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Abstract—A new method for generating digital noise-like
spread spectrum signals is proposed. A standard binary
keystream is used to generate a sequence of chips according
to a Gaussian-like chip amplitude distribution for spreading
sequences. The properties of these spreading signals are inves-
tigated as a function of the number of discrete amplitude levels
and number of chips per symbol. The similarities between the
generated signals and random Gaussian signals are evaluated
based on higher-order moments. Implementation considerations,
such as peak-to-average power ratio and amplifier backoff are
also considered.

I. INTRODUCTION

In order to increase security and capacity, interest has
grown in employing signals that are noise-like (e.g., [1]).
Direct sequence spread spectrum (DSSS) signals provide
benefits such as protection against jamming, low power-
spectral density to facilitate coexistence with other systems,
and increased difficulty for detection by unauthorized users [2].
Along with the benefits of a traditional direct sequence spread
spectrum signal, noise-like DSSS provides improved security
as well as additional multiple-access capability in certain cases
due to an increased randomness in the signal [3],[4]. However,
noise-like signals in general have increased implementation
complexity, potentially large peak-to-average power ratios, and
non-constant energy per bit.

The effects of these drawbacks vary depending on the
construction of the signal. A variety of methods have been
proposed to generate these noise-like sequences. A few exam-
ples of this include chaotic circuits, m-sequences, and discrete
chaotic maps [4],[6]. These methods for generating pseu-
dorandom noise sequences can produce a variety of output
distributions based on their parameters. In some cases these
chaotic sequences can generate large numbers of sequences all
with low cross-correlations making them ideal for achieving
increased capacity [6].

In this paper, a method for digital construction of multi-
amplitude direct sequence spread spectrum signals is proposed.
The realization of amplitude sequences is driven by a standard
binary keystream. The amplitude distribution used with this
method is arbitrary; however, we focus on a set of chip
amplitudes which approximate a Gaussian normal distribution.
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This paper is organized as follows. In Section II, a descrip-
tion is provided of the process of creating an approximation
of a Gaussian normal distribution through the use of binomial
random variables. Sequence generation is also described. In
Section III, methods of statistically testing the model are
described. In Section IV, implementation considerations, such
as peak-to-average power ratio and amplifier distortion are
discussed. In Section V, the bit error rate performance is
evaluated parametrically based on the amplitude distribution
and number of chips per bit. Multiple-access interference
performance is also considered. Conclusions are provided in
Section VI.

II. DISCRETE GAUSSIAN MODEL

A. Constructing the Model

We begin with the process of generating the chip amplitude
distribution. The transmitted signal for bm, the mth information
bit is as follows

sm(t) = (−1)bm
K−1
∑

i=0

ai,m, (1)

where ai,m is the ith chip of the spreading sequence for the mth
bit and there are K chips per bit. In general, each chip of the
spreading sequence can take on one of N possible amplitudes.
The kth amplitude, ak, occurs with probability pk. Any desired
amplitude set and probability distribution can be employed by
this model. Our focus is on an amplitude set and probability
distribution that approximates a zero-mean Gaussian process.

To determine the values of pk that approximate a Gaussian
distribution, a binomial distribution with parameters n = N
and p = 1/2 is employed. The probability that the kth
amplitude value is chosen for a chip is given by the stan-
dard expression for the Binomial probability mass function,
provided in (2) for convenience

P (X = k) =

(

n

k

)

pk(1− p)n−k. (2)

An example of the process for determining the values
of ak is provided in Figure 1(a) for N = 4 levels. The
probability distribution function of a Guassian random variable
is partitioned such that the expected vaule of the ith partition
is equal to pi. In particular, the boundaries of each of these
partitioned regions, aR and bR, are determined using the
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Fig. 1. Four-level precision discrete Gaussian model construction.

inverse Q function. An example of the partitions is shown in
Figure 1(b) for four levels. The amplitude ai is then set to the
expected value of the ith partition, as illustrated in Figures 1(c)
and 1(d). If the variance of the resulting discrete distribution is
not σ2 = 1 (e.g., for small values of N ), the set of amplitudes
is linearly scaled such that σ2 = 1.

B. Generating the Sequence

Spreading sequences are generated starting with a pseudo-
random binary sequence in which 0 and 1 are equiprobable.
Such sequences are typically employed in cryptographically-
driven transmission security (TRANSEC) functions. For an N -
level sequence, each group of N − 1 bits from the pseudoran-
dom sequence is summed. The result is a value k between 0 and
N−1, which is Binomially distributed. The result specifies the
amplitude level ak of the current chip. An example of chipping
sequences generated for N = 2, 4, 16, and 256 levels of
precision are shown in Figure 2. Note that while this approach
enables the Gaussian-like chip distribution to be generated with
a traditional key stream generator, the rate of the key stream
must be a factor of (n − 1)K/r higher than the system’s bit
rate, where K is the spreading factor and r is the rate of the
error-control code.

III. GAUSSIAN MODEL STATISTIC

To determine the suitability of employing the proposed
method for generating Gaussian-like signals, the mean µ,
variance σ2, skewness γ, and kurtosis κ are evaluated. The
four corresponding expressions are as follows

µ =
1

N

N−1
∑

i=0

xi (3)

σ2 =
1

N − 1

N−1
∑

i=0

x2

i (4)

γ =
m3

m3/2
2

=
1

n

∑N−1

i=0
(ai − µ)3

(

1

n

∑N−1

i=0
(ai − µ)2

)3/2
(5)
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Fig. 2. Example Gaussian-like spreading sequences.

κ =
n(n+ 1)(n− 1)

(n− 2)(n− 3)

∑N−1

i=0
(xi − µ)4

(
∑n

i=1
(xi − µ)2)

2
. (6)

Skewness an indicator of the level and direction of skew
in the data and kurtosis an indicator of the shape of the data,
peaked or flat. As illustrated in Figure 3, the values of mean,
variance and skewness were found to be constant for any
number of levels N . Mean and skewness maintained a value
of 0, which is expected due to the symmetrical nature of a
Gaussian normal distribution. Variance maintained a value of
1 by design. The value for kurtosis increases as a function
of N and eventually approaches a value of 3, which matches
the kurtosis of a Gaussian normal distribution. The value
of N at which the kurtosis of the model reached 3 occurs
at approximately 16. Based on the statistical analysis, the
proposed method successfully modeled a Gaussian normal
distribution and had exceptional statistics at any value of N
greater than 15 levels.

IV. IMPLEMENTATION CONSIDERATIONS

Considering the variation in amplitude of the generated
sequences for N > 2, the peak to average power ratio
must be considered in the system implementation, as amplifier
distortion could potentially distort the signal and degrade the
Gaussian-like nature of the signals. Given a continuous-time
transmitted signal, the peak and average signal power levels
are

Pp = max(A2(t)) (7)

Pa = T−1

∫ T

0

A2(t)dt, (8)

respectively, and the peak-to-average power ratio is Pp/Pa.
To evaluate the impact of amplifier distortion, it is of

interest to determine the kurtosis of the output signal as a
function of amplifier output backoff (OBO), where OBO is the
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Fig. 3. Gaussian model testing as a function of number of discrete levels.

amount by which the output power of the amplifier is decreased
relative to its maximum value. Larger values of OBO typically
provide larger ranges in which signals with nonzero peak-to-
average power ratios can be linearly amplified. On the other
hand, larger values of OBO provide reduced average transmit
power and can degrade the bit error rate performance of the
link.

In an actual implementation, two independent streams of
the signal described in (1) would be transmitted, one on the
inphase branch and the other on the quadrature branch. The
amplifier performance corresponding to such complex noise-
like signals is determined using a representative AM/AM and
AM/PM amplifier model. In particular, the complex input
signal is input to the amplifier and the kurtosis of the cor-
responding complex output signal is computed. To determine
the kurtosis of a complex signal, a modified version of the
kurtosis, here called the Normalized Complex Kurtosis, is used
and given by [8]

κ′ =
1

N

∑N−1

i=0
|xi|4 −

2

N2 (
∑N−1

i=0
|xi|2)2 −

1

N2 |
∑N−1

i=0
|xi|2|2

σ4
.

(9)
Note that with this formulation, Gaussian signals exhibit a
value of zero. For the remainder of the paper, the measure given
in (9) will be referred to as simply “Kurtosis.” Kurtosis results
are provided in Figure 4 for detectors operating at two different
values of detector Ec/N0. Results for binary signaling and
multilevel signaling are provided as well, and the kurtosis value
for binary signaling does not change as a function of OBO,
since the constant-magnitude binary modulation undergoes
minimal distortion by the amplifier. At low OBO values, the
multilevel signals experience significant amplitude distortion
and achieve the same kurtosis value as for binary signaling.
As OBO increases, kurtosis increases as well. Values of OBO
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Fig. 4. Observed signal kurtosis as a function of amplifier output back off.

approximately 15 dB are required to maintain a kurtosis value
at the level of a true complex Gaussian signal.

V. PERFORMANCE

A. AWGN performance

The performance of these signals with K = 2L chips
per bit can be approximated by the bit error rate of a link
operating over L resolvable Rayleigh fading paths and optimal
combining. This is because both the signal and matched filter
have Gaussian distributed amplitudes, and when the received
sequence and matched filter are aligned, the result is a sum of
squared Gaussian amplitudes. The theoretical expression for
bit error rate is given by [7]

Pb =

[

1

2
(1− ν)

]L L−1
∑

k=0

(

L− 1 + k

k

)[

1

2
(1 + ν)

]k

, (10)

where ν =
√

γ̄c/(1 + γ̄c) and γ̄c = (Es/N0)E(a2k).
Of course, when N = 2, there is no variation in the

magnitude of the amplitude, so the standard expression for
bit error rate for BPSK in AWGN applies. The expression in
(10) is intended for use with larger values of N . To determine
the accuracy of these bounds as a function of N and K , a link
employing the Gaussian model was simulated.

In Figure 5, the discrete simulated values of Eb/N0

required for a bit error probability of 4% is plotted as a function
of K , the number of chips per bit, for N = 4 and N = 32 bins.
The analytical expression of (10) is also plotted. The accuracy
of the analytical expression is seen to be better for larger values
of N , which is because the actual signal is more Gaussian-like
and thus the expression is more applicable. For values of chips
per bit of 8 and above, the results of the analytical expression
match exactly those of the simulations.
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The results of a similar trade between Eb/N0 and the
number of bins are illustrated in Figure 6. For K = 32 chips
per bit, the performance matches that of ideal BPSK regardless
of the number of bins. For fewer chips per bit, the analytical
expression predicts a fixed loss in performance relative to
ideal BPSK. The actual performance trends can be seen from
the simulation data. For a given number of chips per bit, a
relatively low value of bins is required for the performance to
match that of the analytical expression.

Because of the variation of performance depending on the
number of chips per symbol, the distribution of energy per bit
was examined. Clearly, it is infeasible to have a constant energy
per bit with non-constant power per chip and only a few chips
per bit. Using (5) the variance of bit energy was examined.
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Fig. 7. Variance of energy per bit for various numbers of chips per bit and
discrete chip amplitude levels.

Simulation results are presented in Figure 7 that provide an
illustration of the variance in bit energy as a function of N
for various numbers of chips per bit. As expected, regardless
of the number of chips per bit, if there are only two levels
then the variance is zero. For N > 2 levels, maintaining a low
variance requires a large number of chips per bit. These results
mimic the trend discussed for bit error rate simulations.

Another method for combating varying energy per bit is to
vary bit duration based on bit energy. Varying bit duration adds
another level of complexity to the signal which may result in
increased security [3].

B. Multiple-Access Interference

It is of interest to determine the effect of non-constant chip
magnitudes on multiple-access interference. For a traditional
DSSS system (N = 2), the chip magnitudes are constant,
so as long as the average power I of an interfering user
does not exceed the average power S of the desired user, the
performance of the desired user does not degrade in the absence
of noise. We define the quantity SIR as the ratio S/I in dB.
For N > 2, because of the peak-to-average power ratio larger
than unity, the performance of the desired user can degrade
even for values of SIR > 0.

Simulation results are presented in Figure 8 for the mini-
mum SIR required to achive a bit error rate of 10−3 for various
values of N and chips per bit. For small values of chips per
bit, the required SIR increases as a function of the number
of amplitude levels N . This results from the large variance in
energy per bit, as previously described. As chipping rates are
increased the dependence on performance as a function of N
is reduced. Based on results, for values of chips per bit at least
16 there is minimal SIR degradation, and the degradation is
eliminated for 64 or greater chips per bit.
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Further work is planned in this area for the final paper,
for which we will compute performance for larger numbers of
simultaneous signals.

VI. CONCLUSION

A method for constructing noise-like spread spectrum sig-
nals was described. This method was employed to produce
sequences with Gaussian-like amplitude distributions, though
the method is more generally applicable and can be used
to generate chip sequences according to any probability and
amplitude distribution. The Gaussian-like sequences were eval-
uated based on several metrics, including fit to Gaussian statis-
tics, peak-to-average power ratio, bit error rate, performance
under multiple-access interference.

With appropriate parameters, this model successfully
approximated a Gaussian normal distribution and was
extremely accurate for 16 or more amplitude levels. Because
of non-constant chip magnitudes, peak to average power ratios
were larger than unity. For practical systems, the impact of
amplifier distortion must be considered, and increased dis-
tortion was observed in some cases. To maintain the fit to
Gaussian statistics, the required amplifier backoff levels were
computed.

Simulation results for bit error rate versus average signal
energy to thermal noise ratio showed increased bit error rates
for higher precision models at higher power ratios. The non-
constant energy per bit caused this increase in bit error rates.
Bit energy distributions were examined and trends were con-
sistent between the value of variance and the bit error rate for
various levels of chipping rates. By increasing the number of
chips per bit to approximately 32 or greater, bit error rates
approached theoretical values for BPSK modulation. At the
same time variance levels for bit energy approached zero.

A multiple-access interference scenario was evaluated for
several parameter sets. Although the non-constant chip magni-

tudes can cause performance degradation relative to traditional
constant-magnitude DSSS, it was found that bit error rates
approached the traditional DSSS bit error rates for 16 or greater
chips per bit. The performance reduction is eliminated for
chipping rates of 64 or greater.

Overall the system was shown to exhibit statistics similar
to that of a Gaussian normal distribution which can be used to
approximate white noise. Various characteristics of the model
were discussed and shown to result in similar functionality
to traditional direct sequence spread spectrum at certain lev-
els of operation. Through added randomness the proposed
system successfully generated a noise-like signal which can
be shown to increase security and capacity under various
circumstances [6].
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