ( si and md from

Equations (2) and (3), respectively) inherent to a simulated

network environment captured via Monte Carlo experi-

ments. The metric incorporates effects of mean, median,

and variance of results from Monte Carlo simulation runs,

normalized to [0,1].

To generate this metric, we first unify the security index

(Equation (2)) for Monte Carlo experiments of simulation

scenarios with and without a given mitigation as shown

below:

sM =
Z

f2(f1(si,M))dsi,M

snoM =
Z

f2(f1(si, noM))dsi, noM

) sg = sM�snoM

max (sM, snoM) ð6Þ

where si,M and si, noM represent the computed security

index values for scenario experiments with and without the

given mitigation, respectively. f1 is a function f1 : X → f1*

that takes an arbitrary input X, which might be si,M or

si, noM, and then outputs an approximation function f1*. f2
is a function f2 : f1* → f2* that takes an arbitrary function

f1* , and then maps into an approximation function f2*. sM

and snoM are the approximated security index values with

and without mitigation, respectively. sg represents the uni-

fied security index, normalized to ½�1, + 1�. A computed

value for sg ∈ ½�1, 0) signifies that the proposed mitigation

decreases overall security, while a computed value

∈ (0, + 1� signifies the proposed mitigation increases

overall security.

Secondly, the mission delay (Equation (3)) for Monte

Carlo experiments of scenarios with and without the given

mitigation ( mM and mnoM, respectively) is unified by using

the following equation:
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mM =
Z

f4( f3(mdi,M))dt

mnoM =
Z

f4( f3(mdi, noM))dt

) mdg = mnoM�mM

max (mnoM,mM)

ð7Þ

where mdi,M and mdi, noM represent the computed mission

delay values for scenario experiments with and without the

given mitigation, respectively. f3 is a function f3 : X → f3*

that takes an arbitrary input X, which might be mdi,M or

mdi, noM, and then outputs an approximation function f3* .

f4 is a function f4 : f3* → f4* that takes an arbitrary func-

tion f3* , and then maps into an approximation function

f4* . mM and mnoM are the approximated mission delays

with and without mitigation, respectively. mdg represents

the unified mission delay, normalized to ½�1, + 1�. A

computed value for mg ∈ ½�1, 0) signifies that the pro-

posed mitigation increases mission delay, while a com-

puted value for mg ∈ (0, + 1� signifies the proposed

mitigation decreases mission delay.

Finally, sg and mdg are combined as:

mg = f5(w1, sg,w2,mdg) ð8Þ

where f5 is a function f5 : fw1, sg,w2,mdgg→mg that

inputs user-defined weighting factors, w1 and w2, that rep-

resent the relative importance of security and mission

impact, respectively, to the user where w1 +w2 = 1, and

the computed values of sg and mdg and outputs the unified

performance measure mg .

The proposed effectiveness measure given in Equation

(8) combines si and mdg to provide a unified metric for

effectiveness. This metric can be used to measure the

effectiveness of a single mitigation and/or compare the

effectiveness of multiple mitigations. To the best of our

knowledge, the measure given in Equation (8) represents

the first attempt to unify the fundamental network con-

cerns of system security and mission performance into a

single metric that is easily accessible to security practi-

tioners. The unified metric is also used in another study

conducted by the authors 24 that was submitted at the same

time as this study.

6 Experiments

The simulation framework utilized in this study is

designed to model the environment, entities, and actors of

cyber systems at relevant scales in order to gain a useful

understanding of complex system dynamics. The goal is to

understand sub-system dynamics, how these dynamics

affect and are affected by the system. Our model utilizes

this framework to capture a full network environment

including users, attackers, defenders, and mission opera-

tions. The simulation framework is implemented using

NetLogo.25 Matlab release26 2014b and Python 2.7 are

used for data aggregation across simulation runs and the

calculation of statistical measures.

In this section, we analyze and quantify the effective-

ness of two defensive mitigations: (i) SNF (Section 3.1);

and (ii) LWC (Section 3.2). The goal of SNF and LWC is

to partition a network into enclaves to restrict an attacker’s

ability to move in a network. As discussed in Section 4, we

utilize a two-level hierarchical model that is informed by

the outputs of testbed experiments. The testbed environ-

ment is used to test various network partitioning architec-

tures as a function of communications between enclaves

and between enclaves and the Internet. These communica-

tions are abstracted as information flows via software ser-

vices (depicted in Figures 5–7 as black lines connecting

enclaves/Internet; details provided in the following sec-

tion). The first level of the modeling hierarchy, the enclave

model, is meant to characterize device-to-device infection

spreading within a single enclave. The second level is the

network model, which is used to capture system security

and mission impact. To capture these two fundamental

Figure 5. Baseline architecture and SNF’s network partitioning architecture.
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concerns at the network scale, we model a representative

network environment that supports the AOC mission

described in Section 4.3.

6.1 Testbed experimental setup

As described in Section 4.1, our testbed is a proprietary

environment that supports coarse-grained tests of a parti-

tioned network. Although network partitioning best prac-

tices exist,27 these provide only vague guidance and, thus,

require significant interpretation by network administrators

to implement. Generally, there exist many possible ways

to implement network partitioning, and selection of an

optimal partitioning architecture for a given network envi-

ronment remains an open problem. For this study, we focus

on examining representative partitioning architectures for

a mid-sized organization. Here, we examine six partition-

ing scenarios: a baseline scenario in which no partitioning

is used, an architecture representative of SNF, and four

architectures representative of LWC. All of these scenarios

include some form of Internet connectivity, which is mod-

eled as one or more total services connecting the network

to the Internet. Figures 5–7 depict the baseline, SNF, and

the four LWC scenarios, respectively. The baseline sce-

nario (Figure 5(a)) captures a network that is unpartitioned

and the SNF scenario (Figure 5(b)) captures a coarsely-

partitioned network with four enclaves that represent cano-

nical organizational functions. Both of these architectures

are connected to the Internet via 10 services, while the

SNF scenario uses a single service to connect enclaves 1–3

to enclave 4. As detailed in Section 3.2, LWC provides a

more finely-grained partitioning architecture than SNF

and, thus allows more degrees of freedom with respect to

the number of enclaves used and the restriction of commu-

nications between these enclaves. These extra degrees of

freedom mean there are more possibilities to consider

when choosing an architecture representative of the LWC

mitigation. We, therefore, select four such architectures

depicted in Figures 6(a) and (b) and 7(a) and (b). The first

two, depicted in Figure 6, represent canonical separation of

mission-centric and non-mission-centric communications

while the last two, depicted in Figure 7, represent scenarios

in which only mission-centric communications are present

(see Section 6.3). Communications between enclaves and

between enclaves and the Internet for these LWC scenarios

are specified by services as shown in the figures.

Figure 6. LWC architectures that include both mission & non-mission communications.

Figure 7. LWC architectures that allow only mission communications.
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The output from testbed experiments provides the prob-

ability of enclave vulnerability for each enclave of a cap-

tured scenario.

6.2 Enclave model experimental setup

This model captures device-to-device infection spreading

within an enclave. We assume that an attacker penetrates

an enclave by compromising a single device and then

attempts to spread to other devices in the enclave. As pre-

sented in Section 4.2, we use the model given in Yu et

al.18 to mimic infection spread in an enclave. The model

inputs the probability of enclave vulnerability, pvuln, for

each enclave of a captured scenario from testbed experi-

ments (see previous section). We model a class-C-sized

network with 250 total hosts/devices.

Equation (1) is used to compute the number of compro-

mised nodes at a given time where N = 250, I(t= 0)= 1

and three threat regimes with respect to infection spread-

ing are examined. These regimes represent a differing

severity of threat: (i) less aggressive spreading (low

threat); (ii) aggressive spreading (medium threat); and (iii)

highly aggressive spreading (high threat). As shown in

Figure 8, the infection spread rate, β, is varied to model

these different severities. To account for the uncertainty

inherent to the spreading dynamic, we sweep a range of β

values within each regime. Less aggressive spreading is

given by β= f2:6× 10�4, 2:8× 10�4, 3:0× 10�4g which

captures an attacker that can infect less than 40% of a

class C network in 60 days. Aggressive spreading is given

by β= f3:2× 10�4, 3:4× 10�4, 3:6× 10�4g and captures

an attacker that can infect up to 80% of the network in 60

days. Finally, highly aggressive spreading is given by

β= f3:8× 10�4, 4:5× 10�4, 5:5× 10�4g and models an

attacker who can infect the entire network in less than 30

days.

6.3 Network model experimental setup

This model captures network-scale attack/defense

dynamics and mission operations. As discussed above, we

consider a representative class-C-sized network with 250

hosts. We model the AOC mission (described in Section

4.3) where the full mission takes three days to complete if

uninterrupted and each of three mission users requires one

day to complete his/her mission task. Simulation time is

specified such that 1,000 time units = 1 simulated day.

We collect results from 1,500 Monte Carlo simulation

runs in which runs are terminated upon completion of all

missions or when simulation time reaches a maximum of

30,000 time units (30 simulated days).

As described in Section 6.1, we examine six partition-

ing architectures: a baseline architecture (network with

no partitioning, Figure 5(a)), a representative SNF archi-

tecture (partitioned with respect to canonical organiza-

tional functions, Figure 5(b)), and four representative

LWC architectures (Figures 6 and 7). The LWC architec-

tures represent two general scenarios, one in which a mix

of mission and non-mission communications are allowed,

and one in which only mission communications are

allowed.

Figure 6 depicts two representative architectures allow-

ing both mission and non-mission communications but

separate mission-critical devices from non-mission-critical

devices. In both of these architectures, enclaves labeled

Hosts contain non-mission devices and enclaves labeled

MAG1, MAG2, etc. contain mission-critical devices used by

mission actor teams or groups (abbreviated as MAGs in

the figure—see Section 4.3 for discussion) that communi-

cate with mission servers in the enclave labeled Mission

Servers. The difference between these two architectures is

in how MAGs are separated: in LWC Architecture #1

(Figure 6(a)) MAGs are completely separated, where each

MAG is contained in its own enclave, while in LWC

Architecture #2 (Figure 6(b)) MAGs are clustered into

three MAG-only enclaves. Figure 7 depicts two representa-

tive architectures that allow only mission-critical devices.

In both of the architectures, the layer of host enclaves is

removed so that only MAG and the mission server

enclaves remain. LWC Architecture #3 (Figure 7(a)) mir-

rors Architecture #1 with the Host enclaves removed,

Figure 8. The impact of infection rate per unit time, β, on the spreading progress for a vulnerable network with N= 250 and
I(0)= 1.
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while LWC Architecture #4 (Figure 7(b)) mirrors

Architecture #2 also with the Host enclaves removed.

6.4 Simulation results

The following sections present simulation results for the

partitioning scenarios described above. First, SNF scenario

simulation results are compared to baseline scenario results

and then LWC scenario results are compared to baseline

scenario results. The purpose here is to examine the rela-

tive benefit offered by each mitigation with respect to the

baseline (i.e., no mitigation).

6.4.1 SNF results. We compare two scenarios to analyze

the effectiveness of the SNF mitigation. A baseline sce-

nario in which no partitioning is used, as shown in Figure

5(a) and a representative SNF architecture in which the

entire network is subdivided into four enclaves as shown

in Figure 5(b).

Simulations are executed for both scenarios and output

metrics are computed. Figure 9 shows the computed

metrics si and md of Equations (2) and (3), respectively,

visualized as statistical box plots depicting the median

metric level (red line in the figure) and the variance of

computed values over the 1,500 Monte Carlo experiments.

As seen in Figure 9(a), the SNF partitioning architecture

has a higher si on average, with a mean expected ratio of

device uptime of 0.968 as opposed to 0.852 for the base-

line case. Furthermore, results also indicate that there is

significantly less variance in security performance for the

SNF architecture, with a standard deviation of 0.001 as

opposed to 0.157 for the baseline architecture. This result

is compelling as it is a reduction in variance of two orders

of magnitude. Figure 9(b) shows significant improvements

to mission impact. The SNF architecture gives both lower

average mission delay and lower variance in mission

performance. The average mission delay for the SNF archi-

tecture is 378 time units as opposed to 9,030 time units

for the baseline architecture (an order-of-magnitude differ-

ence) while the standard deviation is 1, 271 time units for

SNF as opposed to 13,701 time units for the baseline (also

an order-of-magnitude difference).

6.4.2 LWC results. To analyze the effectiveness of the

LWC mitigation, we compare five scenarios: the baseline

architecture (Figure 5(a)) and four representative LWC

architectures (Figures 6 and 7). Simulations are executed

for all five scenarios and output metrics are computed.

Results are given in Figures 10 and 11.

As seen in Figure 10, results for the security index, si,

show that LWC yields marked improvements to security.

All of the LWC architectures give significantly less var-

iance in security performance relative to the baseline sce-

nario. Two of the four of the LWC architectures give

higher average security performance relative to the base-

line architecture, while for the other two architectures, the

average security is lower but comparable to that of the

baseline. The architecture with the best result, LWC

Figure 9. SNF simulation results: (a) security index, si ; and (b) mission delay, md.

Figure 10. LWC simulation results for security index, si.
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Architecture #4, yields a mean expected ratio of device

uptime of 0.972 as opposed to 0.852 for the baseline archi-

tecture. The four LWC architectures yield a variance in

security performance ranging from 0.027 to 0.001 com-

pared to 0.157 for the baseline architecture. This is a com-

pelling result as it indicates a reduction in variance of one

to two orders of magnitude relative to the baseline.

As given in Figure 11, simulation results show that LWC

yields noticeable improvements in mission impact. All LWC

architectures have lower average mission delay and lower

variance in mission delay relative to the baseline architec-

ture. Mean mission delay ranges from 2, 419 to 413 time

units for the LWC architectures, while for the baseline it is

9,030 time units. Variance in mission delay ranges from

2,100 to 650 time units for the LWC architectures compared

to the baseline, which is 13, 701 time units. These results

are also quite compelling as they indicate an improvement

of approximately one order of magnitude for mean mission

delay and one to two orders of magnitude in mission delay

variance.

It is important to note that reported results for the base-

line are affected by the maximum simulation running time

(30,000 time units). For many simulation runs of the base-

line architecture, missions did not complete before this

time limit and mission delay was therefore computed as

the maximum value of 30,000. Thus, the difference in mis-

sion performance between the examined mitigation scenar-

ios (SNF and LWC) and the baseline scenario may be even

more striking than reported here.

6.5 Unified metric computation

In Section 5.1, we introduced a unified measure for com-

paring the effectiveness of various mitigations. The goal of

mg is to provide a single measure for effectiveness as

explained in Definition 3. The proposed approximation

functions f1, f2, f3 and f4 given in Equations (6) and (7) are

general functions mapping simulation experiment results

into functions that are integrable. f5 shown in Equation (8)

takes the approximated security index and mission delay

values and combines them with the importance factors to

generate single evaluation value. To incorporate both mean

and variance into mg, we use the following functions:

f1 = ⊕∞
i= 1

Ni × (si,M _ si, noM)→ ⊕n
k = 1

sk = Sk

f2 = 1

n
×
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1
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×
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f5 =mg = 0:5× sg + 0:5×mdg

ð9Þ

where ⊕∞
i= 1Ni represents all possible histograms and n is

the total number of measurements. f1 and f3 take the secu-

rity index and the mission delay simulation results for the

no mitigation, SNF, and LWC scenarios and map them

into histograms. f2 and f4 fit the Gaussian distribution to

each newly created histogram and then multiply by the

mean of each measurement. f5 is a linear function aver-

aging both the enhanced security index and mission delay.

Figure 12 presents Sk results (shown in black) with the

Normal distribution approximation function (shown in

red) for all scenarios. The histogram approximations are

obtained by applying f1 (see Equation (9)) on the simula-

tion outputs. f2 presented in Equation (9) is another

approximation function that takes histogram approxima-

tions and fits these to the Normal distribution.

Note that, as shown in Figure 12, simulation runs for

LWC Architectures #1 and #2 exhibit bimodal distribu-

tions for Sk . This is due to the extra layer of Host enclaves

specified by the architectures in Figure 6: attacks that suc-

cessfully penetrate the network and make it past the layer

of Host enclaves cause a noticeable drop in overall secu-

rity performance, while attacks that do not make it past

this first layer of partitioning result in noticeably better

overall security. These outcomes specify the two modes of

the distribution.

Now, we calculate the area under each red curve to

compute the approximated security index for each archi-

tecture shown in Figures 5–7.

Note that the Normal distribution is a symmetric curve.

To reward the simulation results at the right side of the

curve (close to 1 for si), the enhanced security index in

Equation (6) can be adjusted with the mean of each experi-

ment and calculated as:

Figure 11. LWC simulation results for mission delay, md.
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sg = (sM ×E(sM)� snoM ×E(snoM))

max (sM ×E(sM), snoM ×E(snoM))
ð10Þ

Based on Equation (10), the enhanced security indexes for

all scenarios are shown in Table 1.

Figure 13 presents Mdk results (shown in blue) with the

Normal distribution approximation function (shown in

red) for all scenarios. The histogram approximations of

each mitigation’s mission delay results are obtained by

applying f3 (see Equation (9)) on the results. f4 presented

in Equation (9) is another approximation function taking

histogram approximations and fitting these to the Normal

distribution. As can be seen in the figure, many runs of the

baseline architecture have a mission delay of 30,000 time

units. This means these missions were not completed

before the maximum simulation run time. When we run

our experiments with a larger maximum run time, the

number of uncompleted missions decreases; however, this

does not result in significant changes to the computed

value of f4* (detailed in Section 5.1).

It is also interesting to note that simulation runs for

LWC Architectures #1 and #2, in Figure 13, do not exhibit

bimodal distributions for Mdk , as is seen for the Sk results

(Figure 12) for these same architectures. This is due to the

uncertainty inherent to mission operations and attacks on

the mission. When an attack manages to penetrate the net-

work and get past the first layer of Host enclaves for these

architectures, it is still not certain it will be able to nega-

tively impact the mission. Due to chance, the attack may

compromise mission-critical devices that have already

completed their mission operations and, thus, no mission

delay will result. This dynamic prevents the distribution

from being bimodal.

Due to the similar symmetry of the Normal distribution,

we also add a reward factor into Equation (7) and the

enhanced mission delay is calculated as:

mdg = (mnoM ×E(mnoM)� mM ×E(mM))

max ((mnoM ×E(mnoM),mM ×E(mM)))
ð11Þ

Based on Equation (11), the enhanced mission delays for

all scenarios are given in Table 1.

Assume that sg and mdg are equally important concerns

with respect to mitigation effectiveness and, thus, w1 and

w2 of Equation (8) are both specified as 0.5. The unified

performance metric mg for SNF and LWC mitigations are

shown in Table 1. From a practical standpoint, network

administrators can view these results as a measurement of

the gain in effectiveness at the network scale due to the

mitigation. From the table, SNF yields a 63% gain in

Figure 12. Sk (Equation (9)) results for all scenarios (axes are displayed with differing scales to improve readability).

Table 1. mg for all scenarios.

Scenario sg mdg mg

SNF 0.322 0.944 0.63
LWC 1 0.037 0.657 0.34
LWC 2 0.185 0.951 0.56
LWC 3 0.13 0.804 0.46
LWC 4 0.318 0.928 0.62
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effectiveness while LWC yields gains ranging from 34%

to 62% depending on the architecture implemented. These

results indicate that both the SNF and LWC mitigations

offer significant benefits to the security posture of a net-

work. Also, the range of results seen for the four LWC

architectures examined, show that although LWC has the

potential to be a highly effective defensive mitigation, it

can be quite difficult to select an appropriate partitioning

architecture to implement this mitigation. Thus, network

administrators should exercise caution when deploying

LWC, as sub-optimal selection of partitioning architecture

can have deleterious results on network security. It is also

important to note that defensive mitigations are not meant

to be used in isolation, but rather in combination as part of

a layered defense. Thus when utilized as part of a greater

defensive policy, SNF and LWC can provide great contri-

butions to the security posture of a network against attack.

7 Conclusion

This paper presents a multi-scale hierarchical simulation

model designed to evaluate two well-known network-level

cyber defense mitigations, SNF and LWC. We quantify

the network-scale effects of these mitigations from the

perspectives of security and mission impact. Experimental

results indicate that both mitigations provide significant

benefits to the security posture of a network, with the

caveat that LWC results can vary widely due to the extra

degrees of freedom involved in selecting an appropriate

architecture to implement it. We also introduce a novel

metric that combines results for security and mission per-

formance into a single unified measure of mitigation effec-

tiveness that is convenient and easily accessible to security

practitioners. This measure can be viewed by practitioners

as a quantification of the gain in effectiveness at the net-

work scale due to a defensive mitigation.

Future work is focused on developing a simulation

model to replace the testbed, so that more partitioning sce-

narios can be easily examined, as the resource cost of

executing scenarios on the testbed is relatively high. We

also plan to test the inclusion of new functions to improve

our unified measure.
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