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ABSTRACT
We provide new results enabling robust interferometric image reconstruction in the
presence of unknown aperture piston variation via the technique of Redundant Spac-
ing Calibration (RSC). The RSC technique uses redundant measurements of the same
interferometric baseline with different pairs of apertures to reveal the piston variation
among these pairs. In both optical and radio interferometry, the presence of phase
wrapping in the measurements is a fundamental issue that needs to be addressed
for reliable image reconstruction. In this paper, we show that these ambiguities af-
fect recently-developed RSC phasor-based reconstruction approaches operating on the
complex visibilities, as well as traditional phase-based approaches operating on their
logarithm. We also derive new sufficient conditions for an interferometric array to be
immune to these phase-wrap ambiguities in the sense that their effect can be ren-
dered benign in image reconstruction. We show the implications of this property of
wrap-invariance for imaging via phase closures and extend existing results involving
the classical three-baseline closures to generalized closures. Furthermore we show that
this property is conferred upon arrays whose interferometric graph satisfies a certain
cycle-free condition. We specify this condition and, for cases in which this condition is
not satisfied, we provide a simple algorithm for identifying those graph cycles which
prevent its satisfaction. We apply this algorithm to diagnose and correct a member of
a pattern family popular in the literature. Finally, we show that wrap-invariance
is a fundamental property which is important in certifying reliability of
powerful existing RSC techniques in the literature.
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effects – methods: analytical – methods: numerical

1 INTRODUCTION

Optical interferometry is a multi-aperture imaging technique
which is attracting increasing interest in the astronomical
and remote-sensing communities. The appeal of this tech-
nique is primarily due to the high resolution it affords rela-
tive to single-aperture imaging. Namely, the angular resolu-
tion of a single aperture is limited by diffraction to λ

D , where
λ is the wavelength of the light, and D is the diameter of
the aperture. On the other hand, the achievable angular res-
olution of an interferometer is instead given by λ

Bmax
, where

Bmax is the maximum spatial separation of any two tele-
scopes in the array. Therefore with interferometry one can
achieve the same high resolution offered by an extremely
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large (and often prohibitively-costly) telescope by interfer-
ing light from several telescopes of practical size. Optical
interferometers image a scene by sampling the 2D Fourier
Transform of the scene. Several excellent surveys exist which
describe the concept of interferometry, including Labeyrie
et al. (2006), Glindemann (2011). Each pair of telescopes
measures a single angular spatial frequency of 2πb

λ radians,
where b is the vector difference of the telescope positions,
which is known as a baseline. For an array of N apertures,
the data set then consists of all

(
N
2
)

such measurements.

A principal challenge in interferometry is variation in
the complex gains among the multiple apertures of the in-
terferometer. In radio interferometry, this variation can arise
from differences among the analog components of the an-
tenna elements (e.g. cable length differences) in the array.
In optical interferometry, atmospheric turbulence distorts
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the wavefronts arriving at each telescope aperture so that
their effective path lengths from the target (or optical pis-
tons) are altered by a random, non-uniform amount. For
simplicity, we will heretofore refer to such aperture-specific
phase variation as optical path difference (OPD), regardless
of its source. As a result of OPD, the Fourier component

measured by apertures i and j is given by yi j = |yi j |e j θ̃i j ,
in which θ̃i j = (θi j + δφi j ) mod 2π 1, and θi j is the true

Fourier phase at spatial frequency
b i j

λ , and δφi j represents
the OPD observed between apertures i and j. One approach
to eliminate OPD is to form triple products of the Fourier
components along the sides of a baseline triangle (e.g. b12,
b23, and b31). Note that the OPD cancels in these products
and hence, like the Fourier magnitudes, these so-called bis-
pectra are OPD-invariant observables. However, for a non-
redundant array with

(
N
2
)

distinct baselines, recovery of the
Fourier phases from the bispectra phases is an ill-posed prob-
lem since there are only

(
N−1

2
)

independent bispectra (Read-
head et al. 1988). Successful bispectra-based image recon-
struction remains feasible in spite of this ill-posedness (see
e.g. Thiébaut (2013), Besnerais et al. (2008)), but in this
case prior constraints (e.g. on the image support) must be
enforced to regularize the reconstruction.

An alternative and intrinsically well-posed approach
to prior-regularized reconstruction is to use baseline re-
dundancy to explicitly solve for OPD variation; an array
with baseline redundancy contains repeated instances of the
same baseline involving distinct aperture pairs. Since Fourier
phases can be assumed to be equal for all repeated base-
lines, an observed difference amongst their corresponding
measurements exposes the contribution of the OPD. This
idea of using redundant arrays to calibrate out OPD vari-
ation, known as redundant spacing calibration (RSC), was
developed in works such as those by Arnot et al. (1985)
and Greenaway (1990). In recent years, innovation in optical
technology has engendered a revival of interest in the RSC
technique. The simultaneous (or Fizeau-style) measurement
of fringes on a common focal plane has long been a popular
method of acquiring many baseline measurements in an eco-
nomical manner. However, the Fizeau method had been in-
compatible with RSC techniques since the fringes formed by
each set redundant baselines would alias on the focal plane.
An elegant solution to this problem was proposed by Per-
rin et al. (2006). This work developed the idea of segmenting
the entrance pupil of a single telescope into an RSC arrange-
ment of sub-pupils from which the light was then coupled
via single mode fiber to a non-redundant exit pupil, thereby
permitting unambiguous and simultaneous fringe detection
for an RSC array. A reconstruction algorithm for this ar-
chitecture was then proposed in Lacour et al. (2007). Even
more recently, RSC has been implemented as the calibra-
tion scheme of choice for several radio interferometers: the
Donald C. Backer Precision Array for Probing the Epoch
of Reionization (PAPER) in South Africa (see Ali et al.
(2015)), the MIT Epoch of Reionization (MITeOR) in the
United States (see Zheng et al. (2014)), and the Ooty Radio
Telescope (ORT) in India (see Marthi & Chengalur (2014)).

As will be shown below, N−3 independent redundant re-
lations are required for unique determination of atmosphere

1 In this paper, we use mod to denote the modulo operation
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Figure 1. Fraction of redundant baselines required for critical

redundancy vs. aperture count

and Fourier phases - a condition we will refer to as critical
redundancy. An oft-cited drawback of the RSC approach is
that it reduces the number of unique spatial frequencies mea-
sured by the interferometer. However, as Figure 1 illustrates,
the fraction of distinct uv-samples sacrificed for critical re-
dundancy becomes increasingly negligible as the number of
apertures in the array increases. Nevertheless the RSC tech-
nique presents other challenges which must be overcome for
reliable imaging. Central among these challenges is the prob-
lem of integer phase ambiguities which arise from the fact
that the interferometric phase is only known modulo 2π.
Indeed these ambiguities have been shown to play
an important role in accurately recovering sensor
complex gains and object complex visibilities while
imaging with real interferometric instruments (see
e.g. Liu et al. (2014), Eastwood et al. (2009)). In this
paper, we describe these ambiguities and how they can be
mitigated using a combination of lattice theory algorithms
and careful array design. We will see that these ambiguities
have a fundamental presence; namely, they exist whether the
calibration strategy works with complex visibilities (which
we call the Phasor approach) directly, or their respective log-
arithms (which we call the Phase approach). To the best
of our knowledge, the results in this paper are the
first to provide array conditions allowing unambigu-
ous interferometric phase determination in spite of
wrap ambiguities in the Phase approach, and corre-
sponding false minima in the objective of the Phasor
approach.

To motivate the analysis in the paper, we pro-
vide an example illustrating the effect that wrap am-
biguities can have in RSC-based image reconstruc-
tion. Consider the pattern depicted in the Figure
2. This pattern belongs to one of the more popular
array classes in the interferometry literature: the so-
called Y-patterns (see e.g. Arnot et al. (1985), Blan-
chard et al. (1996), Labeyrie et al. (2006), Eastwood
et al. (2009), Liu et al. (2014)). The correspond-
ing spatial, or UV, sampling is provided in the right
panel of the Figure.

To demonstrate the potential effect of wrap
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Figure 2. Y-pattern Array Example

Figure 3. Reconstruction Results for Y-Pattern Example

Truth Image Interferometric Image

Phase Approach (Noiseless) Phasor Approach (Noiseless)

ambiguities on reconstruction, we simulated both
Phase- and Phasor-based reconstruction from noise-
less measurements with this pattern. The results are
shown in Figure 3. The upper left panel shows the true im-
age, and the upper right panel shows the inverse Fourier
transform of the UV-sampled visibility function of
the object (i.e. the so-called dirty, or interferomet-
ric image). The lower left panel shows the reconstruction
result with an implementation of the Phase method simi-
lar to that developed by Lannes (2003), and the lower right
panel shows the same for an implementation of the Phasor
method (Marthi & Chengalur 2014) (Lacour et al. 2007).
Reconstruction suffers from phase wrapping error in the for-
mer case, and a corresponding false-minimum trap in the
Phasor case. In the course of this paper, we will first iden-
tify this ambiguity from a mathematical perspective, relate
it to a particular physical structure (i.e. the existence of a
certain type of loop in the interferometric graph), and pro-
vide a simple algorithm for identifying such structures in an
arbitrary array so that they can be remedied.

The paper is organized as follows. In Section II, we re-
view previous work on the integer ambiguity problem, and
discuss its presence in the Phase approach. We provide
new mathematical conditions for an aperture pat-
tern to be wrap-invariant, meaning that the effect
of the 2π-periodicity of the measured interferomet-
ric phase can be eliminated in image reconstruction.

These results are founded upon techniques from lattice
theory, as well as the well-known Smith Normal Form
(SNF) of an integer matrix. We show the implications of
these results on imaging with three types of interferomet-
ric observables: the baseline phase measurements, their tra-
ditional closure phases, and generalized closure phases. In
Section III, we relate these mathematical conditions to con-
ditions on the aperture pattern itself. Namely we show that
wrap-invariance is conferred upon arrays satisfying a certain
loop-free condition. As an illustrative example, we diagnose
a pattern belonging to the popular Y -pattern class and rem-
edy it to be loop-free. Finally, in Section IV, we show that
the computationally-complex SNF-based approach for ambi-
guity resolution is actually not necessary for wrap-invariance
in many cases, as long as a wrap-induced image shift
can be tolerated 2. For such scenarios, we show that
wrap-invariance provides a certificate for the suc-
cess of existing Phase and Phasor-based approaches
in avoiding wrap-induced errors in the former, and
false global minima in the latter. Finally we summarize
our results in Section V.

2 PHASE WRAPPING AMBIGUITIES IN RSC
IMAGE RECONSTRUCTION

In this Section, we describe a Phase Approach algo-
rithm leveraging the CVP-approach for phase-wrap
resolution, which to the best of our knowledge was
first developed in Lannes & Anterrieu (1999). We
begin by identifying the fundamental phase ambi-
guity, and subsequently assess its impact on the
phase error in the RSC phase solution. In the pro-
cess, we develop mathematical conditions for wrap-
invariance which will form the basis for the notion
of a wrap-invariant pattern in Section 3. Finally, we
assess our results in the context of similar results
for approaches requiring the use of closure phases
(Lannes 2003).

2.1 Identifying the Fundamental Phase Ambiguity

The traditional approach to RSC reconstruction operates on
the measured baseline phases (see e.g. Arnot et al. (1985),
Greenaway (1994)). To illustrate the approach, let us con-
sider an interferometer which operates at a wavelength λ

with two apertures (say, i and j) separated by a vector base-
line distance of bi j . In the absence of any optical path differ-
ence, the interference pattern formed by these two apertures
encodes a sample of the object’s Fourier Transform at spatial

frequency
b i j

λ . Let the true Fourier phase (which we will re-
fer to as object phase), measured by this interference pattern
be denoted as θi j . The measured phase is given by:

βi j = θi j + φ j − φi + 2πe (1)

2 As will be shown, this image shift is distinct from the
fundamental degeneracy of object position in interfero-

metric measurements
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Figure 4. Example: 5-aperture RSC pattern. The six distinct

baselines are shown.

where φ j−φi is the optical path difference between apertures
j and i, and e is unknown phase wrap integer arising from
the fact that interferometric phase measurements are only
known modulo 2π.

Consider an interferometric array which simultaneously
makes many such measurements amongst its N apertures.
Suppose that of the array’s

(
N
2
)

baselines, d of them are dis-
tinct. Further suppose we have a solution set {φi } and {θi j }
for these equations. Let r i denote the vector position of the
i-th aperture. As noted by several authors (see, e.g. Wieringa
(1992)), we can obtain another valid solution set simply by
replacing each φi with φ

p
i
= φi + φ0 + z · r i , and each θi j

with θ
p
ij
= θi j − z · (r j − r i ), for arbitrary φ0 and z . Since

the free vector z is a two-parameter vector representing the
inherently-ambiguous position of the image within the Field-
of-View and the free parameter φ0 is simply a scalar piston
offset, the kernel of the RSC system is three-dimensional.
This is the tilt-position degeneracy which is funda-
mental in interferometric reconstruction. The end re-
sult is that the RSC system contains d unknown distinct
object phases and N unknown aperture pistons, and is rank-
deficient by at least 3. This implies that there are at most
(d + N − 3) linearly-independent equations in the RSC sys-
tem, and hence at most N − 3 redundant relations can be
linearly-independent. We will assume for the remainder of
the paper that our array contains N − 3 independent rela-
tions. Under this assumption, we could in principle solve for
a particular solution of this system by arbitrarily setting two
object phases (whose spatial frequencies are not co-linear)
and one piston phase. This particular solution would then
differ from the true solution by a phase ramp in the Fourier
domain, corresponding to an image shift in the spatial do-
main. In this section we will instead construct a dif-
ferent particular solution which is immune to the
effects of phase-wrapping by design.

As an example, consider the simple array in Figure 4.
There are

(5
2
)
= 10 baselines, of which 4 are redundant.

A critical array of 5 apertures would have 2 redundancies.
Therefore this array possesses more redundancies than nec-
essary (call it strongly redundant), and we anticipate that
the resulting system will be overdetermined.

The measurement equations associated with this array
can be written in matrix form:



1 0 0 0 0 0 1 −1 0 0 0
0 1 0 0 0 0 0 1 −1 0 0
0 0 1 0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0 0 1 −1
0 0 0 0 1 0 1 0 −1 0 0
0 0 0 1 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0 −1 0
−1 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 1 0 1 0 0 −1
0 1 0 0 0 0 1 0 0 0 −1





θ12
θ23
θ34
θ45
θ13
θ25
φ1
φ2
φ3
φ4
φ5



= β+2πe

(2)

Denoting the matrix above as M, we can write such
systems in compact form as:

M

[
θ

φ

]
= β + 2πe (3)

The example above illustrates that the general phase
measurement matrix will have two sets of columns: one cor-
responding to the object phases, and one corresponding to
the path differences. Adopting the notation of Lannes & An-
terrieu (1999), let K denote the subspace spanned by the first
set of columns, and L the subspace spanned by the second
set.

If we let n =
(
N
2
)

be the number of baselines in the
array, the phase measurement matrix M will be of size n ×
(d + N ). For a strongly-redundant array like the one in the
example above, the column-space K + L of the matrix will
clearly not span R

n. Therefore the wrapped measurement
vector β will not in general fall in the the subspace K + L
(and potentially can be quite far from it). In the absence
of measurement noise, we can unwrap these measurements
by identifying those integer correction vectors e for which
β∗ = β + 2πe lies in K + L. In the presence of noise, on the
other hand, the unwrapped vector will not generally lie in
K + L (but for low-to-moderate noise will be in the vicinity).
Thus we search for vector(s) β∗ which are as close to K +
L as possible in a weighted least-squares sense (Lannes &
Anterrieu 1999), i.e. we search for the vector

τRSC =

[
θ̂RSC
φ̂RSC

]
= argmine,θ,φ







W

(
β∗(e ) −M

[
θ

φ

])






2

(4)

where W is the weighting matrix. If we let Σ denote the
phase measurement covariance matrix and set W = Σ−1, this
is equivalent to searching for vectors e which minimize the

projection of a whitened measurement W
1
2 β∗ =W

1
2 (β+2πe )

onto the space (K + L)⊥
W

:= ker ((W
1
2 M)

T
), where ker (A)

denotes the kernel, or nullspace, of the matix A. Specifically
we seek to minimize:

f (e ) = | |PWW
1
2 (β + 2πe ) | |

2
(5)

where PW is a matrix representing the orthogonal projection
from R

n onto (K + L)⊥
W

.
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Letting e ′ = −e, we can rewrite the above objective
function as:

f (e ′) = | |PWW
1
2 (β − 2πe ′) | |

2
= | |PWW

1
2 β − 2πPWW

1
2 e ′ | |

2

(6)

Lannes & Anterrieu (1999) showed that this optimiza-
tion problem is equivalent to the so-called closest vector
problem in the theory of lattices. We will define a lattice
L(Zn) as the set of points generated by integer combinations

of the column vectors of a matrix L. Letting P̃ = PWW
1
2 , our

optimization problem then amounts to the following: Find
the lattice point in P̃(Zn) which is closest to P̃β. A compact
representation of the lattice Γ is given by:

Γ =




m≤n−(d+N−3)∑
i=1

aiv i | ∀ai ∈ Z



(7)

where {v i } are linearly-independent and together form a ba-
sis of the lattice. Given the lattice basis, several algorithms
exist for finding the closest lattice point to a specified vec-
tor. A popular class of algorithms, known as the Sphere-
Decoding algorithms, are efficient searches for the closest lat-
tice point within a hypersphere of a certain radius centered
on the input vector (see e.g. Agrell et al. (2002)). For the sim-
ulations in this paper, we instead use the lower-complexity
Babai Nearest Plane (Babai-NP) algorithm (Babai 1986).
For lattice bases which are nearly orthogonal (such as those
we use for our simulations), this algorithm offers reliable,
albeit not guaranteed, performance in practice.

Suppose we have found a basis for the lattice P̃(Zn),
and we have solved the Closest Vector Problem for a given
measurement vector β. Let b∗ be the output of the Babai
Nearest Plane Algorithm - i.e. it is the lattice point which
is the closest to β. We now seek to solve for the wrap vector
corresponding to this lattice point, i.e. we seek a solution to:

b∗ = P̃ê (8)

Note that P̃ is a (weighted) projection matrix and thus
not full-rank, and therefore there will be infinitely-many so-
lutions to this equation. The Closest-Vector-Problem algo-
rithm will provide one particular solution ep. The complete
set of solutions is then given by:

ê = ep + eh (9)

where eh is any integer vector in the kernel of P̃. Suppose we
choose one such vector eh and correct our phase measure-
ment vector accordingly. The corrected phase measurement
vector can be written as:

β̂∗ = β + 2π(ep + eh ) (10)

Lemma 2.1: eh ∈ K + L,∀eh

Proof: The fact that eh ∈ ker (PWW
1
2 ) implies that W

1
2 eh ∈

ker (PW). This in turn implies that W
1
2 eh ∈ im(W

1
2 M) and

hence that eh ∈ im(M) since W
1
2 is invertible by construc-

tion. �
While any choice of eh ∈ K + L will admit a solu-

tion to Equation (4), let us consider the optimal one
eh,0 which minimizes the error in the ultimate phase

solution τRSC . Let β∗0 = β + 2π(ep + eh,0) be the corre-
sponding, optimal unwrapped measurement vector.
From Lemma 2.1, we see that the unwrapped vector
β̂∗ differs by some 2πeh in K + L from β∗0, i.e.

β̂∗ = β∗0 + 2πeh (11)

The impact of this fundamental ambiguity is the
main subject of this paper. We have depicted the
situation in Figure 5 to provide a visual summary
of the linear algebra involved. As we have seen, the
RSC process begins with the interferometric phase
measurement β, which due to wrapping will in gen-
eral lie far from the range K + L of the measurement
matrix. By solving the Closest-Vector-Problem us-
ing a lattice algorithm such as the Babai Nearest
Plane algorithm, it is possible to find a particular
correction vector 2πep which when added to β mini-
mizes the residual in Equation (4), i.e. the weighted
distance from K + L. In the noiseless case, this un-
wrapped vector β̂∗ will lie in K+L (i.e. zero residual),
whereas in the noisy case, it will in general remain
outside of K + L.3. In either case, the choice of the
residual-minimizing vector β̂∗ is not unique. To see
this, let the smallest possible residual norm among
all unwrapped candidates be denoted as rmin. The
set of unwrapped measurement vectors rmin away
from K + L can be represented as discrete points in
a plane parallel to K + L, each of which corresponds
to a distinct choice of ep. Within this family, con-
sider the optimum vector β∗0 whose corresponding
least-squares solution τRSC is minimal. All candidate
unwrapped vectors are within an error vector 2πe∗

h
of β∗0, where e∗

h
is an integer vector in K + L. RSC

algorithms are fundamentally blind to such errors;
distinct unwrappings β̂∗ and β∗0 both produce solu-
tions to Equation (4) in the noiseless case, as do their
respective projections onto K + L, β̂∗K+L and β̂∗0,K+L,
in the noisy case. The property of wrap-invariance
introduced in this paper ensures that the effect of
such an error on the phase of the resulting RSC solu-
tion τRSC is either: merely a benign integer multiple
of 2π (c.f. Section 2.2), or a linear gradient in the
estimated Fourier phases, which is equivalent up to
an extra image shift (c.f. Section 4) in the recon-
structed image. In order to develop conditions for
wrap-invariance as they relate to pattern design, we
must first characterize the effect of the residual wrap
error on the RSC least-squares solution. This is the
aim of the next section.

2.2 Quantifying the Effect of the Fundamental
Ambiguity

Let us now quantify the effect of this unresolved
wrap error on the ultimate least-squares solution,
which can be accomplished in two easy steps. Follow-
ing standard least-squares principles, we first find

3 Without loss of generality, we have selected eh = 0 in Equation

(9) so as to simplify the diagram
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Figure 5. Illustration of the fundamental ambiguity of 2π-periodicity in RSC imaging. Distinct unwrappings β̂∗ and β∗0 both produce

solutions to Equation (4) in the noiseless case, as do their respective projections onto K + L, β̂∗K+L and β̂∗0,K+L , in the noisy case.

the projection β̂∗K+L of the unwrapped β̂∗ onto K + L
whose weighted distance from β̂∗ is minimized. Note
that the e∗

h
term in β̂∗ is already in K + L and hence

unchanged by projection. Hence we obtain:

β̂∗K+L =W−
1
2 (I − PW )W

1
2 β̂∗ = β∗0,K+L + 2πe∗h (12)

where β∗0,K+L is the projection of β̂∗ onto K + L. We then
solve the system:

M

[
θ

φ

]
= β̂∗K+L (13)

As aforementioned, M is rank-deficient (by 3),
and hence there will be infinitely-many solutions
to this system. Successful recovery of the Fourier
phases modulo 2π requires a solution preserving the
integrality of the error term e∗

h
. In this case, we ob-

tain a final RSC solution 2πc away from the true
solution for some integer vector c. To achieve this, we
rely on the integer matrix decomposition known as the Smith
Normal Form, which is described in the following Theorem
and Lemma:
Theorem 2.2 (Smith Normal Form) (Smith 1861): Let A
be a nonzero m × n integer matrix with rank r. There ex-
ist integer and unimodular 4 (and thus invertible) matrices
m × m and n × n matrices U and V respectively such that
the matrix product D = UAV is a diagonal matrix whose
diagonal entries Dii (the so-called elementary divisors) are
non-zero integers for i ≤ r, and zero for i > r.
Lemma 2.3 (Elementary Divisors) (Smith 1861):
The product of the elementary divisors is the great-
est common divisor (gcd) of all r × r minors of A.

The proof of the Theorem and Lemma above can be
found in textbooks such as Newman (1972). �

Let us compute the Smith Normal Form (SNF) {U,D,V}

4 A unimodular matrix is one whose determinant is ±1

of our matrix M. Let UM = U−1 and VM = V−1 so that
we can write:

M = UMDMVM (14)

where the r diagonal elements {di } of DM are the elementary
divisors of M.

We can now re-write Equation (13) above as:

DMVM

[
θ

φ

]
= U−1

M β̂∗K+L (15)

Let us choose the following particular solution to Equa-
tion (15):

τRSC = V−1
MD+MU−1

M β̂∗K+L (16)

where D+M denotes the pseudo-inverse of D. The resulting
error is then:

eRSC = V−1
MD+MU−1

M e∗h (17)

Lemma 2.4: Let u = U−1
M e∗

h
. The residual wrap error eRSC

equals ~0 mod 2π if and only if mod (ui, di ) = 0,∀i ≤ r. The
proof of this Lemma is an adaptation of a standard proof
which can be found in most textbooks covering linear Dio-
phantine equations (see, e.g. Newman (1972)). �

From this Lemma, the following Corollary is clear:
Corollary 2.5 (Sufficient condition on SNF of RSC
matrix for wrap-invariance): If the elementary divisors
of the measurement matrix M corresponding to a certain
aperture pattern are all 1, the RSC solution defined by τRSC
is immune to phase-wrapping error.
�

RSC patterns consisting of apertures placed randomly
on a Cartesian grid appear to satisfy this sufficient condition
with high probability. We conducted a simple experiment
in which 15 apertures were randomly placed on a 10 × 10
grid. Out of 256 placements, 66 were valid RSC patterns
(i.e. possessed at least critical redundancy), and of these,
only 2 had non-unity elementary divisors.
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Figure 6. Distinction between spanning tree baselines (thick,

solid) and loop entry baselines (thin, dotted)

2.3 Relation to closure-phase approaches

The SNF has been been applied to the RSC phase prob-
lem before (Lannes 2003). Whereas we have chosen to ap-
ply SNF directly to the baseline measurement matrix, the
approach taken by Lannes (2003) is to instead treat the
piston-invariant phases of the bispectra (the so-called clo-
sure phases) as the fundamental observables from which the
object phases can be inferred via the relation:

Co→c~θ = ycl + 2πecl (18)

where ycl are the wrapped closure phases, ecl is the corre-
sponding wrap vector, and Co→c is the matrix mapping the
distinct object phases in the array to closure phases. Lannes
(2003) hence applies the SNF to the closure matrix Co→c . By
direct analogy to Corollary 2.5, note that if the elementary
divisors of Coc are all 1, then the RSC solution is immune
to phase-wrapping error. Using closure phases as observables
can be advantageous in low-light scenarios in which there is
not sufficient SNR in a single atmospheric coherence time
to reliably measure the baseline phases. To overcome this
low per-frame SNR, atmosphere-invariant observables such
as the bispectra can be integrated over many frames to build
sufficient SNR, and their respective closure phases used as
reliable phase measurements. Since the baseline phases are
known modulo 2π, the linear combinations of them which
comprise the closure phases are also known modulo 2π. In
order to relate this condition to Corollary 2.5, let us first
define another closure matrix Cm→c which instead maps the
phase measurements to closure phases. This mapping con-
sists of equations of the form:

y123 = β12 + β23 − β13 (19)

where y123 is the closure phase associated with apertures
1, 2, and 3, and the βi j are the associated baseline phases

(see Equation (1)). Of the
(
n
3
)

possible closure phases, at

most
(
n−1

2
)

can be linearly-independent (see e.g. Readhead
et al. (1988)). One commonly-chosen set of such linearly-
independent relations consists of all the closure triangles
involving a given aperture A, and this is the set selected
by Lannes (2003). Cm→c is therefore an

(
n−1

2
)
×

(
n
2
)

matrix.
Lannes (2003) accordingly provides a convenient grouping of
the baselines into two categories: (1) spanning tree baselines
which connect aperture A to all other apertures, and (2) loop
entry baselines which provide the closure for these spanning
tree baselines. This categorization is depicted in Figure 6.

Given this categorization, we can decompose Cm→c into
corresponding blocks as:

Cm→c =

[
Ĉm→c I(n−1

2 )
]

(20)

where Ĉm→c contains the spanning tree contributions to the
matrix (which appear in multiple closures), and I(n−1

2 ) is the(
n−1

2
)
×
(
n−1

2
)

identity matrix representing the loop-entry con-
tributions (each of which appears in only one closure). The
following property follows from this block form expression:
Lemma 2.6: The elementary divisors of Cm→c are all 1.
Proof: Since we have chosen a linearly-independent subset
of closure relations, r = rank (Cm→c ) =

(
n−1

2
)
. There exists

a r × r minor (namely, I(n−1
2 )) which is equal to 1. Therefore

the gcd of all r × r minors is 1, and therefore from Lemma
2.3 (Elementary Divisors), all elementary divisors must be
1. �

Let us now relate Cm→c to the matrix Co→c used by
Lannes (2003). Recall from the discussion of bispectra in Sec-
tion 1 that the closure relations eliminate piston differences
in the measurements so that Cm→c annihilates the subspace
L, i.e. the space spanned by the columns of M correspond-
ing to ~φ. Defining Mθ as the submatrix of M containing the
columns corresponding to ~θ, we have

Cm→cM

[
θ

φ

]
=

[
Co→c 0

] [
θ

φ

]
(21)

where Co→c = Cm→cMθ . Co→c is an
(
n−1

2
)
× d matrix which

is rank-deficient by two 5.
Then by direct analogy to Equation (13), we can obtain

valid RSC object phase solutions by solving:

Cm→cM

[
θ

φ

]
=

[
Co→c 0

] [
θ

φ

]
= y∗cl + 2πe∗h,cl (22)

where y∗
cl

is the true unwrapped closure vector and
2πe∗

h,cl
is the residual integer wrapping error vector after

applying the Babai NP algorithm to solve the CVP problem
associated with matrix Cm→cMθ and 2πecl . Note that if we
find a vector ~θ∗ satisfying Equation (22), it will clearly also
satisfy the relation Co→c~θ

∗ = y∗
cl
+2πe∗

h,cl
of Lannes (2003).

Note furthermore that we can solve the equation above in
two separate integer-preserving steps of the form of Equation
(16), the first involving the SNF decomposition of Cm→c ,
and the second involving that of M. Since the elementary
divisors of Cm→c are all 1 by construction (by Lemma 2.6)
and hence the first step is thus integer-preserving, wrap-
invariance again amounts to whether or not all elementary
divisors of M are 1. Therefore we have the following Propo-
sition relating wrap invariance for closure measurements to
that for raw phase measurements:

Proposition 2.7 (Sufficient condition for wrap-
invariance of closure-based RSC): If the elementary di-
visors of the phase measurement matrix M are all 1, then
the closure-based RSC solution will be wrap-invariant. �

We remark in passing that although the preceding anal-
ysis was presented in the context of the traditional three-
aperture closure, it applies directly to the case of closures
involving an arbitrary number of sides. As an example, con-
sider the pattern shown in Figure 7. A spanning tree for
the pattern consisting of the short baselines in an array is

5 To see this, note that each solution set to Equation (18) above
remains valid after replacing each θi j with θ

p
i j = θi j − z · (r j − r i )

MNRAS 000, 1–14 (2015)



8 B. G. Kurien et al.

Figure 7. Bootstrapping phase of a low-SNR baseline (green)
with subset (blue) of high-SNR baselines from spanning tree base-

lines (black)

depicted. Let {φsp } denote the aperture phase differences in
these n − 1 spanning tree baselines. Note that all aperture
phase differences in the array can be expressed as linear com-
binations of the {φsp }. If the aperture phase differences are
known reliably via measurements of the spanning tree base-
lines, we can use these measurements to cancel the aperture
phase differences in all other measurements (of which one ex-
ample is shown in green). The idea of using such generalized
closure phases (Martinache 2010) is indeed the mathemati-
cal foundation for the promising technique known as baseline
bootstrapping in which high-fidelity phase measurements of
several high-SNR baselines (typically the short baselines) to
cancel the atmosphere on each lower-SNR (and hence lower
fidelity) baseline.

Note that for an arbitrary n-aperture pattern, there
will in general be n − 1 spanning tree baselines and thus(
n
2
)
− (n − 1) =

(
n−1

2
)

generalized closures, each involving a
distinct closing (or loop-entry) baseline. Therefore the re-
sulting measurement matrix can be expressed exactly as in
Equation (20) above and hence the preceding analysis holds.

While this section has considered a few possibilities
for phase observables, relating mathematical conditions for
wrap invariance to a physical condition on aperture place-
ment is more intuitive when considering the raw phase mea-
surements as opposed to their closures. For this reason, for
the remainder of the paper we will work directly with the
baseline phases and their associated wrapping errors. In par-
ticular, we will begin by connecting these wrapping errors
with analogous ambiguities in recently-developed phasor-
based approaches.

3 IMPLICATIONS OF WRAP AMBIGUITIES
ON PATTERN DESIGN

In this section we use the mathematically-sufficient condi-
tions for wrap invariance from the previous section to show
that aperture patterns whose interferometric graph satisfies
a certain loop-free condition are wrap-invariant. Here we
define the interferometric graph in the standard way: it is
simply the graph formed by connecting the array’s apertures
(the nodes of the graph) with edges representing the array’s
baselines.

This condition is founded on the Lemma 2.3 (Ele-
mentary Divisors) in Section 2 and the following defi-

nition of the matrix determinant. This definition is given in
many linear algebra texts (see e.g. Bretscher (2001)).

Definition 3.1 : Suppose we have an n×n matrix A. Define
a pattern as a selection of n entries of the matrix in which
there is only one chosen entry in each row and one in each
column of the matrix. Furthermore, we denote a pair of num-
bers in a pattern as inverted if one of them is located above
and to the right of the other. Then we can obtain the deter-
minant of A by summing the products associated with all
patterns with an even number of inversions and subtracting
the products associated with all the patterns with an odd
number of inversions.

Consider a r × r sub-matrix M̃I consisting of a set I
of linearly-independent rows in M and d + N − 3 linearly-
independent columns. Our goal will be to find conditions
under which such a sub-matrix contains only one pattern
with a non-zero product, in which case the determinant will
be ±1 from the definition above. This will guarantee, by
the Lemma 2.3 (Elementary Divisors) of the previ-
ous section, that the elementary divisors of M are
all 1, which will in turn ensure that the error in the
RSC solution τRSC will be 0 mod 2π by Corollary 2.5.

Consider one such M̃I and note that within the fully-
connected interferometric graph associated with M, we can
identify a sub-graph G containing only the measurements
in M̃I . This will be done by sequentially identifying those
matrix entries which must be part of a pattern with a non-
zero product. Note that some of these special entries from
the matrix M̃I can be identified immediately. Namely, all
non-redundant measurements contain a singleton ±1 in the
column associated with their object phase. All non-zero pat-
terns must clearly contain this ±1 and so we can select these
singleton object-phase entries as guaranteed participants in
a non-zero pattern. Moreover, all measurements containing
a leaf node (i.e. a node with a single connection) in G contain
a singleton ±1 in the column associated with their leaf node.
All non-zero patterns must clearly contain this ±1 as well.
Thus we can also select these leaf node entries as guaranteed
participants in a non-zero pattern.

There may be cascading implications of such single-
ton measurements. To illustrate this, consider the scenario
shown in Figure 8. A simple RSC array is shown on the
left. A subset of the baselines in one possible linearly-
independent sub-matrix MI is depicted. Here we intention-
ally defer selection of the arbitrarily-set phases until later
for purposes of generality. A simplified depiction of the ma-
trix MI is shown in which all non-zero entries have been
colored black and all zero entries have been colored white
for simplicity. In Step A of the reduction process, object
phase θ5 is selected for participation (i.e. its matrix entry
factored as common to all non-zero patterns) since it is a
singleton object phase. Its corresponding row (i.e. row 5)
in MI is then eliminated from participation since the re-
maining entries in this row cannot participate in a pattern
(by definition of a pattern). In Step B, the aperture 6 en-
try φ6 in row 5 is selected since it has become a leaf node
in the pattern, and row 5 can then be eliminated. Then in
Step C, object phase θ4 is then selected by virtue of becom-
ing a singleton object phase, and row 4 is then eliminated.
This selection/elimination process can be repeated beyond
the steps shown in the Figure, until either no leaf nodes and
singleton object phases remain, or there are no baselines left
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Resolving phase ambiguities in RSC-based array calibration 9

to eliminate. We formalize the pattern reduction process in
Algorithm 1 below.

Algorithm 1 Pattern Reduction Algorithm

Require: R {where R is the set of the baselines corre-
sponding to MI , where I denotes the indices of a linearly-
independent subset of d + N − 3 rows of M}
while |R| > 0 do

1. Leaf Nodes
1.1 remove any remaining baselines containing leaf
nodes from R
1.2 add the associated apertures to the list N
2. Singleton Object Phases
2.1 remove any remaining baselines containing singleton
object phases from R
2.2 add the associated object phases to the list O
if no baselines removed in the current iteration then

return PERSISTENT
end if

end while
return LOOPFREE

We can see that any baseline in an interferometric graph
which does not belong to a loop will be eliminated in the
reduction process, and its corresponding matrix entries fac-
tored. The only structures in the graph that persist after this
reduction are sets of loops with a certain property. Namely
we define a persistent loop set as a set of loops that contains
at least two instances of every baseline contained in the set.
(A set can consist of any number of loops, including one).
With this definition, absolute invariance may be possible if
the graph of the redundant baselines does not contain any
persistent loop sets. Algorithm 1 returns PERSISTENT if
persistent loops exist and LOOPFREE if the pattern is com-
pletely reduced and therefore free of persistent loops.

Note that in the latter case, we will have eliminated
r rows from MI . Since each baseline elimination is associ-
ated with object phase or aperture selection from distinct
columns, and MI contains r + 3 columns, there will be ex-
actly three extraneous columns not involved in the reduction
process. The r × r submatrix obtained by selecting the non-
extraneous columns (i.e. those corresponding to the selected
object phases and leaf nodes in O and N , respectively) will
then have a determinant of ±1 by virtue of having a
single non-zero pattern revealed by the reduction process.
Having ensured the existence of a unit r × r minor, the gcd
of all r × r minors must be 1. We have hence con-
firmed the elementary divisors must be all 1, and
thereby ensured that the pattern is wrap-invariant
(c.f. Lemma 2.3 (Elementary Divisors), and Corol-
lary 2.5). We summarize the sufficient condition as follows:

Proposition 3.2 (Sufficient conditions on aperture
pattern for wrap-invariance): Consider the graph of an
aperture pattern which contains d distinct baselines and any
set of N −3 linearly-independent redundant baselines. If this
graph does not contain persistent loop sets (in the sense de-
fined above), the matrix M̃I formed by these independent
measurements will have determinant ±1. As a result Corol-
lary 2.5 will hold, thereby guaranteeing that RSC
solution τRSC will be invariant to wrapping of the
phase measurements.

We have hence arrived at a a physical definition
of a wrap-invariant pattern. We now apply Algorithm 1
to the example pattern shown in Figure 2. Algorithm 1 re-
duces the pattern to the persistent loop set shown in Figure
9.

The elementary divisors of the pattern’s measurement
matrix are not all 1; they are all 1 except for a singleton 3
and hence det(M̃I ) mod 3 = 0 for all choices of M̃I .

Having traced the distortion induced by phase wrapping
to physical property of the array itself, we now return to
Figure 3. The lower left panel shows the reconstruction result
with the SNF-based Phase method described in Section 2.
The closure phase approach yields the same corruption in
reconstruction, as the elementary divisors of Coc are also all
1 except for a singleton 3.

There are several simple ways to amend this pattern
so that it is wrap-invariant. While the most intuitive of
these involve moving the apertures involved in the persis-
tent loop shown in Figure 9, these approaches leave gaps in
the UV-sampling pattern. An alternate approach that pre-
serves the UV-sampling is to add an aperture to the center
of the pattern as shown in Figure 10. This results in addi-
tional linearly-independent redundancies colored in blue and
green, respectively, in the Figure. These additions replace
baselines in the persistent loop, allowing this loop to be bro-
ken. With wrap-invariance, reconstruction results match the
true image in both the phase and phasor approaches as re-
spectively shown in Figure 11. In the top row, reconstruction
results are displayed for the phase (left) and phasor (right)
approaches for the noiseless case. The image distortion
present in Figure 3 has been completely eliminated
by tweaking the pattern so that it is wrap-invariant.
Analogous results for an SNR of 25 dB are displayed in the
bottom row. Here we define SNR as the ratio of the phasor
magnitude at visibility 1 (i.e. zero spatial frequency) to the
standard deviation of the noise, which we have assumed to
be complex Gaussian and i.i.d. across spatial frequency for
this simulation.

4 WRAP-INVARIANCE AND PRACTICAL
RSC CALIBRATION

In previous sections we established that the Phase
Approach can be made robust to phase-wrapping us-
ing the Smith Normal Form (SNF) and algorithms
from lattice theory. Moreover, the SNF provided
a mathematical framework for the notion of wrap-
invariance. From a practical standpoint, however,
computation of the Smith Normal Form is likely to
become a computational burden for large arrays, as
in those under current consideration with Nap ≈ 102

and n ≈ 104 baselines (Zheng et al. 2014). Techniques
not requiring such a computation are hence of strong
practical interest. In this section we show that the
wrap-invariance property checked by Algorithm 1
provides a certificate for reliable reconstruction with
such techniques, in the presence of the fundamental
2π-periodicity of interferometric measurements.
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10 B. G. Kurien et al.

Figure 8. Example: Reducing an aperture pattern and associated matrix to identify Persistent Loop(s)

Figure 9. Persistent Loop set at center of pattern in Figure 2

Figure 10. Amended Pattern

Existing Apertures
Added Aperture
Loop-Eliminating Baseline Pair 1

Loop-Eliminating Baseline Pair 2

4.1 Practical Phase Approaches

Our approach here will rely upon the well-known Singular
Value Decomposition (SVD) of the measurement matrix M,
which is given by:

M = UσΣσVσ (23)

in which Uσ and Vσ are m × m and (d + N ) × (d +
N ) orthogonal matrices, respectively. Σσ is a m × (d + N )

Figure 11. Reconstruction Results for Amended Pattern

Phase Approach (Noiseless) Phase Approach (SNR = 25 dB)

diagonal matrix with r non-zero diagonal entries (the so-
called singular values of M), where r = rank (M) = d + N − 3.
Lemma 4.1: The final 3 columns of Vσ form a basis for the
nullspace of M.
Proof: This follows from the fact M is rank-deficient by 3,
and standard properties of the right singular vectors com-
prising Vσ in the SVD. (Bretscher 2001) �

Now recall that in Section 2, we provided an one par-
ticular, SNF-based, solution to Equation (13). Here we in-
stead consider the complete set of solutions to this Equation,
which is given by:

τσ =M+( β̂∗0,K+L + 2πe∗h ) + τ0 (24)

where τ0 is any vector in the nullspace of M, and M+

denotes the pseudo-inverse of M, whose matrix elements are
derived directly from the SVD above.

M+ = VσΣ+σUT
σ (25)

where Σ+σ is a (d + N ) ×m diagonal matrix whose r non-
zero diagonal entries are the reciprocals of the corresponding
non-zero entries in Σ+σ .

Typically Phase Approach techniques implicitly select
a particular solution from the family of solutions in Equa-
ton (24) via augmenting the matrix M with additional con-
straints. The most common among these (Wieringa 1992)
(Wijnholds & Noorishad 2012) is to enforce that:

∑
φ = 0,∑

φir i = 0 , where r i is the vector position of the i-th aper-
ture in the array.

Note that the error resulting from application of this
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pseudo-inverse to the unwrapped measurement vector will
be given by:

2πeσ =M+(2πe∗h ) (26)

Recall that the error vector eσ has two parts: one for
the error in the atmosphere/piston (which we will denote
with the index L), and one for the error in the Fourier phases
(which we denote with the index K), i.e.:

eσ = [eσ,L, eσ,K ]T (27)

We will focus attention on the latter, since it is of direct
relevance for image formation. Let us express the spatial
frequencies measured by an array as two-element vectors of
the form (ωx, ωy ). Let X be the d×2 matrix containing these
spatial frequencies. Note then that the phase-wrap error will
manifest itself merely as an image shift if and only if this
error is a (modulo-2π) phase ramp, i.e. there exists a 2-
element shift vector z and an integer vector k which together
satisfy:

2πeσ,K − 2πXz = 2πk (28)

Substituting from Equation (26) we obtain:

M+K (2πe ) − 2πXz = 2πk (29)

where M+K denotes the sub-matrix of M+ formed by the
rows associated with K .

Dividing through by 2π we obtain the equation: M+Ke∗
h
−

Xz = k . Note that each element of M+K can be expressed

as some rational number
pi
qi

. Similarly we first assume X
contains rational spatial frequencies with greatest common
denominator qx . Then we can multiply through by the least-
common-multiple (LCM) of the {qi } and qx to obtain a sys-
tem of equations whose coefficients are guaranteed to be
integer (i.e., we have a linear Diophantine system). Let this
LCM be denoted as l. Then we have, after rearranging terms,

lXz = l (M+Ke∗h − k ) (30)

We now wish to determine conditions under which there
exist vectors k and z satisfying this overdetermined Dio-
phantine system. Applying the Smith Normal Form decom-
position (c.f. Theorem 2.2) to the matrix lX this time, and
noting that rank (X) = 2, we have:

DX = UX(lX)VX (31)

where UX and VX are unimodular matrices of size m×m
and 2 × 2, respectively, and DX is a rectangular diagonal
matrix whose entries are zero below row 2.

If we left-multiply Equation (30) by UX on both sides,
we obtain:

lUXXz = lUX(M+Ke∗h − k ) (32)

Using Equation (31) and the fact that VX is a unimod-
ular (and hence invertible) matrix, we can then write:

DXV
−1
X z = l (UXM

+
Ke∗h −UXk ) (33)

We are now in position to prove the main result of this
section, which is preceded by the following Lemma:
Lemma 4.2: Given wrap-invariance, the (column) vector
UXM

+
Ke has integer entries below row 2.

Proof : (see Appendix) �
Proposition 4.3: If a pattern is wrap-invariant (in the sense
of Section 3), reconstruction error induced by phase wrap-
ping is limited to an image shift.
Proof : We re-arrange the Equation (33) above so that it
reads:

1
l
DXV

−1
X z −UXM

+
Ke∗h = −UXk (34)

Let v = 1
lDXV

−1
X z − UXM

+
Ke∗

h
. Note that since DX is

zero below row 2, the entries of v below row 2 will be equal
to those of (−UXM

+
Ke∗

h
), which are integers by Lemma 4.2.

Now consider the first and second entries of v . Let f be
the vector containing the fractional parts of the first two
elements of vector UXM

+
Ke∗

h
, and let A be the invertible

matrix consisting of the first two rows of 1
lDXV

−1
X . Without

loss of generality choose z ∗ = A−1f so that the fractional
part f is annihilated, leaving only integer elements in the
first two entries of v . Hence we now have:

v = −UXk (35)

with v ensured to contain only integer elements. Since
UX is unimodular, the vector k∗ = −U−1

X v will be integral.
We have thus found a pair (z ∗, k∗) with integer k∗ which
satisfies the Equation (33). Since Equation (33) is related
to Equation (30) via a unimodular (and hence invertible)
mapping UX, invariance is hence proven. �

With the previous result, we have characterized the
complete family of Phase Approach solutions given in Equa-
tion (24). Namely we have shown that, for a wrap-invariant
pattern, the family differs by at most an image shift from the
true solution. Returning to our running example in Figure
10, we verified that different solution choices from the family
given in Equation (24) simply resulted in shifts of an other-
wise pristine image in the reconstruction. On the other hand
with wrap-variant pattern in Figure 2, image distortion of
the severity of Figure 3 was again observed, as expected.

4.2 Practical Phasor Approaches

Though traditional treatments employ the phase approach
of the previous section which operates on baseline phases,
recent papers (e.g. Marthi & Chengalur (2014), Liu et al.
(2010)) have shown that approaches which operate at
the phasor level can be superior in accuracy. Liu
et al. (2010) developed a Gauss-Newton-type Non-linear
Least-Squares (NLS) solver and showed it produced un-
biased phase estimates, in contrast with the biased ones
provided by the phase approach. Marthi & Chengalur
(2014) and Wijnholds & Noorishad (2012) have also
proposed low-complexity phasor-based approaches
and demonstrated performance near the Cramer-
Rao Bound. Though the capacity of the Phasor approaches
to produce superior accuracy relative to Phase approach has
been demonstrated, the former’s convergence issues can be
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mitigated via initialization with the results of the latter (see
e.g. Liu et al. (2010), and Zheng et al. (2014)).

The implementations of the Phasor Approach
typically employ the following measurement model:

Vi j = gig
∗
j fi j + ni j (36)

where Vi j is the complex visibility observed between aper-

tures i and j, gi = |gi |e jφi and gj = |gj |e jφ j are the complex
gains of these apertures, fi j is the true complex visibility
measured by this pair, and n is complex measurement noise.
Note that the phase difference between gi and gj is sim-
ply the optical path difference between apertures i and j
introduced in the previous section. Given this model, NLS
approaches attempt to find a set of complex phasors {gi } and
{ f } which minimize an objective function of the form:

Λ =
∑
i

∑
j>i

wi j | |(Vi j − gig∗j fi j )(V∗i j − g
∗
i gj f ∗i j ) | | (37)

Minimization of Λ with respect to the unknowns (i.e.
distinct object and antenna complex gains) can be accom-
plished with iterative application of the following
updates, as reported by Marthi & Chengalur (2014) in the
context of radio interferometry, and by Lacour et al. (2007)
in the context of optical interferometry:

gk =

∑
j,k wk jgj f ∗

k j
Vk j∑

j,k wk j |gj |
2 | fk j |2

(38)

fb =

∑
j>k g

∗
k
gjVk j∑

j>k wk j |gk |
2 |gj |

2 (39)

where the { fb } are the true complex visibilities of the distinct
object phases in the array.

Due to the circularity of these definitions, these equa-
tions must be solved iteratively. Starting from an initial
guess for all phasors, Equation (38) is solved to obtain a
better estimate for the {gk } and then these {gk } are used to
obtain refined estimates of the { fb } through Equation (39).
In the next iteration, these { fb } are used to further refine
{gk }, and so on.

Though there are other means of minimizing ob-
jectives of the form Λ (Wijnholds & Noorishad 2012)
(Liu et al. 2010), we omit discussion of them here;
our present purpose is to characterize the correct-
ness of the solutions themselves, regardless of how
they are obtained. As has been noted before (see e.g.
Lannes & Anterrieu (1999)), there are strong connections
between phase- and phasor-based approaches. To see this,
let z be the vector of products {gig

∗
j f |i−j | } which minimize

Λ. We rewrite Equation (37) as:

Λ =
∑
i

∑
j>i

wi j | |(Vi j − zi j )(V∗i j − z∗i j ) | | (40)

Define ri j = e j2πni j zi j for an arbitrary integer ni j and r
as the vector containing the ri j .

Note that r also minimizes Λ since the rotations
{e j2πni j } do not change the values of the residuals in Λ.
Hence any set of rotated phasors {g̃i } and { f̃ |i−j | } whose

Figure 12. Reconstruction Results for Phasor Approach

Phasor Approach (Noiseless) Phasor Approach (SNR = 25 dB)

products produce the vector r will also minimize Λ. Note
that the set of such valid phase vectors (i.e. the concatena-
tions of possible {∠g̃i } and {∠ f̃ |i−j | }) includes the complete
family of Phase-approach solutions τσ in Section 4.1 with
β̂∗K+L = ∠r (where ∠r is the vector of the phases of the com-
plex vector r). In other words, the valid phase compo-
nent of the phasor approach solutions is not unique,
and the minimization of Λ admits the same solution
ambiguity depicted in Figure 5. Hence we see that
integer ambiguities present in the phase approach do not dis-
appear in the phasor approach; in fact, the unwrapped can-
didate solutions of the phase-based approach correspond to
global minima of the phasor-based objective. In practice
Phasor Approach techniques may converge to any
one of these minima. Hence the critical issue for re-
liable image reconstruction is again the nature of the
difference between these valid minima and the true
solutions. Based on the connections we have drawn
with Phase-approach solutions above, the following
Proposition is clear:

Proposition 4.4: If a pattern is wrap-invariant, the global
minima of the Phasor-Approach objective caused by the in-
herent 2π-periodicity in the objective’s residual differ from
the true solution merely by an image shift.

In practice we see that, as in the Phase approach, if
the pattern is not wrap-invariant, the Phasor Approach suf-
fers from false global minima producing severe distortion in
the resulting reconstruction. The lower right panel of Fig-
ure 3 shows the resulting reconstruction produced by the
Phasor method using the updates in Equations (38) and
(39). To show the correspondence in solutions between two
types of approaches, we provided the result of the Phase
approach as the initial point for the Phasor approach as is
common in practice (Liu et al. 2010), (Zheng et al. 2014).
Indeed this point is a global minimum of Λ which
the updates above cannot escape, and as a result we
observe virtually-identical distortion to that of the
Phase approach.

We repeated the experiment with the wrap-
invariant pattern in Figure 10, and as expected,
the results were pristine in the noiseless case and
virtually-identical to those of the Phase approach
in the noisy case. For completeness the results are
given in Figure 12.

As expected, different initializations of the up-
dates in Equations (38) and (39) simply resulted in
shifts of an otherwise pristine image in the recon-
struction.
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5 CONCLUSIONS

In this paper, we have examined the ambiguities caused
by the 2π-periodicity of interferometric phase in Redundant
Spacing Calibration. In particular we have described their
fundamental presence in existing RSC methods whether
the observables considered are the measured baseline pha-
sors or their phases. In the former, e.g. by Greenaway
(1990), they are manifested as phase-wrapping er-
rors, and in the latter, e.g. by Marthi & Chengalur
(2014), as false minima. We have demonstrated that
in either case, these ambiguities can result in notice-
able distortion of the reconstructed image.

Using the Closest-Vector-Problem formulation
of the unwrapping problem due to Lannes & An-
terrieu (1999), we have developed the notion of a
wrap-invariant pattern. For wrap-invariant patterns,
the impact of the 2π-periodicity can be completely
eliminated (c.f. Section 2) using well-known algo-
rithms from lattice theory and the Smith Normal
Form, and reduced to a mere image shift (c.f. Section
4) when existing, fast approaches are used. Phase-
approach solutions (Arnot et al. 1985), (Greenaway
1990), (Wieringa 1992), (Lannes & Anterrieu 1999))
are commonly used to quickly obtain an initial point
to aid in the convergence of the Phasor approach.
They are obtained by selecting specific solutions
from the general family in Equation (24) via enforce-
ment of additional constraints on the solution. Pha-
sor approaches seek those complex gains and object
visibilities which minimize a squared-residual with
respect to the observed complex visibilities (Wijn-
holds & Noorishad 2012), (Liu et al. 2010), (Marthi
& Chengalur 2014) using, for example, gradient-
descent methods. We have seen that the same 2π-
ambiguity which creates a family of Phase-approach
solutions also produces a corresponding family of
global minima in the Phasor approach. For either
case, our results show that for wrap-invariant pat-
terns, this family represents merely shifted versions
of the true image. We have also extended this analy-
sis to show that wrap-invariant patterns admit reli-
able imaging using standard, and generalized, phase
closures. Conversely we show that patterns which
are not wrap-invariant can suffer from distortion of
the sort depicted in Figure 3.

The prognosis for mitigation of the ambiguity
issues raised in this paper is quite positive. Ran-
dom patterns appear to satisfy the wrap-invariance
condition with high probability. Moreover, failure
to meet this condition amounts to the existence of a
particular kind of cycle in the interferometric graph
which can be easily isolated; a chief contribution of
this paper is a simple algorithm for identifying such
cycles so that they can be removed by the array
designer. Finally, we have shown an example exe-
cution of the algorithm to diagnose a member of
a popular pattern which is not wrap-invariant. It is
clear that with careful array design, both Phase- and
Phasor-based RSC techniques can reliably produce
quality image reconstructions free from discernible
artifacts.
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APPENDIX A: PROOF OF LEMMA 4.2

In this section, we prove Lemma 4.2, which states the fol-
lowing:

Given wrap-invariance, the (column) vector UXM
+
Ke∗

h
has integer entries below row 2.

Given that we have a wrap-invariant pattern, we know
that the elementary divisors of M are all 1. Hence there
exists an integer vector k0 such that:

e∗h =Mk0 (A1)

Substituting Equations (A1) and (25) into Equation
(26), we obtain:

eσ = VσΣ+σUT
σUσΣσVT

σk0 (A2)

Noting that Uσ is orthogonal, this equation can be sim-
plified to

eσ = (Vσ −N)VT
σk0 (A3)

where N is a matrix of the same size as Vσ , which is zero
except for the last three columns. These last three columns
are identical to those of Vσ , and hence by Lemma 4.1 com-
prise an orthogonal basis for the nullspace of M. Noting the
orthogonality of Vσ , this can be further simplified to:

eσ = k0 −NVT
σk0 (A4)

To proceed, the following Definition will be useful:
Definition A.1 (The canonical basis for the

nullspace of M): The canonical basis {w i }, i ∈ 1, 2, 3 for the
three-dimensional nullspace of M can be derived trivially
from the well-known tilt-position degeneracy in interferom-
etry described in Section 2.1.1 (Wieringa 1992). Namely, we
can define the basis as the columns of a (N + d) × 3 matrix
Wker (M) as follows:

Wker (M) = {w1 |w2 |w3} =

[
1N×1 r x ry

0 ∆r x ∆ry

]
(A5)

where r x and ry are the x− and y−positional coordi-
nates of the apertures associated with each row, respectively,
and ∆r x and ∆ry their respective pairwise differences. �

Note that each of the three non-zero column vectors
{vk }, k ∈ 1, 2, 3 in N can be expressed as a linear combinations
of the elements of the canonical basis {w i }, i ∈ 1, 2, 3 defined
above, i.e.

vk = a1w1 + a2w2 + a3w3 (A6)

As in Section 4, let us again use K to denote the set of
indices in eσ associated with the Fourier phases (as opposed
to the piston phases), and their corresponding rows in N.
Hence we have:

UXeσ,K = UXk0,K −UXNKVT
σk0 (A7)

Since UX is an integer matrix, the first term is clearly
integral. Let us then examine the second term, and in par-
ticular, the product UXNK . By substitution from Equation
(A6), we see that or any of the three non-zero columns vK,k

of NK , we have:

UXvK,k = a1UXw1,K + a2UXw2,K + a3UXw3,K (A8)

where {w j,K } are the vectors comprising the lower par-
tition of Equation (A5). The first term in Equation (A8) is
trivially 0 since that w1,J is the zero-vector. Now recall that
UX is a matrix which annihilates all the spatial frequencies
in the matrix X below row 2. But from Definition A.1, these
spatial frequencies are identically the contents of the two
columns w2,K and w3,K (up to a uniform scaling factor).
Therefore the column vector in Equation (A8) is zero below
row 2. This means in turn that the second term in Equation
(A7) is zero below row 2, and hence that UXeσ,J is integral
below row 2 (since the first term is integral). �

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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