
NORTHEASTERN UNIVERSITY

MASTERS THESIS

USBeSafe: Applying One-Class SVM
for Effective USB Event Anomaly

Detection

Author:
Brandon L. DALEY

Supervisor:
Dr. William ROBERTSON

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the

Northeastern University
College of Computer and Information Systems

April 25, 2016

This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.  
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

http://www.neu.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://www.ccs.neu.edu/




iii

Declaration of Authorship
I, Brandon L. DALEY, declare that this thesis titled, “USBeSafe: Applying
One-Class SVM for Effective USB Event Anomaly Detection” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at Northeastern University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

• The views expressed in this thesis do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the
U.S. Government.

Signed:

Date:





v

“When we contemplate the whole globe as one great dewdrop, striped and dotted
with continents and islands, flying through space with other stars all singing and
shining together as one, the whole universe appears as an infinite storm of beauty.”

John Muir, Travels in Alaska, 1915





vii

NORTHEASTERN UNIVERSITY

Abstract
College of Computer and Information Systems

Master of Science in Computer Science

USBeSafe: Applying One-Class SVM for Effective USB Event Anomaly
Detection

by Brandon L. DALEY

Increased use of transient devices such as wireless keyboards, webcams,
and flash storage in the last ten years has drastically increased the surface
area on which attackers can target vulnerable systems. USB devices, a sub-
class of transient devices (TDs), have become a common transport mecha-
nism for malware making its way into a target machine or network. The
rogue-TD attack class, demonstrated by BadUSB, relies on updating the de-
vice firmware to perform malicious actions and can be undetectable at the
end-user level if written effectively, as the attack hides in plain sight.

In this thesis, we present USBeSafe as a first-of-its-kind machine learning-
based anomaly detection framework for detecting a specific subclass of
rogue-TD attack in which a covert keyboard interface is defined on a seem-
ingly benign device. We apply machine learning techniques, specifically
one-class support vector machines, to create an offline USB event anomaly
detection system that serves as the basis for a live detection system. The
USBeSafe system provides an extensible framework for efficient USB traffic
feature extraction, model selection and training, and classification.

We examine a wide array of attributes that factor into model prediction
performance such as USB traffic feature types, contextual information via
n-grams, and model kernel function with associated parameters. We then
apply them to a search for ideal attributes in classifying benign USB key-
board traffic with an input corpus collected over eight months. Using vi-
able candidates from this search, we train 51 models and test them against a
known malicious rogue-TD covert keyboard attack. Through these results,
we provide an analysis of feature and model attribute relevance specific to
benign USB keyboard traffic and the basis for a live USBeSafe system.

We find that, while there exists little correlation between novel classi-
fication score and kernel function used, incorporating USB packet inter-
arrival times and larger n-grams generally increase the novel observation
score against the malicious input. We also find that, as expected, more in-
formation yields higher scoring, with the highest performing model against
the attack sample being trained on 2-grams of all possible features consid-
ered: packet interarrival times, types, and payloads.

HTTP://WWW.NEU.EDU
http://www.ccs.neu.edu/




ix

Acknowledgements
First and foremost, I want to express my sincere gratitude to my advisor,

Dr. William Robertson. He is an extremely busy man and somehow still
manages to take on an M.S. student for a thesis. His brilliance has opened
my eyes to so many different avenues for research and has helped guide
this thesis towards truly meaningful contributions to the field. For his time,
knowledge, and wisdom, I thank him.

My co-advisor, Graham Baker, has been a constant guiding force dur-
ing my fellowship at MIT Lincoln Laboratory. For two years, he has helped
refine many aspects of my academic and research abilities. I greatly appre-
ciate the time he has taken in helping develop not only this research, but
me as well.

I would like to extend my thanks to the entirety of Group 59, Cyber
Systems Assessments, at MIT Lincoln Laboratory. The group’s consistent
intellectual and financial support to make this thesis and degree possible
cannot go unmentioned.

I am deeply grateful for the time the U.S. Air Force has allowed me to
pursue this degree. I cannot express enough how much appreciation I have
for an organization that has avenues for its Airmen to academically and
professionally flourish.

I thank Capt Chris Patterson, U.S. Air Force, for his brilliant eye when it
comes to editing, ability to question everything, and ideas when I was in a
rut. I appreciate the time he chose to devote listening to me hash out issues,
providing suggestions, and helping make this thesis shine.

Above all except my God, I want to thank my family and friends for
their love, support, and patience over the last two years. My grandpar-
ents, to whom this thesis is dedicated, have put up with numerous discus-
sions outside their areas of expertise, through the struggles and the break-
throughs of this research.





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Contents xi

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction 1
1.1 TD-based Security Threats . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation: Solving the "Rogue TD" Problem . . . . . . . . . 2
1.3 Focus and Contributions . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Works 5
2.1 The Universal Serial Bus . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 History and Overview . . . . . . . . . . . . . . . . . . 5
2.1.2 Benefits of USB . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 How does the USB Protocol Work? . . . . . . . . . . . 6

Endpoints and Transactions . . . . . . . . . . . . . . . 6
Transfer Types . . . . . . . . . . . . . . . . . . . . . . . 7
Enumeration: Learning about the Device . . . . . . . 8

2.2 The Science of Machine Learning . . . . . . . . . . . . . . . . 9
2.2.1 Raw Data vs. Features . . . . . . . . . . . . . . . . . . 10

An Example Feature: n-grams . . . . . . . . . . . . . 10
Feature Selection . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Categorization: Learning vs. Output . . . . . . . . . . 11
2.2.3 Classification Problems . . . . . . . . . . . . . . . . . 12

Support Vector Machines . . . . . . . . . . . . . . . . 12
OCSVM Specifications and Parameters . . . . . . . . 13

2.2.4 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . 14
Parameter Estimation . . . . . . . . . . . . . . . . . . 15
k-Fold Cross Validation . . . . . . . . . . . . . . . . . 15

2.3 Detecting Malicious Activity . . . . . . . . . . . . . . . . . . . 16
2.3.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . 16

SVM-based NAD Systems . . . . . . . . . . . . . . . . 18
2.4 Review of USB-based Attack Vectors . . . . . . . . . . . . . . 18

2.4.1 Oops... I Dropped It . . . . . . . . . . . . . . . . . . . 18
2.4.2 Autorun.inf . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 BadUSB – A Novel Type of Attack . . . . . . . . . . . . . . . 19



xii

2.5.1 Existing Defenses and Limitations . . . . . . . . . . . 20
IEEE 1667 . . . . . . . . . . . . . . . . . . . . . . . . . 21
Linux and the GoodUSB Response . . . . . . . . . . . 22
Windows Patch 3143142 . . . . . . . . . . . . . . . . . 24

2.5.2 Enter: USBeSafe . . . . . . . . . . . . . . . . . . . . . . 24

3 Formalization and Implementation 25
3.1 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 usbmon . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Traffic Capture . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Understanding the Data . . . . . . . . . . . . . . . . . 27

3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Potential Feature Selection and Extraction . . . . . . . 30

Packet Interarrival Times . . . . . . . . . . . . . . . . 30
Packet Type . . . . . . . . . . . . . . . . . . . . . . . . 31
Packet Payload . . . . . . . . . . . . . . . . . . . . . . 31
Extraction and Storage . . . . . . . . . . . . . . . . . . 31

3.5 Feature Preprocessing . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 n-grams . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Model Searching . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 Framing the Search Space . . . . . . . . . . . . . . . . 33
3.6.2 Search Algorithm . . . . . . . . . . . . . . . . . . . . . 33

3.7 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Experimentation and Results 37
4.1 Data Collection and Feature Generation . . . . . . . . . . . . 37

4.1.1 Expectation vs. Reality . . . . . . . . . . . . . . . . . . 37
4.2 Model Searching . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Performing the Search . . . . . . . . . . . . . . . . . . 38
n-gram Possibilities . . . . . . . . . . . . . . . . . . . 38
Features Selection . . . . . . . . . . . . . . . . . . . . . 39
Parameter Settings . . . . . . . . . . . . . . . . . . . . 39
k-Fold CV . . . . . . . . . . . . . . . . . . . . . . . . . 39
Scoring Mechanisms . . . . . . . . . . . . . . . . . . . 40

4.2.2 Search Experiment Framework . . . . . . . . . . . . . 40
4.2.3 Experiment Results and Discussion . . . . . . . . . . 41

4.3 Model Training and Testing . . . . . . . . . . . . . . . . . . . 44
4.3.1 Model Training Experiment . . . . . . . . . . . . . . . 44
4.3.2 Model Testing Experiment Framework . . . . . . . . 44
4.3.3 Model Testing Results . . . . . . . . . . . . . . . . . . 44

5 Conclusions and Future Work 49
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A USB Descriptors 51



xiii

B Interarrival Time Histograms by pause Length 53

C Model Training Requests 59

D USBeSafe Project Files 63
D.1 Project Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 63
D.2 Directory and File Descriptions . . . . . . . . . . . . . . . . . 64

Bibliography 69





xv

List of Figures

2.1 USB Descriptor Hierarchy . . . . . . . . . . . . . . . . . . . . 9
2.2 k-Fold CV in Action . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Covert Keyboard Interface Enumeration . . . . . . . . . . . . 21
2.4 GoodUSB Infrastructure . . . . . . . . . . . . . . . . . . . . . 23
2.5 GoodUSB Operation . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 USBeSafe System Flow . . . . . . . . . . . . . . . . . . . . . . 26
3.2 usbmon Output Wireshark Sample . . . . . . . . . . . . . . . 27
3.3 USBeSafe Data Preprocessing Hierarchy . . . . . . . . . . . . 29

4.1 Model Search Results based on Independent Attributes . . . 41
4.2 Malicious Test Results based on Independent Attributes . . . 45
4.3 Novel Observation Score Distribution by Kernel Function . . 46
4.4 Comparing Model Search Accuracy Scores and Test Novel

Observation Scores . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 Class 0x00 20000ms-pause, 200ms Interval Itime Histogram 53
B.2 Class 0x00 20000ms-pause, 500ms Interval Itime Histogram 53
B.3 Class 0x00 40000ms-pause, 200ms Interval Itime Histogram 54
B.4 Class 0x00 40000ms-pause, 500ms Interval Itime Histogram 54
B.5 Class 0x00 60000ms-pause, 200ms Interval Itime Histogram 54
B.6 Class 0x00 60000ms-pause, 500ms Interval Itime Histogram 55
B.7 Class 0x03 20000ms-pause, 200ms Interval Itime Histogram 55
B.8 Class 0x03 20000ms-pause, 500ms Interval Itime Histogram 55
B.9 Class 0x03 40000ms-pause, 200ms Interval Itime Histogram 56
B.10 Class 0x03 40000ms-pause, 500ms Interval Itime Histogram 56
B.11 Class 0x03 60000ms-pause, 200ms Interval Itime Histogram 56
B.12 Class 0x03 60000ms-pause, 500ms Interval Itime Histogram 57





xvii

List of Tables

2.1 Comparison of USB 2.0 and 3.x Generations . . . . . . . . . . 6
2.2 Properties of USB Transfer Types . . . . . . . . . . . . . . . . 7
2.3 Common USB Device Class Codes . . . . . . . . . . . . . . . 9
2.4 Overview of Classification Errors . . . . . . . . . . . . . . . . 15

3.1 OCSVM Data Input Structure . . . . . . . . . . . . . . . . . . 33

4.1 OCSVM Attribute Contributions to Search Space . . . . . . . 40
4.2 Attribute Effects on OCSVM Accuracy Scores . . . . . . . . . 42
4.3 Incomplete Search Tests . . . . . . . . . . . . . . . . . . . . . 43
4.4 Feature Subset to Novel Observation Score Correlation . . . 46

A.1 Device Descriptor Contents . . . . . . . . . . . . . . . . . . . 51
A.2 Configuration Descriptor Contents . . . . . . . . . . . . . . . 51
A.3 Interface Descriptor Contents . . . . . . . . . . . . . . . . . . 51
A.4 Endpoint Descriptor Contents . . . . . . . . . . . . . . . . . . 52
A.5 String Descriptor Contents . . . . . . . . . . . . . . . . . . . . 52





xix

List of Abbreviations

ACK Acknowledgment
ANN Artificial Neural Network
CD Compact Disc
CD-ROM Compact Disc-Read Only Memory
CV Cross Validation
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
DHCP Dynamic Host Configuration Protocol
FP False Positive
HID Human Interface Device
IEEE Institute of Electrical and Electronics Engineers
INS Indian Naval Ship
I/O Input/Output
ML Machine Learning
mRMR minimum-Redundancy-Maximum-Relevance
NAD Network Anomaly Detection
NIC Network Interface Card
OCSVM One-Class Support Vector Machine
PCAP Packet Capture
RBF Radial Basis Function
SVM Support Vector Machine
TD Transient Device
URB USB Request Block
USB Universal Serial Bus





xxi

Dedicated to my grandparents: without your love and
devotion in raising me, none of this would be possible.

From the depths of my heart, thank you for every
opportunity you have ever allowed me. I love you both,

and I hope you can be proud.





1

Chapter 1

Introduction

In today’s information age, individuals possess the ability to use remov-
able media devices to store gigabytes of information in their pockets and
transport that data to other parts of cyberspace with relative ease. With
the explosion of on-the-go computing and data storage in the last decade,
transient devices (TDs) such as flash drives, external disk drives, wireless
keyboards, web cameras, and numerous others have become commonplace
in end-user computing. Even with the massive increase in cloud comput-
ing and storage as of late, the utilization of TDs remains steady; the newest
major hardware iteration of USB, version 3.0 or SuperSpeed, is expected to
be shipped inside three billion devices by 2018 [1]. Every one of these de-
vices contains a small micro-controller that manages interactions between
a host machine and the device itself. These micro-controllers negotiate con-
nections with hosts and transfer data packets as necessary for operation.
Without appropriate security measures in place, malicious takeover of these
microcontrollers can prove a serious threat.

1.1 TD-based Security Threats

As with any cyber technology, it was only a short time before malicious ac-
tors worked to exploit vulnerabilities in TD mechanisms; many instances
of security breaches in recent years illustrate that hackers have taken ad-
vantage of the inherent TD transport mechanism, namely humans, to suc-
cessfully spread malware, take control of systems, and exfiltrate valuable
information.

In 2008, after a piece of malware dubbed Agent.btz began propagating
via flash drives and CDs across U.S. Department of Defense (DoD) net-
works, all forms of removable media within the DoD were banned indefi-
nitely. Agent.btz, though of a publicly unknown origin, served as both a bea-
coning and exfiltration agent. This security breach eventually led to one of
the largest modern-day reformations in the U.S. military with the standup
of United States Cyber Command, a major military command dedicated to
the defense and stability of U.S. cyberspace resources [2].

Then, in 2010, the world witnessed the first known instance of a cyber
attack causing physical destruction – Stuxnet. Known as Olympic Games
inside U.S. intelligence circles, Stuxnet, after months of sophisticated in-
frastructure mapping, quietly damaged a significant portion of uranium
enrichment centrifuges at the Iranian nuclear facility in Natanz, all while re-
porting to engineers and maintainers that systems were running normally.
Estimating that the virus set Iran’s nuclear program back anywhere from
twelve months to five years, Stuxnet only made it inside the facility in the



2 Chapter 1. Introduction

first place because of a rogue USB thumb drive. Left in the parking lot at
Natanz and unbeknownst to the worker that picked it off the ground, that
thumb drive held a dangerous piece of malware capable of crippling Ira-
nian uranium enrichment [3, 4].

In 2012, the Indian navy suffered a blow to its cyber security posture
when it was found that a Chinese crawler made its way into the air-gapped
network of the INS Arihant, India’s first nuclear submarine. The malware
cached documents in the networks of the submarine that matched specific
keywords, waiting to perform covert data transfer back to Chinese IP ad-
dresses until the flash drive it resided on was connected to any computer
with internet access [5].

On a macro-scale, the security issues TDs cause are countless. One study
performed in 2011 found that, in only the two year span prior, 50% of orga-
nizations, both public and private, had sensitive information on USB drives
compromised [6]. These attacks and data compromises rely on users who,
unknowingly or not, act as malware carriers by transferring infected TDs
across hosts, networks, and physical boundaries.

Most recently, a new class of attacks introduced by researchers of BadUSB
takes these malicious actions one important step further: building them di-
rectly into TD firmware by reprogramming their microcontrollers, allow-
ing them to masquerade as benign devices [7, 8]. BadUSB shifts the attack
paradigm tremendously with regards to TDs; it demonstrates that a device
itself can be inherently malicious, not just due to code stored on a properly
functioning device [7]. A device that functions properly is one that per-
forms operations in the benign way that a human user expects of it. This
shift caused by BadUSB means that authors can more easily hide their mal-
ware in plain sight, making it of great value to identify potentially malicious
behavior before a host-based device driver acts on incoming USB traffic.

1.2 Motivation: Solving the "Rogue TD" Problem

Since TDs have gained mainstream use starting in the early 2000s, attack
vectors via these devices have become increasingly sophisticated. Because
of attacks like those demonstrated with BadUSB, which we call rogue-TD at-
tacks, it is now even easier for malicious code to hide in plain sight. We see
that it is now possible for an actor to reverse engineer the existing firmware
on a TD, rewrite that firmware to perform some malicious action while pre-
serving the operational intent of the TD, and reflash that TD with the modi-
fied firmware in the hopes that he can get it into the hands of an unknowing
person who can facilitate pairing the TD with a host machine.

It is straightforward to imagine a scenario in which this type of attack
could bypass some security measures to gain access to a machine and possi-
bly a complete network. Like we saw it work at Natanz [3, 4], an adversary
A leaves a flash drive D in the parking lot of the target organization. Em-
ployee E at the organization picks up D and carries it into the building
past any security checkpoints; at this point, A has gained physical access
to the organization. Even if E does scan the device at a security kiosk for
malicious files, these machines typically only scan storage partitions of a
device, meaning the firmware goes unchecked and the report likely comes
back with no red flags. E plugs the device into his work computer; now A



1.3. Focus and Contributions 3

has access to E’s machine, though W is unaware. E finds nothing stored
on the drive and decides to leave it in his machine for extra storage. E
password-locks his machine and, while he goes to get his morning coffee,
the screensaver on his machine activates. The malicious firmware has been
monitoring for this event and activates a shell; uses the password, stored
by a keylogger when E locked the host, to gain root access; and begins
exfiltrating files to a remote machine in A’s control.

This attack scenario is just one example of what is possible when a mali-
ciously provisioned device gains access to a target host machine. While ex-
isting solutions to the rogue-TD attack paradigm require much in the way
of access control maintenance and certificate management or a user-defined
policy infrastructure that substantially increases user workload (see section
2.5.1), we seek to find a way to keep device enumeration and traffic mon-
itoring completely in the background by relying on a host-based detection
approach of malicious USB events. Such a solution allows flexibility for: (1)
organizations to use standard devices, (2) manufacturers to avoid changing
how their hardware operate, and (3) users to continue using TDs according
to the status quo.

1.3 Focus and Contributions

In this research, we introduce USBeSafe as a means of detecting forms of
a specific kind of rogue-TD attack: a keyboard emulation attack when a
covert human interface configuration is defined in the device firmware, like
that demonstrated by BadUSB [8]. USBeSafe leverages machine learning
models that are taught against benign USB traffic. This research provides a
number of novel contributions to the field of USB security when examined
under the lens of rogue-TD attacks:

1. Creation and characterization of a USB traffic corpus containing USB
packets as they travel across a bus, utilizing the semantics of the Linux
kernel module usbmon.

2. Constructed extensible framework for and efficient extraction of iden-
tifying features from USB traffic, with focus on USB protocol level se-
mantics.

3. Novel application of one-class support vector machines to accurately
identify patterns of USB traffic specific to identified USB device classes.

4. Performed extensive feature and model attribute selection for USB
keyboard traffic with analysis of relevance specific to the USB traffic
corpus against trained models.

5. Built platform for applying one-class support vector machines to both
offline and real-time USB traffic anomaly detection systems.

6. Identification of potential future work to further the effectiveness of
USB event anomaly detection.





5

Chapter 2

Background and Related Works

In this chapter, we discuss a number of background topics to gain an under-
standing for the foundation upon which USBeSafe is built. We first cover
the fundamentals of USB communication, an overview of machine learn-
ing, to include methods and goals, and the development of anomaly detec-
tion mechanisms. We then present a history of USB-based attacks, includ-
ing the most recent and lethal, BadUSB, along with associated protection
mechanisms. These subjects lay the groundwork for USBeSafe, a machine-
learning based USB event anomaly detector.

2.1 The Universal Serial Bus

2.1.1 History and Overview

The Universal Serial Bus (USB) specification and protocol was first intro-
duced in 1996 on a very small scale with generation 1.0, meant to act as a
versatile interface for a large number of external devices. Over the years,
a number of revisions have been made to the specification, including USB
1.1, 2.0, 3.0, and 3.1, all focused on increased data transfer rates between
device and host and device power management [9].

Currently, USB 2.0 and 3.x devices are widely used to facilitate a large
number of device-to-host connections. Table 2.1 illustrates some fundamen-
tal differences among the USB 2.0 and 3.x specifications [10]. After develop-
ers realized the potential for the USB standard, USB 2.0 was created to sup-
port a broad range of devices that require higher current as well as faster
bus speeds.

Recently, largely due to inflated file sizes from high-definition audio
and video as well as the common desire for end-users to transfer massive
amounts of data from one piece of hardware to another, the USB 3.0 stan-
dard was introduced. The third major generation of USB facilitates signifi-
cantly faster data transfer rates, utilizing a two-bus architecture that can run
in parallel [11]. Due to this new architecture, USB 3.0 devices can support
data transfers in both directions simultaneously.

2.1.2 Benefits of USB

The creators of the USB standard set out to introduce a specification that
provides versatility and extensibility for many different computing needs.
USB serves as a stable platform for a number of TD-to-host connections for
users as well as for hardware developers.

On the end-user side, there are a number of benefits that come from
utilizing USB [9]:



6 Chapter 2. Background and Related Works

TABLE 2.1: Comparison of USB 2.0, 3.0, and 3.1 features
[10].

Generation USB 2.0 USB 3.0 USB 3.1
Reverse Compatible USB 1.1 USB 1.1/2.0 USB 1.1/2.0/3.0
Max. Transfer Rate 480Mbps 5Gbps 10Gbps
Charging Power 100 mA 900 mA 900 mA
Year Introduced 2001 2009 2014

Popular Usage
Mass storage,
HID devices,
printers

Mass storage Mass storage

• Ease of use: one physical interface for a large number of periph-
eral operations, hot-pluggable ports, straightforward physical con-
nections, automatic device configuration with appropriate drivers

• Cost: hardware components for USB devices are inexpensive, expand-
ing possibilities for end-user computing

• Reverse compatibility: possible to use older generation devices on
newer generation buses, so users do not lose existing capabilities as
USB gets faster and more powerful

For developers looking to leverage USB’s capabilities, its benefits are
rather similar. USB’s versatile nature allows a continually growing spec-
trum of devices to conform to its specifications, and the vast majority of
operating systems already have native support for device recognition and
enumeration.

2.1.3 How does the USB Protocol Work?

The infrastructure in place to support USB is actually extremely complex;
fortunately for users, managing bus-level interactions between a USB de-
vice and a host machine is performed automatically by the host, barring
the infrequent case where a user must manually install device drivers.

Throughout this section, the discussion of USB functionality is geared
towards USB 2.0 capable devices, arguably most numerous today. While
there are some differences with USB 3.0, they are minor and lend little to
further understanding of how the protocol operates.

Endpoints and Transactions

Each physical bus on a host machine is capable of managing transactions
of up to 127 USB devices. USB is a host-centric protocol, meaning that the
host initiates all transactions with the USB device [12]. All transactions via
USB occur at endpoints on the device that act as data sources and sinks.
When a device is enumerated by the host, both IN and OUT endpoints are
addressed for data flow. The IN endpoint stores data coming in to the host,
and the OUT endpoint receives data going out from the host [9].

Physically, these endpoints are buffers or registers in the device, facili-
tating USB transactions, of which there are three: (1) IN, (2) OUT, and (3)
Setup. During an IN transaction, data flows from the device to the host,



2.1. The Universal Serial Bus 7

TABLE 2.2: USB transfer types and their various identifying
characteristics [9].

Transfer
Type

Control Bulk Interrupt Isochronous

Usage
identification,
configuration

printer,
scanner,
drive

mouse,
keyboard

audio,
video

Transaction
Types Used

setup all all all

Data Flow
Direction

IN and
OUT

IN or
OUT

IN or OUT
(IN for
USB 1.0)

IN or
OUT

while the opposite is true of an OUT transaction. A Setup transactions is a
special-case OUT transaction in which the host forces the device to respond
to the Setup request. Each USB transaction consists of a series of packets
[9]:

• Token packet: host-generated; contains upcoming transaction type
(IN/OUT/setup), as well as device and endpoint addresses

• Data packet: optional, and contains any necessary payload

• Status packet: acts as a handshake or error reporting mechanism

Transfer Types

Every USB transaction is defined at a high level by the type of data transfer
either the host or the device initiates. USB supports four transfer types, all
suited for different purposes [9]:

1. Control transfers: utilized when (a) the host initiates a data request
from the device to learn about and configure the device for use on the
host, and (b) device vendor- or class-specific requests are defined.

2. Bulk transfers: fastest type of transfer; used for sending large amounts
on non-time-critical data; when bandwidth is low on the bus, bulk
transfers have the lowest priority.

3. Interrupt transfers: used for devices that require a fast response; un-
der bandwidth constraints, the host gives priority to these types of
transfers because there exists a guaranteed maximum latency for re-
sponse.

4. Isochronous transfers: streaming transfers for when delivery rate is
important; ensures some amount of reserved bandwidth; no retrans-
mission of data received with errors.

Important properties and uses of these transfer types can be found in
Table 2.2 [9]. Note the special case where USB 1.0 devices support only IN
transactions for interrupt transfers. Many human-interface devices (HIDs)
only require low-speed data transmission, meaning they can run on USB



8 Chapter 2. Background and Related Works

1.0 hardware. HID devices also tend to be interrupt-based systems, where
the device sends an interrupt to the host, indicating that it has data for the
host. We can understand this most easily when considering a keyboard or
mouse. The OS does not foresee that a user will type a character or move
the mouse to the left; an interrupt transfer occurs, originating from the IN
endpoint of the device. For HID devices, interrupt transfers do not occur
with an OUT transaction; HID devices serve to provide interrupts rather
than receive them.

Enumeration: Learning about the Device

For a host to properly manage traffic coming from a specific device, it needs
to: address the device on the bus and its endpoints; read device-provided
descriptors containing information on device functionality; and load a driver
based on configuration information. To accomplish this, the host initiates a
series of control transfers.

The OS manages all steps of enumeration behind the scenes, hidden
from the user, except for end-state indications whether the device was con-
figured correctly or if the process resulted in error. The enumeration pro-
cess, while technically complicated, can be broken down into a few major
steps:

1. First, a user introduces a new USB device to the system, and the hub
detects a voltage change in one of its power lines, indicating a device
is now powering via the hub [9, 12].

2. The hub determines speed capabilities of the device (low/full/high)
and prepares the device to receive and respond to control transfers
from the host via a default device address and a default endpoint,
both 0x00 [9, 12].

3. The host sends an initial Get Descriptor request to the device, asking
for the maximum packet size via the default endpoint supported by
the device. The device will send a Get Descriptor response with the
requested data, and the host provides an address on the bus to the
device [9, 12].

4. After the device has been uniquely addressed, the host sends another
Get Descriptor request to the device, receiving the entire device de-
scriptor in response, containing device information and number of
configurations.

5. For all configurations on the device, the host will send as many Get
Descriptor requests as necessary to retrieve information from the de-
vice on all configurations the device implements. In turn, the host
will send further Get Descriptor requests for subordinate descriptors,
if available (interface descriptors, then endpoint descriptors).

6. The host loads a device driver to use for further communication with
the device, and the driver can send a Set Configuration request for the
device to operate under a specific configuration [9].

Figure 2.1 illustrates the descriptor hierarchy that the host learns about
during the enumeration stage [12]. All USB devices must provide a single



2.2. The Science of Machine Learning 9

FIGURE 2.1: The descriptor hierarchy of a USB device, in-
dicating different ways the device can provide the main de-

scriptors.

device descriptor, along with one or more configuration descriptors. Note
that there are a number of other descriptor types not discussed here that
contain further information; Appendix A contains a table for each descrip-
tor type, identifying the data that resides in the Get Descriptor responses.

USB device class codes can be located in device and interface descrip-
tors and help the host determine the proper driver to load. A summary of
common USB class codes can be found in Table 2.3 [13].

TABLE 2.3: Common USB class codes based on what de-
scriptors in which they reside [13].

Class Code Descriptor Description Examples
0x00 Device Unspecified Code found in interface descriptor
0x01 Interface Audio Speaker, microphone
0x03 Interface HID Keyboard, mouse
0x06 Interface Image Webcam, scanner
0x07 Interface Printer Inkjet or laser printer
0x08 Interface Mass storage USB flash drive, external drive
0x09 Device USB hub Multi-device USB hub
0x10 Interface Audio/Video Webcam, television

2.2 The Science of Machine Learning

Machine learning (ML), with respect to the field of computer science, was
first defined by Arthur Samuel in 1959 as a "field of study that gives com-
puters the ability to learn without being explicitly programmed" [14]. Later,
Mitchell formalized the definition of machine learning: "A computer pro-
gram is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T , as mea-
sured by P , improves with experience E" [15]. Today, machine learning



10 Chapter 2. Background and Related Works

involves the use of algorithms that take training data as input for learning
generalizations and can make predictions about new input based on those
generalizations [16, 17].

Over the years, ML has gained prevalence in many applications, includ-
ing, but not limited to:

• Sentiment prediction [18]

• Spam filtering [19]

• Search engine optimization [20]

• Character and voice recognition [21, 22]

• Predictive text [23]

2.2.1 Raw Data vs. Features

Generally, ML models do not accept raw data for training or testing. During
development, a model must be trained on features that effectively character-
ize the raw data. During model learning, data is often provided as a matrix
of shape (n, p), where n is the number of samples or observations and p is
the number of features types used to represent the data. This matrix can be
represented as a list of feature vectors, where each vector is a list of length n
of feature values over all observations.

An Example Feature: n-grams

Consider the case of feature selection for a predictive text model. Predic-
tive text is typically based on Markov chains [24], models that calculate the
probability of transition to a future state given a current state. Model train-
ing and predictions can rely on n-grams, a contiguous sequence of n tokens
in the data, where the concept of a token is defined in the application. For
example, consider the sentence:

"The dog is fat and brown"

The list of bigrams (n = 2) with tokens defined as individual words de-
limited by space characters would be:

["The dog", "dog is", "is fat", "fat and", "and brown"]

These n-grams can then, for example, help define the Markov model
states, and, after enough training data has been collected and meaningful
probabilities generated for state transitions, the predictive text model can
provide likely suggestions for future text based on current inputs. N -grams
prove rather useful because they can reduce information loss. Instead of a
simple one-word unigram, a larger n can provide more context for a current
state, leading to more accurate future predictions.



2.2. The Science of Machine Learning 11

Feature Selection

As expected, selecting features from raw data is a difficult subproblem in
any ML implementation. Much work has been done in the field of feature
selection to provide insight into selecting relevant features based on raw
data.

The central premise of feature selection is to remove irrelevant and re-
dundant features from a list of possible features [25, 26]. More formally, P
is the set of possible features, feature selection techniques work to define S,
where S ⊂ P .

Feature selection algorithms take on many different forms, to include:

• Subset selection implements a search through possible subsets of fea-
tures, finding the subset with the best score based on a defined score
metric. During subset selection, exhaustive search is computationally
expensive; therefore, greedy algorithms are typically used to achieve
some previously defined score threshold or until no improvement is
made [27].

• Minimum-redundancy-maximum-relevance, or mRMR, proposed by Peng,
et al. [28] uses mutual information, correlation, or similarity scores as
metrics to determine features. In mRMR, a feature’s relevance score
is decreased when it has a high redundancy score in the presence of
other features. If the relevance score is low enough, the feature will
be removed from the target S.

• Correlation feature selection (CFS) is based on the idea that an effective
S will contain features that are highly correlated with the label and
have low correlation to one another [29].

2.2.2 Categorization: Learning vs. Output

It is useful to categorize the generation and use of ML models in two ways
based on: (1) the information available for learning, and (2) the type of
result as output.

Categorization based on learning typically lends itself to two methods:
supervised and unsupervised [30, 31]. When an ML model learns in a su-
pervised context, labels acting as desired output are supplied to the ML
algorithm for each input supplied. The goal of supervised learning is to
make generalizations that map inputs to one or more supplied desired out-
puts. Unsupervised learning, on the other hand, does not rely on labels.
ML algorithms that generate models via unsupervised learning must infer
structure, generalizations, and rules from input alone, with no labels pro-
vided.

Categorization based on output deals with the form of the desired result
from an ML system. Major output types include:

• Classification: the ML algorithm divides input data into one or more
classes, generating a model that attempts to predict the class of new
inputs; typically a supervised tasks where the ML algorithm receives
labels corresponding to classes during training [30–32]



12 Chapter 2. Background and Related Works

• Regression: similar to classification problems, except that the outputs
are continuous variables and not distinct classes; like classification,
regression is typically supervised [30–32]

• Clustering: generally unsupervised, the learning algorithm divides
inputs into a number of groups based on predetermined similarity
measurements [30–32]

• Dimensionality reduction: involves reducing the number of random
variables to which a set of inputs map, providing a lower-dimension
mapping of inputs to outputs; topical categorization is a prime exam-
ple [30–32]

2.2.3 Classification Problems

Classification, with respect to ML, involves making a prediction about the
category, or categories in the case of multi-label classification, to which a
previously unobserved event belongs [33]. In ML, models learn to make
predictions based on training data with inputs whose class(es) are known.
Sentiment prediction [18] and spam filtering [19] are practical examples of
classification at work. Each has a set of labels; for sentiment prediction, this
can be a list of any number of desired conveyed emotions, while, for spam
filtering, usually only spam and not spam are required for labeling.

An algorithm that performs classification is called a classifier. A classi-
fier, of which there are many types, is generated using a specific ML model
type, such as linear regression or support vector machine, that learns as-
sociations between supplied training observations and their corresponding
labels.

Support Vector Machines

A support vector machine (SVM) is a specific type of classifier that involves
placing inputs into a high-dimensional feature space F of dimension D.
Each input sample is placed as a data point in F , identified by a vector in
F . An SVM algorithm generates a set of one or more hyperplanes (H) that
separate the inputs into classes. A hyperplane x where x ∈ H is a subspace
within F with dimension D − 1 [34, 35].

SVMs are extremely useful for inputs that cannot be linearly separated in
a two-dimensional space, i.e. it is not possible to construct a straight line
boundary between data of different classes. When linear separation is not
possible, a non-linear function φ projects the inputs into F , allowing for one
or more hyperplanes to split the data points [36]. We will see more of how
this works further in this section.

SVMs have found use in such applications as text categorization [37],
mapping subcellular protein locations [38], image search engine optimiza-
tion [20], and financial forecasting [39], to name a few.

For USBeSafe, we consider the use of the Schölkopf, et al. [40] one-class
SVM (OCSVM) for the function of novelty detection. The OCSVM relies
on training data coming from a single class and determines whether new
inputs belong to that identified class or if they are novel observations. Suc-
cessful novelty detection using OCSVMs depends on a clean training set;



2.2. The Science of Machine Learning 13

there should be no outliers polluting the data that make generating a soft
boundary around the observations as a hyperplane difficult [32].

OCSVM Specifications and Parameters

Like all ML algorithms, the OCSVM has specific and distinct goals during
its training and testing phases. During OCSVM training, the overall goal
is to find a function f which yields a positive (+) result when applied to a
point within F and a negative (-) result otherwise [41]:

f(x) =

{
+1 , if x ∈ F
−1 , if x 6∈ F

During testing of new inputs, the output sign of f determines whether
an input is belongs to the learned class or not.

To define the OCSVM, we first consider the inputs, or training observa-
tions [40]:

x1, ..., xn ∈ X

where n ∈ N equals the number of training observations provided. Ev-
ery observation in X must originate from a single class.

φ is the feature mapping X → F that represents all xi ∈ X, 1 ≤ i ≤ n
lifted into the high dimensional space F . This mapping into F is achieved
by the use of a kernel, generalized here:

K(xi, xj) = φ(xi) · φ(xj) where i, j ∈ N [36]

Four specific kernel functions are often applied to OCSVMs:

• linear: K(xi, xj) = xixj [42]

• polynomial: K(xi, xj) = (γxixj + r)d, γ > 0 [42]

• radial basis function (RBF): K(xi, xj) = e−γ||xi−xj ||
2
, γ > 0 [42]

• sigmoid: K(xi, xj) = tanh(γxixj + r) [43]

where i, j ∈ N . Parameters γ and r serve as mapping threshold coeffi-
cients that define boundary characteristics and the influence of individual
inputs on how H is defined.

The OCSVM operates via an algorithm that returns a function f that
yields +1 in the area (normal) defined by the inputs and -1 outside of this
region (novel). To accomplish this, the Schölkopf, et al. OCSVM uses a
method of separating each input in X from the origin using the following
minimization function [40]:

min
w∈F,ξ∈N,ρ∈X

1
2 ||w||

2 + 1
νn

∑n
i=1 ξi − ρ

subject to w · φ(xi) ≥ ρ− ξi, ξi ≥ 0.

(2.1)

The parameter ν, where 0 < ν ≤ 1, controls the tradeoff between two
major goals: (1) maximizing the number of observations that return a +1
and (2) minimizing the support vectors used to determine the result [40].



14 Chapter 2. Background and Related Works

Directly affecting one another, ν defines an upper bound for the fraction
of training errors and a lower bound for the number of support vectors
[32]. Support vectors are the data points that support, or lie closest to, H .
Equation 2.1 is solved for w and ρ. The slack variables ξi allow for some
flexibility in the case of erroneous points, such that not all points have to
fall on the positive side of H [41].

Using the dual problem of the minimization in Equation 2.1, it is possi-
ble to solve for the coefficients (α) in Equation 2.2 [40]:

min
αi...n

1
2

∑n
i,j=1 αiαjk(xi, xj)

subject to 0 ≤ αi ≤ 1
νn ,
∑n

i=1 αi = 0.

(2.2)

These coefficients can then be applied to the decision function, Equation
2.3 derived in [40]:

f(x) = sgn(

n∑
i=1

αik(xi, x)− ρ) (2.3)

An OCSVM that has learned its decision function (Equation 2.3) from a
training set can apply the function to new input, predicting its class with
a simple result of +1, belonging to the class the model on which the was
trained, or -1, not belonging to the trained class.

2.2.4 Model Fitting

For an ML model to prove effective, the model needs to fit the data prop-
erly. This fitting can prove difficult to achieve, so model scoring relies on a
number of measurements, to include precision, recall, and accuracy.

There exists the possibility of a model learning characteristics of the
training data too specifically. Overfitting occurs when, instead of learning
the overarching relationships among all observations, the model precisely
describes noise and random errors [17, 32]. The model will actually mem-
orize the training data instead of learn trends, leading to poor prediction
performance for new observations previously unseen by the model.

In the case of novelty detection or binary classification, overfitting a
model can lead to a high rate of type I errors, or false positives, of new
data. A false positive (FP ) occurs when the model flags the new obser-
vation as novel when the event actually is normal. Avoiding overfitting
involves minimizing type I errors and maximizing the true negative rate,
or the precision score, correctly identifying a normal observation as such
[17].

Underfitting a model can also occur when the boundaries separating
classes are too loosely defined. Underfitting is characterized by a high
rate of type II errors, or false negatives, when examining new observations
[32]. A false negative occurs when the model identifies a new observation
as normal when it should be identified as novel. To correct underfitting,
type II errors should be minimized and the true positive rate, or the recall
score, should be maximized, correctly identifying a novel observation as
such [17].

Table 2.4 illustrates a matrix of these result and error types according to
truth and predictions.



2.2. The Science of Machine Learning 15

TABLE 2.4: Overview of error and result types for novelty
detection and binary classification.

Truth
Novel Normal

Prediction
Novel true positive

false positive,
type I error

Normal false negative,
type II error

true negative

Parameter Estimation

Every type of ML model tends to have a number of parameters that can
be set to help optimize performance and fit, such as those discussed in sec-
tion 2.2.3 for OCSVMs. Often, researchers do not inherently know what
parameter settings are most effective for the given model type and data. A
grid search can prove useful in this situation, where possible values for each
parameter are defined and models learn the input data according to every
parameter combination [32].

Consider a model that has settings for three parameters, a, b, and c:

• a can take any value in [a1, a2, a3]

• b can take any value in [b1, b2]

• c can take any value in [c1, c2, c3, c4]

In this case, the grid search algorithm would create 24 different param-
eter set options, using each combination of the three parameter types to
generate a model instance that can be individually scored for performance.

k-Fold Cross Validation

Ultimately, an ML model needs to perform well when making predictions
regarding new observations on which the model was not trained. To de-
termine the efficacy of a specific model, we can use k-fold cross validation,
or k-fold CV. This technique is used to divide input observations for model
learning into separate training and testing sets [44]. k ∈ N ≥ number of
inputs and determines how many times to divide the corpus; for example,
if k = 5, the corpus is split into five parts, or folds.

To determine model usefulness, the folds not used in each training ses-
sion are used as the testing set as the previously unseen observations. In
other words, each iteration of the 5-fold CV would train on 80% of the data
and test on the other 20%, shown in Figure 2.2. Each model is scored ac-
cording to its accuracy, a percentage of all test observations that are correctly
classified based on known labels [32].

Grid searches combined with k-fold CV can be used for finding suitable
model parameters. After such experiments occur, a new model is trained
on the entire data set with the determined ideal parameters.



16 Chapter 2. Background and Related Works

FIGURE 2.2: An example of k-fold CV, where k = 5.

2.3 Detecting Malicious Activity

In computing, an action is either benign or malicious. In essence, deter-
mining whether an action falls into one category or the other makes detec-
tion of malicious activity a classification problem. There are two general
approaches to such a problem: (1) signature-based and (2) anomaly-based
detection mechanisms. Signature-based detectors use massive databases of
attack signatures (for example, the hash of a piece of malcode) and look for
signature matches between a database of known malicious signatures and
what it observes on a system [45, 46]. Practically speaking, signature-based
systems are difficult to maintain because of the ease with which malware
authors can change a piece of software while preserving its operational in-
tent [47]. Adding, deleting, or modifying even a single character of a file
will completely change the its signature.

2.3.1 Anomaly Detection

The other approach opposite of signature analysis, anomaly-based detec-
tion mechanisms rely on some notion of typical or standard activity as a
baseline and raise an alert if any given activity does not fall within this
realm [46]. While anomaly detectors are prone to false positives where an
anomaly does not occur yet the detector raises an alert, discussed in 2.2.4,
they offer more promise for detecting malicious activity because they do
not rely on easily bypassed hard signature checks.

Because of USB traffic characteristics and means of transport, there ex-
ist strong parallels between literature regarding network anomaly detection
(NAD) and work on USBeSafe. Like a network interface card (NIC), a USB



2.3. Detecting Malicious Activity 17

bus supports two-way, stateful packet-based communication that must ad-
here to a specific transport protocol. These similarities create a heavy re-
liance on the extensive previous work in NAD research.

The idea of flagging anomalous activity was first introduced by Ander-
son [48]. Anderson established means of characterizing normal computer
usage according to types of processes, resource consumption rates, time pa-
rameters, file access, and device functions, all across a group of users. The
proposed monitoring system would compile all of this information in real
time and compare it against the known baseline in the surveillance program,
the anomaly detector [48].

Eventually, Lane and Brodley [49] brought about the practice of apply-
ing ML techniques to anomaly detection. Using a simple binary classifier
with a basic threshold metric, [49] was able to characterize user data of
tokenized UNIX shell commands, achieving up to a high 99.2% detection
accuracy score.

Both [49] and Bhuyan, et al. [50] provide extensive reviews of current
NAD methods and their applications of ML, to include:

• Statistical systems apply inference tests to decide whether a new ob-
servation could be generated from the model. Like HIDE [51], these
systems often rely on artificial neural networks (ANNs) that, while
similar to Markov chain modeling [24], are more highly adaptive and
base decisions on aggregated information at the end of the ANN sys-
tem [52–54].

• Clustering, typically used in data mining, can group data points in an
offline environment according to some similarity measure and iden-
tify the outliers that do not seem to fit into any cluster. Clustering
techniques have been utilized in systems such as [55, 56].

• Knowledge-based systems, also called rule-based or expert systems,
rely on rule engines that match defined rules against the current system
state based on specific parameters. Snort [57], a classic open-source
rule-based NAD system, applies rule-matching to each packet, look-
ing for certain values in headers and payloads, and currently has over
20,000 active rules [50].

• Classification systems, as discussed in section 2.2.3, applied to NAD
categorize network traffic patterns into a number of classes, relying on
training data with labels of class identification for classifier generation
[41, 58, 59].

Other ML-based options have also proven effective, such as Anagram
[60] and the Kruegel, et al. multi-model approach [61]. Anagram uses Bloom
filter-based n-gram analysis to efficiently detect anomalous network pay-
loads; each observation hashmaps to an element in a bit array, flipping the
bit and generating a payload fingerprint. [61] uses a vastly different ap-
proach. Instead of a specific model-based system, Kruegel, et al. use a
feature-based method: apply numerous models according to the feature
sets extracted from network traffic, and the aggregate application of these
models against test data determines whether network events are flagged as
anomalous.



18 Chapter 2. Background and Related Works

SVM-based NAD Systems

As SVMs are good at making generalizations about data, they have natu-
rally made their way into NAD implementations with favorable levels of
success. Often viewed as a classification-based problem, NAD research has
successfully applied SVMs in a number of systems.

Mukkamala, et al. [58], in a comparison of SVM versus neural network
performance, used SVM technology to create a binary classification NAD
system for attack detection, using 41 different features from network traces
obtained from DARPA. This system achieved a 99.5% accuracy rate using
a two-class SVM, distinguishing between normal and attack behavior, re-
gardless of attack type. In another SVM-based binary classifier system,
Palmieri, et al. [59] achieved 97.7% accuracy and a 3.2% false positive rate
when detecting whether card-sharing, a way for non-paying users to access
digital television content on the Internet, was occurring on a network.

OCSVM implementations have also proven effective in network-based
anomaly detection. Wang, et al. [62] improved upon the existing STIDE
NAD by implementing a custom kernel and applying it to an OCSVM. This
kernel decreased the false positive rate of the STIDE NAD from 13.4% to
4.5%, a marked improvement demonstrating the powerful capabilities of
fine-tuned SVMs. Wagner, et al. [41] utilized a custom-kernel OCSVM to
model Netflow records, concise representations of network traffic. [41] used
an existing data set, assuming it clean of outliers, i.e. malicious Netflow
records, as required for novelty detection, and tested the OCSVM against
Netflow records containing 8 different attack types. False positive rates for
each attack type were 3.3% or below [41].

2.4 Review of USB-based Attack Vectors

In this section, we briefly cover two well-known avenues of attack for a ma-
licious actor to breach security measures using USB devices. These attack
vectors take advantage of human weakness as well as convenience features
built into the Windows OS.

2.4.1 Oops... I Dropped It

Regardless of how malware is stored on a device, a small amount of social
engineering can lead to a case of "curiosity killed the cat". One of the most
high-profile cyber attacks, Stuxnet, made its way into the Natanz nuclear
facility simply because an employee found a USB flash drive laying in the
parking lot and decided to view its contents by plugging it in to a facility
system [3, 4].

In 2011, the U.S. Department of Homeland Security (DHS) performed a
test where staff randomly dropped CD-ROMs and USB drives in govern-
ment and contractor parking lots. The results show just how easy it can be
to take advantage of this form of attack vector. 60% of those people who
picked up one of these DHS-modified CDs or drives plugged it in to office
machines out of curiosity, and that number jumped to 90% when the CD or
USB drive had an official logo printed on it [63].

However amateur it may seem, time and time again, this form of attack
vector works. Even after the 2008 DoD scare when all removable media



2.5. BadUSB – A Novel Type of Attack 19

was banned [2], we see that humans are not infallible, and using nearly
effortless social engineering to infiltrate target systems proves effective.

2.4.2 Autorun.inf

Autorun, built into Windows, was initially meant as a feature to the user,
automatically performing specified sets of actions to prepare a CD-ROM
for seamless use when mounted to a host [64]. A CD-ROM that utilizes this
feature must have an autorun.inf file stored within its data section. When
it is physically mounted to the host, Windows searches for the file and, if
found, runs it. With the introduction of USB devices came U3 [65], a way
for USB drives to emulate a CD-ROM partition in such a way that forced
the hand of the Windows operating system to search for an autorun.inf file
[46].

Until Windows Vista, there was no option to disable the Autorun fea-
ture; if the CD-ROM or USB drive possessed an autorun.inf, it would run
the commands contained in the file, regardless of user desire to do so[64].
A disc or device with a malicious autorun.inf would certainly be hazardous.
USB Switchblade, a tool developed to help automate malicious autorun.inf
creation made exploitation of this attack vector trivial [66]. While software
protections are now in place to block this attack vector, it ultimately fueled
the motivation for future attack classes via USB.

2.5 BadUSB – A Novel Type of Attack

As mentioned earlier, a host machine is ultimately in charge of initiating
all transactions with a USB device. The host is naive to the information
that a device is going to send across the bus. This naivety is most obvious
when the device reports it capabilities with various descriptors; the device
can report any capabilities it has available. BadUSB leverages this fact to
introduce a rather lethal class of attacks via USB hardware.

BadUSB [7, 8], introduced at BlackHat 2014 by Nohl and Lell, illustrates
the unavoidable dangers of TD firmware: (1) it must run for the device to
operate, otherwise a user could not complete any desired I/O functions,
and (2) generally, firmware is not write-protected after a device boots [8].
In tandem, these two properties open up TDs and, in turn, the hosts with
which they connect to a wide array of attacks. Nohl and Lell demonstrated
a select few of these potential attacks [67]:

1. Keyboard emulation: Upon inserting a mass storage device, specif-
ically a USB flash drive (with capabilities for Windows and Linux),
into a host USB port, the device presents itself both as mass storage
and a keyboard, covertly performs keyboard actions to open a com-
mand prompt, and downloads malware from a remote location for
reflashing future USB TD firmware.

2. Network card spoof: After plugging in an Android smartphone to
a victim host under the premise of charging the device, the Android,
unknown to the user, presents itself as a NIC. DHCP overrides the de-
fault gateway over USB-Ethernet, and the host sends all network traf-
fic through the Android device. Upon the user visiting PayPal.com,



20 Chapter 2. Background and Related Works

for example, the device routes the request to a malicious server and
records login credentials, all the while the user believing he simply
was not able to log in.

While BadUSB also demonstrated a boot-sector rootkit attack in which a
seemingly benign TD hijacked the bootloader process of a host and planted
a rootkit to gain persistence [67], the novelty of the first two attack exam-
ples make them far more interesting and dangerous. Rogue-TD attacks like
those demonstrated in BadUSB, as we consider them, are unique and spe-
cific because they rely on both:

• Custom firmware with malicious intention residing on a USB device,
and

• An unknowing user facilitating operation of a seemingly benign de-
vice on a host machine to allow the malicious firmware to run

By rewriting the firmware of an existing USB device, it is possible to
hide malware in the code that communicates with a host. Malware scanners
do not have insight into firmware code, which means a host cannot detect
malicious firmware. Yet, that very firmware can communicate with and
change host software as well as perform any number of other adversary-
desired actions.

Consider a USB mass storage device as an example for how a rogue-TD
attack can work. After the device is physically mounted to a USB port, a
number of steps occur as discussed in 2.1.3. Figure 2.3 illustrates relevant
communication that occurs between host and device as the device is enu-
merated. Of specific interest, when the host sends a Get Descriptor request
to the device, the host knows nothing about device capabilities. This USB
drive eventually reports that it possesses two interfaces, and the host re-
quests that information from the device. To avoid suspicion by providing
normal function to the user, the first interface reports mass storage capabil-
ities.

The second interface, on the other hand, reports HID capabilities, unbe-
knownst to the user. The OS simply acts based on information provided by
the device and will happily load a driver to accept the USB drive as a HID
device. Code in the malicious firmware then can open a command prompt,
for example, to perform privilege escalation, exfiltrate files, or copy itself
for further device propagation.

2.5.1 Existing Defenses and Limitations

Defending against rogue-TD attacks is vital when it comes to overall system
security. Because these attacks are difficult to detect and can be tailored for
any intent, they have the ability to inflict large amounts of damage. Two
potential solutions proposed by Duckling [68] unfortunately fall short in
terms of an ideal protection mechanism:

1. Device manufacturers could hardwire USB microcontrollers to only
allow firmware updates that are digitally signed by the manufacturer.
The issue with this approach is that the device is effectively vendor-
locked and can only be updated by the manufacturer, deeply compro-
mising interoperability/usability. Additionally, this solution assumes
that the manufacturer’s private key is not compromised.



2.5. BadUSB – A Novel Type of Attack 21

FIGURE 2.3: A malicious device sends a covert interface de-
scriptor to the host with the user unaware of activity.

2. Manufacturers could incorporate hardware interlocks into devices,
meaning that an end-user may have to press a button or toggle a
switch on the device to allow a firmware update. A major concern
with this solution is user education and awareness. It is entirely pos-
sible for the malware residing on the victim host in the keyboard em-
ulation BadUSB attack to prompt the user for a switch toggle to “up-
date” the firmware on a newly inserted device. Without appropriate
knowledge of how to look for and examine potential threats, many
users may blindly obey the request, negating the intention of a hard-
ware interlock.

Both of these propositions rely on significant changes to USB device op-
eration and shift tremendous burden on manufacturers and users to adjust
how they create and use USB devices. In the remainder of this section, we
explore existing solutions to the rogue-TD attack vector and their limita-
tions.

IEEE 1667

Currently, the de facto technology available for protecting against malicious
bytes residing on and executing from a device exists in IEEE Standard 1667,
Standard Protocol for Authentication in Host Attachments of Transient Storage
Device [69]. Implemented in Windows Vista SP2 OS and higher as Win-
dows Enhanced Storage [70] and built into devices as custom firmware by
manufacturers, IEEE 1667 seeks to create a means for bidirectional authen-
tication via an X.509 certificate infrastructure between hosts and devices.
Described as typically being used for devices with storage partitions, key



22 Chapter 2. Background and Related Works

exchanges and certificate checks are performed prior to device storage ac-
cess as a way of providing protection against unknown, and potentially
malicious, devices and/or hosts [69].

The fundamental premise is that if a device’s firmware can decide the
presumably safe hosts with which it successfully pairs, it is much less likely
that malware could migrate onto the device, unknown to the end-user. Due
to the standard’s bidirectional nature, this premise can also be applied in
the opposite direction with the host deciding the devices with which it will
pair.

Unfortunately, adoption of IEEE 1667 has been slow since the standard
was first introduced in 2006, as only a handful of devices leave the manu-
facturer provisioned as 1667-compliant [71–74], and none of these are even
USB devices. Consequently, 0% of USB devices are provisioned to pos-
sess any sort of entity authentication mechanism as a means of vouching
for the safety of data residing on the device; we must ignore devices such
as IronKey, which exist for the purpose of confidentiality protection [75].
Furthermore, it follows that organizations allowing TDs in any capacity
are unlikely to check for 1667-compliant devices upon pairing of device to
host. Such a situation dramatically increases the surface area for attacks,
a prominent reason why rogue-TD attacks can possess such potency and
effectiveness.

Because of the broad nature of rogue-TD attacks and the extremely small
likelihood of redefining the USB specification to mitigate the issue, devel-
oping defensive techniques lies in the hands of those that have a greater
vested interest in systems security. Without changing the fundamentals of
USB communication, patches for all major operating systems need to be in
place to minimize the attack surface for any adversary.

Linux and the GoodUSB Response

GoodUSB [76], a proposed fix to issues brought forth by BadUSB, shifts the
burden of responsibility to the user when it comes to security. Implemented
in the Linux kernel, GoodUSB mediates enumeration interactions between
the host and the device by: (1) involving the user, asking for recognition
and verification input, and (2) matching user-expectation policies to what
the device claims as its functionality, monitoring device activity if viewed
as suspicious.

GoodUSB is a three-pronged kernel module utilizing a USB mediator
that performs the following tasks [76]:

• Policy creation and enforcement: authorizes USB actions according
to user expectations encoded into policies.

• Device recognition: record device enumerations to allow the OS to
recognize whether it has already seen a given device.

• Honeypot analysis: suspicious activity is profiled in a virtual honey-
pot to provide insight to the user into device behavior.

One of the major enhancements to the Linux kernel by GoodUSB is
the ability to suspend loading of a device driver until it confirms policy-
matched functionality. Figure 2.4 [76] illustrates this feature as well as the



2.5. BadUSB – A Novel Type of Attack 23

FIGURE 2.4: GoodUSB infrastructure centers around a USB
mediator that enforces policies and monitors USB activity

[76].

FIGURE 2.5: GoodUSB requires a user to specify device
functionality each time a new device is introduced to a new

host for policy generation [76].

main infrastructure of GoodUSB. It is implied that the user introduces a
device to the system. The user then generates a policy according to what
he expects with regards to device functionality, as seen in Figure 2.5 [76].
The mediator compares that policy, whether new or matched to a previ-
ously seen device, to what the device claims it can do. If the two match, the
mediator loads the proper device driver; otherwise, device activity is redi-
rected to a virtual honeypot, where it is monitored for potentially malicious
behavior.

Unfortunately, GoodUSB relies heavily on user interaction, forcing users
to identify devices being plugged into a host as well as indicate their desired
functionality. Even though the mediator’s performance overhead is minor
at about 5% [76], the problem with GoodUSB lies in its usability. With the
number and transportability of USB devices in end-user computing, effec-
tive use of GoodUSB would require x ∗ y first enumerations by the user to



24 Chapter 2. Background and Related Works

create policies for the devices, where x is the number of USB devices and y
is the number of host machines, a significant and tedious setup overhead.

Windows Patch 3143142

An extensive Windows patch (Security Update 3143142) for all supported
operating systems released in March 2016 sought to close the software hole
that enables privilege escalation by BadUSB-style attacks. Windows de-
scribed the vulnerability as a driver weakness in which the Windows USB
Mass Storage Class driver could not correctly validate certain memory ob-
jects [77]. As of this writing, there has been no published patch effectiveness
analysis.

2.5.2 Enter: USBeSafe

In response to these existing solutions to oue-TD attacks discussed in the
previous section, we recognize that a more ideal solution incorporates a
system relying on as little change as possible to the end-user operational
status quo. This system should:

• Require little to no end-user interaction

• Avoid manufacturer-based hardware changes

• Incorporate the protection mechanism into the operating system

To meet these goals, we introduce USBeSafe, a first-of-it-kind applica-
tion of OCSVM to USB traffic, providing an infrastructure for future of-
fline and live USB event anomaly detection systems. USBeSafe leverages
the powerful generalization capabilities of OCSVM to learn various feature
patterns specific to USB traffic. While USBeSafe has an extensible design in-
corporated into each phase to add device classes, features, model types, etc.,
we focus specifically on USB keyboard traffic and the features that charac-
terize such traffic as benign. This focus stems from a goal of detecting a
specific type of rogue-TD attack: determining whether a covert HID con-
figuration is present and active on a device, sending input across the bus to
the host machine, as shown in Figure 2.3.



25

Chapter 3

Formalization and
Implementation

In this chapter, we discuss the USBeSafe operational framework in detail.
First, we define the threat model upon which USBeSafe was built. Next, we
provide a brief overview of the six components that define execution and
data flow in USBeSafe. Then, each subprocess is discussed in depth, paying
careful attention to inputs and resulting outputs.

3.1 Threat Modeling

Because of the wide scope of possible malware that can run with access to
a machine, it is valuable to define a threat model that is adversary-centric.
For USBeSafe, we frame our adversary according to his capabilities and the
attack environment:

• He can reflash the firmware of a USB device to emulate a USB key-
board.

• He has means of pairing the malicious device with a target machine,
though he does not require physical access to the machine.

• He has no insight into the keystroke patterns of the target machine’s
user.

• The malicious device must enumerate via USB with a vulnerable tar-
get machine for the attack to run.

• There exists no USB level authentication mechanism between the de-
vice and the target host.

• The target machine’s operating system has known states for when
keyboard input will result in a visible action. For example, when a
command prompt is open, it is possible to send keystrokes that result
in text on the terminal window.

• The malicious firmware can monitor for or force the target machine’s
operating system into a state ready for keyboard input.

USBeSafe aims to serve as a safety mechanism for an adversary scoped
by all of the above by detecting anomalous USB HID traffic.



26 Chapter 3. Formalization and Implementation

3.2 System Overview

USBeSafe is a USB event anomaly detector that uses a corpus of known be-
nign USB activity to train ML models in making predictions about whether
new, previously unseen USB activity is potentially malicious. Because of
the connection between our work and NAD, there are strong parallels re-
garding system infrastructure and operation. [50] outlines the typical ex-
ecution order of both live and offline NAD systems, forming the basis for
our approach:

1. Traffic capture

2. Data preprocessing

3. Application of matching mechanism(s)

4. Taking actions based on results of step 3

The USBeSafe infrastructure takes on a modified form of [50], shown
in Figure 3.1, providing a more structured and specific approach to the
anomaly detection framework. USBeSafe is implemented in Python, uti-
lizing the scikit-learn [32] library for ML-based development.

FIGURE 3.1: USBeSafe infrastructure and system flow; pro-
cesses in yellow can be continuously repeated for system

refinement.

In the remaining sections of this chapter, we explore each process in Fig-
ure 3.1 in depth, with focus on procedures, data flow, and resulting prod-
ucts.

3.3 Data Collection

3.3.1 usbmon

For any ML-based system to prove effective, training data needs to be col-
lected for models to learn, generating a baseline for future anomaly detec-
tion. For data collection in the development of USBeSafe, we utilize the
Linux kernel module usbmon, located at /sys/kernel/debug/usb/, to
capture I/O traffic moving across a monitored USB bus. usbmon works by
capturing and passing observed USB packets to the Host Controller Drivers
in Linux, much like tcpdump can be used to monitor network traffic [78].

To generate a meaningful training data corpus, we rely on “normal”
usage of these devices. Though it is difficult to characterize what normal
usage looks like from an end-user action-based standpoint, we combat this
issue by simple persistent monitoring of USB events with usbmon on a host



3.3. Data Collection 27

machine. Instead of developing a series of specific actions to perform, per-
sistent monitoring beginning at boot time allows for USB event data that
stems directly from everyday computer usage. In turn, more realistic char-
acterizations of the data can be made further in the execution flow of US-
BeSafe.

3.3.2 Traffic Capture

We set up usbmon on a Linux Ubuntu 14.04 LTS 64-bit host machine, seg-
regating traffic monitoring to a single USB bus with physical access to two
USB ports on the outside of the machine. Each time usbmon starts on boot,
it generates a new PCAP file, appending live traffic as the module observes
new packets across the monitored USB bus. On system shutdown, usbmon
saves the generated PCAP to disk. We define a trace file to be the PCAP file
generated over the duration from host machine boot to shutdown.

3.3.3 Understanding the Data

Each time usbmon captures USB traffic over the lifecycle of a host, it creates
a PCAP file containing each packet in sequence observed on the USB bus it
monitors. Wireshark [79], a popular and useful PCAP file parser, contains
built-in capability to parse and interpret USB packets from a trace file.

FIGURE 3.2: Sample Wireshark representation of a usbmon
trace.

Figure 3.2 shows the enumeration and some post-configuration traffic
for a keyboard. First, the host requests device descriptor information from
device 2.0, corresponding to bus 2 and default device address 0, yielding
source 2.0. The device responds with some preliminary information, and
the host requests the full device descriptor. After the host receives the de-
scriptor, it assigns a permanent address to the device (0x01), loads a driver,
and steady-state traffic begins. Section 2.1.3 contains detailed information
on this process. We recognize that this behavior does not directly match the
expected descriptor hierarchy presented in Figure 2.1 and discuss this issue
further in section 4.1.1.

For each keystroke, two packets are transferred. First, the device sends a
URB_INTERRUPT packet to the host; upon receiving the interrupt contain-
ing the payload that identifies the key pressed, the host sends back an ACK.



28 Chapter 3. Formalization and Implementation

Here, a URB, or USB request block, is simply the wrapper used in Linux
to package a USB packet, containing all USB header information. This
URB_INTERRUPT is analogous to the interrupt transfer discussed in 2.1.3.
Drawing one-to-one relationships to all USB transfer types, the other Linux
equivalents are URB_CONTROL, URB_BULK, and URB_ISOCHRONOUS. For
any packet that contains a payload, such as the interrupt transfers shown
in Figure 3.1, the last two fields of the packet contain the payload length
and the payload itself.

3.4 Feature Extraction

To train an ML model, we must extract features from the corpus that effec-
tively characterize the data. When dealing with a large corpus containing
complex data and communication structures like USB, this extraction phase
is most clearly defined as a two step process: (1) data preprocessing, and (2)
pulling out features from the preprocessed data. We discuss at length how
each of these steps are implemented in the USBeSafe system.

3.4.1 Data Preprocessing

Feature extraction involves extensive work in data preprocessing; for US-
BeSafe, this means molding the supplied corpus in such a way that the data
takes on order and meaning. In our system, the feature extraction phase
allows us to supply any number of PCAP files, with the precondition that
they must have been previously generated by usbmon. We take the follow-
ing steps to preprocess any supplied PCAP files:

1. Packet-based PCAP parsing: Using the pcapy [80] Python library,
for each PCAP supplied, parse each raw USB packet within and form
it into a TraceEvent containing the URB and USB header informa-
tion and any payload. Each TraceEvent, representing a single USB
packet, is added to a Trace, a list of TraceEvents, one for each
PCAP trace file. The TraceLibrary contains all Traces.

2. Extract (Bus ID, Device ID) subtraces: Each USB bus can support in-
teractions with up to 127 devices simultaneously. To identify a phys-
ical connection between a host and device, we generate a tuple from
each TraceEvent, containing the host bus ID as well as the assigned
device ID on the bus, ranging [0, 127]. For each trace in the TraceLibrary,
we sort existing TraceEvents into new Traces contained in TraceLists,
with each TraceListhaving an associated (bus ID, device ID) tuple.
This action reforms the TraceLibrary into a set of TraceLists.

3. Chronological packet sort: Each TraceList in the TraceLibrary
contains a number of Traces. Each Trace contains a series of TraceEvents
that have fields for time since usbmon started the monitor, shown in
Figure 3.2 The TraceEvents in each Trace are sorted according to
timestamp, from earliest to most recent.



3.4. Feature Extraction 29

4. Enumeration cycle breakdown: Each time a host begins the enumer-
ation process with a USB device, we see a Get Descriptor request/re-
sponse pair for the device. Our goal here is for each Trace to rep-
resent an individual lifecycle of a device, from enumeration, to con-
figured communication, to termination. For this reason, we further
break down each Trace, parsing out a different Trace each time we
encounter this event pair in two consecutive TraceEvents, ending
any previous Trace.

5. Load descriptors: For each Trace, we identify the device and con-
figuration descriptor responses, storing them as auxillary informa-
tion for the Trace. Each Trace contains a DeviceDescriptor and
ConfigDescriptor if the corresponding packets are found in the
trace. usbmon packages all interface descriptor information with the
corresponding configuration descriptor, so we store any interface in-
formation with the respective ConfigDescriptor.

6. Device class sort: Device classes help the host identify device type
and expected functionality; both device and interface descriptors con-
tain class codes, according to the USB protocol. A Trace will contain
one or more device class codes based on the extracted information in
the DeviceDescriptor and any available ConfigDescriptor(s).
Class codes are defined on two levels, as shown in Table 2.3, and we
sort each Trace into class buckets as specifically as possible, where
deeper in the descriptor hierarchy is more specific. Any Trace with
a class code not of interest is thrown out.

It is useful to understand the data structure hierarchy generated during
data preprocessing. Figure 3.3 illustrates this hierarchy through loading the
descriptor information, step 5. We lose this structure after the final step (6),
when we sort useful Traces into buckets according to USB class code.

FIGURE 3.3: The data structure hierarchy after loading all
device and configuration descriptors, through step 5 in sec-

tion 3.4.1.



30 Chapter 3. Formalization and Implementation

3.4.2 Potential Feature Selection and Extraction

To extract features from the data, we first need to determine what poten-
tial features we would like to use when training the USBeSafe ML model.
We make the distinction of potential features here because the model search,
further down the USBeSafe pipeline in section 3.6, provides us with feed-
back on what features, along with other factors discussed later, provide the
best model accuracy. In selecting possible features, we look at avenues for
pulling traits from the USB traces that are likely to define the data in ways
that can characterize our data as benign. Regardless of the ML mechanism
employed, feature extraction needs to provide a sound representation of
the data collected.

With NAD ML systems, the types of features extracted typically vary
widely based on what the researchers deem important and potentially use-
ful [24, 50, 52–56, 58–61, 81, 82]. Because potential features in our research
arena are likely partially dependent on device class, it is important to re-
member that, at a high level, USBeSafe aims to characterize benign USB
keyboard traffic; this fact should inform selection of potential features.

Packet Interarrival Times

For characterizing USB keyboard traffic across a bus, one obvious route is
to examine timing information for packets. Timing data can help reveal
potential patterns in the ways a user types or how the bus manages USB
traffic.

As one possible feature, we use the interarrival times, referenced in this
paper as itimes, measured in milliseconds, between one packet and the next
for all TraceEvents. Every first packet in a Trace has an itime of 0ms
because no packet is transmitted before the initial packet.

It is not practical to use raw itimes as a feature because there is no upper
bound for a given itime; a user may perform a keystroke after a few seconds
or many days. To combat this problem of potentially infinite itimes in cer-
tain situations, we explicitly define an upper bound. To do this, we first
define the following terms, noting the term interdependency:

• pause: the maximum time allowed to elapse before a new session be-
gins

• session: a series of USB keyboard packets where each itime within the
series does not exceed a specified pause length

Defining a pause value allows us to set the maximum itime between
two TraceEvents before we consider the user to be starting a new typing
session. To help determine an optimal pause, we examined three initial
candidates (in milliseconds): 20000, 40000, and 60000. For each pause,
we normalized the itimes for class codes 0x00 and 0x03; when a raw itime
i ≥ pause, we set i = 0, thereby starting a new session.

Generating histograms for these itime collections based on USB class
code, with varying pause values and interval lengths, we see some com-
mon patterns, found in Appendix B. An interesting observation for this HID
keyboard traffic is that, regardless of pause length, localized modality oc-
curs approximately every 4000ms, or 4 seconds, with large spikes in the



3.4. Feature Extraction 31

number of packets that transmit during these times relative to the start of a
session.

To determine the impact a pause value has on the USBeSafe implemen-
tation, we performed an initial model search following the search strategy
in section 3.6 to determine performance difference among different values
with itimes as the sole feature. Ultimately, the results of this initial search
revealed there was minimal performance difference among the pause val-
ues used, indicating to us that the value we choose is not consequential to
overall model performance. For this reason, we set the pause to our first
value of 20000ms.

Packet Type

A second feature type chosen as a viable candidate for future model gener-
ation are the values that define the type and purpose of each packet. The
packet type is determined by two fields in each TraceEvent:

1. URB type: takes on one of two values to indicate whether there is an
ongoing transaction, URB_SUBMIT (0x53), or if a transaction is com-
plete, URB_COMPLETE (0x43).

2. URB transfer type: analogous to the four USB transfer types out-
lined in section 2.1.3, URB_INTERRUPT (0x01), URB_CONTROL (0x02),
URB_BULK (0x03), and URB_ISOCHRONOUS (0x04).

Packet Payload

Finally, we deem it useful to partially characterize USB traffic, regardless of
device class, by any payload contained within individual packets. Payload
examination is a transparent means to determining patterns in data found
within each TraceEvent. Similar to previous work [83, 84], we use a byte
histogram to measure value frequencies, splitting the space of 256 values
(from 0x00 to 0xFF) into 16 equal intervals, or bins.

Extraction and Storage

To extract the desired features, we generate a FeatureListing for each
TraceEvent:

FeatureListing = [itime,
normalized_itime,
event_type,
transfer_type,
data_histogram]

During extraction, we store both raw itimes and any pause-normalized
itimes; in this case, we store 20000ms-normalized itimes for each TraceEvent.
These FeatureListings are stored, according to the hierarchy outlined
in Figure 3.3 and sorted by device class, as a single JSON object, prepared
for the next stage of the USBeSafe pipeline. We will call this file features.extracted.



32 Chapter 3. Formalization and Implementation

3.5 Feature Preprocessing

After all features have been generated and stored in features.extracted, the
next step is prepare them for input into the ML algorithm, when applicable,
for model searching in section 3.6 and training in section 3.7. Any .extracted
files supplied to this subprocess are combined, data that can be scaled is
treated accordingly, and the features generated from each TraceEvent are
molded into developer-defined n-grams and, ultimately, a list of feature vec-
tors, where each vector contains all feature observations for a given feature
across all TraceEvents. After feature preprocessing is complete, a single
output file we will call ngrams.preprocessed, containing all feature vectors, is
saved to disk.

3.5.1 Scaling

Many ML algorithms prefer to work with data that is scaled between two
numbers, when possible, including USBeSafe’s OCSVM implementation.
For this reason, we scale values for feature types that have defined lower
and upper bounds, specifically itimes and packet types.

Normalized itimes can be scaled because they, like any future test in-
stances, are limited to a maximum value of 19999ms according to the pre-
defined maximum pause of 20000ms. To decrease compute time down the
pipeline by optimizing for OCSVM algorithms, we scale these normalized
itimes in the range [0, 1].

The packet type is defined by two values in each packet, event_type
and transfer_type. To store the packet type as a feature, we add the
value of event_type and transfer_type for each packet, yielding eight
distinct possible values. Furthermore, we scale each of these summations
in the range [0, 1].

3.5.2 n-grams

Discussed in section 3.5.2, n-grams can help preserve information, dimin-
ishing loss that comes from training models based on single observations.
For this reason, USBeSafe models can be trained on n-grams of varying n
specified by the developer.

The OCSVM algorithm from [32], implemented in sections 3.6 and 3.7,
requires a two-dimensional matrix of real numbers as input for both train-
ing and testing. Each row represents feature observations for a given packet
in series, and each column represents a feature vector. To meet this matrix
requirement, n-grams are generated according to the structure outlined in
Table 3.1. An n-gram for a given packet p uses a sliding window that con-
tains all FeatureListings in the range [p, p+n). Packets near the end of
the sequence simply have less information contained within their respec-
tive windows depending on the length of n. Of particular interest is the
payload histogram feature type; each histogram observation must be bro-
ken into 16 values to meet the OCSVM algorithm input requirement.

The ngrams.preprocessed file generated as an output of this process con-
tains n-grams for all possible feature types across all FeatureListings
in features.extracted.



3.6. Model Searching 33

TABLE 3.1: The input matrix structure for the OCSVM al-
gorithm dictates feature vector generation from feature ob-

servations for x packets with a sliding window of size n.

Feature Vector
itime1 ... itimen ptype1 ... ptypen hist[1]1 ... hist[16]1 ... hist[1]n ... hist[16]n

Packet

1
1
3
...
x

3.6 Model Searching

After all n-grams are extracted from possible features and ngrams.preprocessed
is generated, we perform a model search. The goal of a model search, for
a given model type, is to pinpoint the best parameter values and feature
types that result in the highest possible score assigned to a specific model
instance.

USBeSafe’s model search infrastructure utilizes an OCSVM grid search
with internal k-fold CV. We use an OCSVM for two reasons:

1. The data collected in section 3.3 is from a single class, all considered
to be benign (or normal).

2. The goal of USBeSafe is to detect novel observations, distinguishing
from the one-class data on which the model is trained.

A thorough discussion of the results from the implemented model search
performed in this research can be found in Chapter 4.2.3.

3.6.1 Framing the Search Space

To determine the search space, or the total number of models generated,
we examine a number of different attributes upon which the model search
relies:

• number of values of n for n-gram windows, a

• number of sets of modeled features for model input, b

• number of OCSVM parameter settings for model generation, c

• number of folds for k-fold CV, d

• number of scoring mechanisms used for model evaluation, e

Ultimately, the model search algorithm generates, trains, and evaluates
a ∗ b ∗ c ∗ d ∗ e models, taking all combinations of settings and inputs.

3.6.2 Search Algorithm

The model search algorithm operates as follows:

1. Extract feature vectors from ngrams.preprocessed according to the sup-
plied n-gram length and requested set of feature types.



34 Chapter 3. Formalization and Implementation

2. For every scoring mechanism, instantiate a grid search environment
E, supplying the parameter space (with all possible defined OCSVM
parameter settings), number of folds for k-fold CV, and the matrix of
feature vectors.

(a) For every parameter setting and fold combination in E, fit an
OCSVM M to the training data and test M against the untrained
fold using the scoring mechanism.

For each feature type set, n-gram length, and scoring mechanism, the
output of this algorithm is a searchable grid, with an individual entry for
each OCSVM parameter setting containing the following:

• parameter settings used to generate the model

• scores for each k-fold CV iteration

• average score across all folds

• standard deviation of the k-fold CV scores

3.7 Model Training

The model training subprocess of USBeSafe is fairly straightforward. After
any desired OCSVM parameters have been found using the model search,
we can use the model trainer to generate and persistently store one or more
OCSVMs. As input, it accepts:

1. ngrams.preprocessed, generated in section 3.5

2. requests.train containing a list of tuples, one per line, each defining at-
tribute settings to apply to an OCSVM trained on ngrams.preprocessed.
Each tuple is constructed according to the following format:

(USB class code, [feature types], {parameter settings}, n-gram size)

For reference, Appendix C lists the file contents of requests.train used
for model training during experimentation in section 4.3. For each class
code-specific model request m in requests.train, an OCSVM is generated
with sklearn.svm.OneClassSVM() [32] according to the parameter set-
tings inm. Each OCSVM is trained on the corresponding feature types inm
from the supplied ngrams.preprocessed file. In this training, no k-fold CV oc-
curs; the model learns the entire training set. Using [32], we are also able to
achieve model persistence, storing each model, including its parameter set-
tings, inside a class-based file hierarchy for future model loading. Finally,
the algorithm creates an output text file, which we will call models.trained,
containing a one-line tuple per trained model with the following informa-
tion:

(USB class code, [feature types], {parameter settings}, n-gram size, model path)

The information found in models.trained is used during execution in sec-
tion 3.8.



3.8. Model Testing 35

3.8 Model Testing

The final step of the USBeSafe pipeline involves applying one or more mod-
els trained in section 3.7 against one or more test trace files. These trace files
contain USB bus traffic that the model has never before seen. We supply the
test infrastructure with two inputs:

1. A file structured in the form of models.trained in section 3.7.

2. A file structured in the form of ngrams.preprocessed. The following
preconditions apply:

(a) The file must have been created using the same n-gram window
size as the training data of the OCSVM against which it is being
tested.

(b) The file should contain the desired test vectors to test against the
OCSVM and is expected to be data on which the OCSVM was
not trained.

At this point, important distinctions are made among the terms anomaly,
novel, and malicious. We consider anomaly and novel to be analogous terms,
as they both indicate an observation is uncharacteristic of the model. An
observation that is novel and an anomaly is potentially malicious. We do
not classify an observation as malicious if it is classified by an OCSVM as
novel (-1); rather, it is identified as possible malicious activity.

The model testing process loads file (2), containing the input obser-
vations on which a given model will make predictions, then for each re-
quest in requests.train, the tester will load the requested model, invoking
sklearn.svm.OneClassSVM.predict() with the set of input observa-
tions. For each invocation of predict(), a list of prediction classifications
is returned, with an entry for each input observation from the test trace.
Each entry is one of {+1, -1}, where +1 means the OCSVM predicts the obser-
vation falls within the trained class, and -1 means the OCSVM predicts the
observation falls outside the trained class and is therefore novel. We score
the model’s performance according to the following metric (also called the
detection score):

novel observation score =
# of input observations classified novel

total # of input observations

The output of the tester is a file where each line represents a test request
containing the novel observation score for a given request and its associated
model attributes.





37

Chapter 4

Experimentation and Results

In this chapter, we consider our experimentation setup and results in three
distinct sections. First, we provide a basic overview of the trace data col-
lected from usbmon and its implications for feature generation. Next, we
discuss the model search phase at length; here, the bulk of our experiment
took place, generating and evaluating a large number of OCSVM instances
based on our declared search domain. Finally, we move to the model train-
ing and testing experiments; we use results from our model search to in-
form how we train OCSVM models before applying them against a known
malicious trace file.

4.1 Data Collection and Feature Generation

For the development of USBeSafe, usbmon collected data over the course
of 8 months, representing approximately two academic terms of USB de-
vice interaction. Over this span, 124 trace files were collected, consisting
of 133.14 MB of raw trace file data. From this collection, we obtained a to-
tal of 1,235,094 USB event packets based on usbmon semantics. Though
the actual number of USB packets that crossed the bus is greater, usbmon
combines each series of (token packet, optional data packet, status packet)
into one interaction. Any usbmon-based USB packet actually represents
two or three USB packets on the bus, depending on whether the interaction
included a payload or not.

Though we allow for extensibility in terms of monitoring a number of
device classes, our primary detection focus is on USB traffic originating
from a covert keyboard interface on a device. For this reason, we sort each
TraceEvent in section 3.4.1 based on USB device class code. The HID de-
vice class, which keyboards fall under, is defined by class code 0x03, found
in an interface descriptor.

4.1.1 Expectation vs. Reality

During data collection, preprocessing, and feature generation, we found
that not all data conforms to expectations. Though all traffic meets the USB
standard (communication errors would occur otherwise), some abnormal
functionality was observed with regards to device enumeration.

Over the course of data collection, traffic from many keyboards was
monitored, furthering the idea of "normal" usage. Not all keyboards re-
ported a class code of 0x03. Ignoring host requests, expected keyboard
enumeration involves:



38 Chapter 4. Experimentation and Results

1. Supplying a device descriptor with class code 0x00, meaning the host
should use a code in the interface descriptor, and the number of con-
figurations, ≥ 1.

2. For the configuration containing the keyboard interface, supplying
the configuration descriptor with the number of interfaces belonging
to the configuration.

3. For the keyboard interface, supplying an interface descriptor contain-
ing class code 0x03.

Instead, we found that some keyboards continue to function properly
by communicating a device descriptor only, with no configurations defined,
like that shown in Figure 3.2. These device descriptors contain USB class
code 0x00, which indicates that a more specific class code can be found in
the interface descriptor. Yet, there exists no interface descriptor. Though
this occurs, each observed instance of this event sequence yields a success-
fully enumerated device, and the host accepts keyboard input immediately
after receiving the device descriptor. At present, we are not sure to what to
attribute this behavior. For this reason, we work around the issue during
class bucketization in the feature extraction phase, moving all 0x00 traffic
into the 0x03 bucket containing keyboard traffic identified as such in an
interface descriptor.

Another issue we had to account for in loading the trace file data into
usable structures was what action to take when encountering a malformed
packet. In some instances when the host would request a device descriptor,
the device would respond with a malformed descriptor packet, forcing the
host to make the request again. As the purpose of the search for descriptor
responses was to load information into the TraceLibrary, we chose to
ignore these request/response pairs when they did occur.

4.2 Model Searching

4.2.1 Performing the Search

Discussed in section 3.6, the size of the search space depends on a number
of attributes, each discussed at length below. A summary of these attributes
is shown in Table 4.1, calculating a total of 5,880 OCSVM model instances
generated during experimentation, covering all combinations of possible
attributes.

n-gram Possibilities

Choosing possible values for n is a rather arbitrary process; for this reason,
we use two values for n: 1, 2. Unigrams (or 1-grams) are used as a simple
baseline in this experiment. Because of the knowledge loss with such a low
n, unigrams are not expected to perform as well as bigrams (or 2-grams), as
bigrams provide some concept of state for a given observation.



4.2. Model Searching 39

Features Selection

Section 3.4 discussed the concept of a potential feature. In the model search,
we use a form of subset selection (section 2.2.1), creating an exhaustive list
of feature combinations used to generate models, with 7 possible subsets:

1. [itime]

2. [packet type]

3. [payload histogram]

4. [itime, packet type]

5. [itime, payload histogram]

6. [packet type, payload histogram]

7. [itime, packet type, payload histogram]

Models generated from these lists of feature types can reveal what types
of features provide useful information for predictions and those that are
either redundant or wholly irrelevant.

Parameter Settings

Fundamentally, to perform a grid search, we must create a parameter space
based on the parameters that define an OCSVM. For each parameter type,
we select a finite set of "reasonable" values over which to search. We put
emphasis on the term "reasonable" because, this likely many other settings,
is somewhat arbitrary. ν must fall in the range (0, 1], γ is defined following
recommendations of [32], and degree as applied to a polynomial kernel
stays within comprehensible terms. For this experiment, we define the fol-
lowing parameter space:

ν = [0.01, 0.25, 0.5, 0.75, 1]
γ = [0.1, 0.01, 0.001, 0.0001]
degree = [1, 2, 3]
parameters = [{rbf, ν, γ},

{sigmoid, ν, γ},
{linear, ν},
{polynomial, ν, γ, degree}]

To generate the full parameter space, sklearn.grid_search.GridSearchCV()
yields all combinations of parameters for any applicable ν, γ, and degree
settings for each kernel option. Defining this parameter space results in 105
parameter settings to apply to OCSVM instances.

k-Fold CV

To understand how the trained OCSVM instances perform on unseen ob-
servations, we leverage k-fold CV with k = 4 folds across the n-gram obser-
vation set. With all other attribute settings constant, this 4-fold CV will gen-
erate four OCSVM model instances, each trained on 75% of the supplied n-
gram observations and tested against the other 25% of observations. As k-
fold CV is self-contained within sklearn.grid_search.GridSearchCV(),
we ultimately issue commands to generate 5,880

k = 1, 470 OCSVMs.



40 Chapter 4. Experimentation and Results

TABLE 4.1: Attribute types and how their possible options
contribute to the overall search space.

Attribute Type Number of Options
n-grams 2
Features 7
Parameters 105
k-fold CV 4
Scoring Mechanisms 1
Model Instances 5,880

Scoring Mechanisms

In evaluating the performance of each model instance, the most viable scor-
ing mechanism for an OCSVM is accuracy. An accuracy measurement pro-
vides a concrete value for the fraction of unseen observations that are cor-
rectly classified during each k-fold CV iteration. Additionally, we can di-
rectly calculate the FP rate of a model, FP = 1−accuracy . Because OCSVMs
only accept observations from a single class for training, any difference be-
tween 100% and the actual accuracy score is the FP rate for a given model,
coming from untrained observations that are not correctly classified to the
trained class.

4.2.2 Search Experiment Framework

Leveraging sklearn.grid_search.GridSearchCV(), each model in
the grid search uses one CPU. Given both a large search space and large
corpus, experimentation requires access to a great deal of CPU power. Run-
ning the search experiment on a Linux-based system S with access to 256
CPUs, it was possible to train 256 models concurrently. S’s interaction in-
terface forced the use of a slightly modified version of the USBeSafe model
search algorithm, discussed further in Appendix D containing the USBe-
Safe project file hierarchy and descriptions.

Using the Python scikit_learn.grid_search library, we individ-
ually invoke GridSearchCV() as follows for each of the 1,470 attribute
combinations:

clf = GridSearchCV(sklearn.svm.OneClassSVM(),
parameters, cv=4, n_jobs=1,
scoring="accuracy")

clf.fit(data, labels)

The grid search is first instantiated with the desired model type, a spe-
cific parameter setting from parameters defined in section 4.2.1, the num-
ber of folds for k-fold CV, the number of models to run concurrently (n_jobs),
and the scoring mechanism. Because of S, the number of jobs run concur-
rently within the grid search framework must remain 1, though S can man-
age up to 256 of these individual grid searches. Next, the feature vectors
are fit to the grid search instance; though OCSVM is an inherently unsuper-
vised learning problem, the sklearn.svm.OneClassSVM() implemen-
tation requires labels for all observations. This issue is easily solved by



4.2. Model Searching 41

●

●

● ●

● ●

● ●

● ●

●

●

●

0 10 20 30 40 50 60

0.
97

0.
99

OCSVM Model Accuracy by Kernel Function

Test ID (score−ranked)

A
cc

ur
ac

y 
S

co
re

●

RBF
Sigmoid
Poly
Linear

● ● ● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●
●

0 10 20 30 40 50 60

0.
97

0.
99

OCSVM Model Accuracy by n−gram Window Size

Test ID (score−ranked)

A
cc

ur
ac

y 
S

co
re

●

1−Gram
2−Gram

● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0.
97

0.
99

OCSVM Model Accuracy by Feature Subset

Test ID (score−ranked)

A
cc

ur
ac

y 
S

co
re

●

[itime]
[packet type]
[payload]
[itime, packet type]

[itime, payload]
[packet type, payload]
[itime, packet type, payload]

FIGURE 4.1: Model search results with an accuracy score
threshold of 0.96 and independent test attributes.

supplying a list of 1’s with an entry for each observation. This label set
means that all observations are labeled +1, falling within the training set.

4.2.3 Experiment Results and Discussion

In total, 5,880 OCSVM instances were evaluated, when factoring in k-fold
CV. As this functionality is internal to GridSearchCV(), we ultimately
possess the ability to evaluate results from 1,470 OCSVM models, covering
105 parameter settings, two n-gram settings, and seven feature subsets, all
scored according to an accuracy metric. The remainder of this section is a
review and analysis of the results from this OCSVM grid search.

After the grid search was completed, further consideration was given to
OCSVM models with resulting mean accuracy scores≥ 0.96, corresponding
to a FP rate of 4% or less. This threshold was determined according to
previous SVM- and OVSVM-based NAD work [41, 58, 59, 62] in which most
acceptable systems limited the FP rate to a slightly higher maximum of
4.5%. Of all 1,470 test models, 59 OCSVMs of varying attribute settings
achieved this threshold.



42 Chapter 4. Experimentation and Results

TABLE 4.2: Evaluation of independent attributes’ effects on
OCSVM accuracy scores, with top 8 models removed.

Attribute
Attribute
Option

Tests Scoring
≥ 0.96

Average
Accuracy

Kernel

RBF 17 0.986171
sigmoid 12 0.983500
poly 17 0.985564
linear 5 0.988538

Window 1 27 0.985220
2 24 0.985287

Feature
Subset

[itime] 6 0.988603
[packet type] 0 N/A
[payload] 1 0.969350
[itime, packet type] 13 0.987611
[itime, payload] 9 0.981880
[packet type, payload] 9 0.986112
[itime, packet type, payload] 13 0.984307

Figure 4.1 presents the results of the experiment after this threshold cut,
independently based on varying attribute types: kernel, n-gram window
size, and feature subset, respectively. We see a grouping of eight models,
all with nearly 100% accuracy in each graph. Figure 4.1 reveals that these
OCSVM instances all stem from the [packet type] feature subset. Though
high accuracy is a major goal for model performance, such consistently high
scores, regardless of kernel type or window size, indicates this subset may
not yield viable candidates for OCSVM training. The reason for this is be-
cause the packet type feature can only take on eight distinct values (section
3.5.1). When training solely on packet type, each observation will equal one
of these values. The domain is simply too small to accurately characterize
USB traffic and leads to a system which can prove rather simple for an ad-
versary to defeat. For this reason, we do not consider these model instances
for further testing and are left with 51 possible models.

Table 4.2 summarizes the model search results based on independent
attributes after these tests are removed from consideration. Using the 51
remaining OCSVM instances, a few more important observations can be
made from Figure 4.1 and Table 4.2:

• The linear OCSVM kernel rather consistently underperforms versus
the other kernels. Though it performs the same or better in some
instances, there are a significantly greater number of tests based on
the other three kernel functions that score ≥ 0.96. What this reveals
about the input corpus is that, in general, its vectors are not easily lin-
early separable; this means that other kernel functions, forcing the
data points into a higher dimensional space, achieve better hyper-
plane separation.

• Examining n-gram window size independent of other attribute types,
we see that OCSVM models perform slightly better with an increased
n. Though only 1- and 2-grams were tested, this result makes sense;
as input data information loss decreases, prediction performance in-
creases. Increased n provides more context for a given observation.



4.2. Model Searching 43

TABLE 4.3: Due to time constraints, a select few grid search
tests could not be completed.

Test No. OCSVM Parameters
n-Gram
Window

Features

829
kernel = RBF
ν = 0.75
γ = 0.01

2 payload

1336

kernel = polynomial
ν = 0.75
γ = 0.1
degree = 2

2
packet type,
payload

1354

kernel = polynomial
ν = 0.75
γ = 0.0001
degree = 2

2 payload

1361

kernel = polynomial
ν = 0.75
γ = 0.1
degree = 3

2 payload

1363

kernel = polynomial
ν = 0.75
γ = 0.1
degree = 3

2
itime,
payload

1364

kernel = polynomial
ν = 0.75
γ = 0.1
degree = 3

2
packet type,
payload

1365

kernel = polynomial
ν = 0.75
γ = 0.1
degree = 3

2
itime,
packet type,
payload

• With regards to feature subsets, besides [itime] which scores above
0.99 for two different models and just below 0.99 in several other in-
stances, all but one OCSVM need to learn at least two feature types to
perform well. Test ID #57 (score-ranked) achieves 96.935% accuracy
by learning payload histograms alone, but many models score better
than #57, having learned more traffic characteristics.

After this examination, the decision was made to train these remaining
51 models that met the 96% accuracy threshold and did not overtly indicate
they would be trivial for an attacker to overcome. In the final section of this
chapter, we discuss the results from training on the corpus and individually
testing these 51 models against a known malicious trace file.

Note that due to time constraints, we were not able to complete scoring
results of seven OCSVM model instances. Descriptions of these models can
be found in Table 4.3. Due to the large attribute space lending to significant
test coverage and the grid search resulting in many high-scoring OCSVM
models, we do not anticipate these unfinished tests would greatly add to
our results.



44 Chapter 4. Experimentation and Results

4.3 Model Training and Testing

4.3.1 Model Training Experiment

Like the model search experiment, model training experiments were per-
formed on S, capable of large-scale data processing with 256 CPUs and
requiring a modified version of the USBeSafe training infrastructure. These
modifications are addressed in Appendix D.

The 51 models addressed in section 4.2.3 were individually trained with
applicable attributes on the corpus, containing 1,191,957 USB class code
0x03 (with included 0x00) packets observations.

4.3.2 Model Testing Experiment Framework

To test the performance of these 51 models against known malicious ac-
tivity, we used an existing malicious trace file. This trace was created via
previous work by Dr. Wil Robertson, et al. reverse engineering the BadUSB
covert HID attack and contains USB keyboard traffic for opening a com-
mand prompt and executing a code injection attack. Each model, with re-
quests found in requests.train, was loaded and tested against a file of the for-
mat ngrams.preprocessed, respective to the model’s n-gram setting, contain-
ing the malicious traffic. For each model, sklearn.svm.OneClassSVM.predict()
was invoked and classified the 541 input observations from the malicious
trace. The tests were run in two iterations, one for each n-gram size, with
results combined for further analysis.

4.3.3 Model Testing Results

Like the grid search experiment in section 4.2.3, it is useful to examine novel
observation score results per OCSVM independently based on varying at-
tribute types: kernel, n-gram window size, and feature subset. These dis-
tinctions are shown in Figure 4.2, with tests sorted according to descending
novel observation score. This score represents the fraction of observations
that were classified as novel or anomalous, assigning them to the -1 class, or
outside the trained class. Table 4.4 lists the Pearson correlation coefficients
for possible feature subsets against the novel observation score.

A number of important observations can be made from these results:

• One model, using the polynomial kernel trained on 2-grams from all
three feature types classifies a significantly greater fraction of obser-
vations as anomalous versus every other test. This OCSVM classifies
71.7% of observations from the malicious trace file as novel, while the
next closest model drops quickly to a 50.4% novel classification rate.

• Overall, kernel type used does not seem to indicate any drastic in-
crease in novel observations. Figure 4.3 shows that, while outliers
exist, kernel function as an independent attribute typically performs
in approximately the same novel observation rate range regardless of
setting.

• Novel observation scores by models using 2-grams are generally con-
siderably higher than by those using 1-grams, reinforcing the concept



4.3. Model Training and Testing 45

●

●
●

● ● ● ● ●

● ● ● ●

0 10 20 30 40 50

0.
0

0.
4

0.
8

OCSVM Novel Observation Score by Kernel Function

Test ID (score−ranked)

N
ov

el
 O

bs
er

va
tio

n 
S

co
re

●

RBF
Sigmoid
Poly
Linear

●

● ● ● ● ●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●
● ●

0 10 20 30 40 50

0.
0

0.
4

0.
8

OCSVM Novel Observation Score by n−gram Window Size

Test ID (score−ranked)

N
ov

el
 O

bs
er

va
tio

n 
S

co
re

●

1−Gram
2−Gram

0 10 20 30 40 50

0.
0

0.
4

0.
8

OCSVM Novel Observation Score by Feature Subset

Test ID (score−ranked)

N
ov

el
 O

bs
er

va
tio

n 
S

co
re

●

[itime]
[packet type]
[payload]
[itime, packet type]

[itime, payload]
[packet type, payload]
[itime, packet type, payload]

FIGURE 4.2: Model testing results against a known mali-
cious trace using independent test attributes.



46 Chapter 4. Experimentation and Results

●

●

●
●

●

linear poly rbf sigmoid

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Kernel Function−based Novel Observation Score Distribution

Kernel Function

N
ov

el
 O

bs
er

va
tio

n 
S

co
re

FIGURE 4.3: Novel observation scores from tests on a
known malicious keyboard traffic trace, segregated by ker-

nel function.

TABLE 4.4: Pearson correlation measures between feature
subsets and novel observation scores.

Feature Subset
Pearson Correlation to

Novel Observation Score
[itime] 0.3651734

[packet type] -0.03712667
[payload] -0.2761911

[itime, packet type] 0.2484312
[itime, payload] 0.02719254

[packet type, payload] -0.2237014
[itime, packet type, payload] 0.06951541

that more context for any given observation provides better predic-
tion performance. For all tests, the Pearson correlation coefficient be-
tween n and novel observation score is 0.5138353, indicating a fairly
strong relationship between increased n and increased score. Nine of
the top 10 classifiers, according to novel classification rate, are trained
using 2-grams.

• Table 4.4 shows that there is a correlation between using itimes in a
feature subset and an increase in novel observation score. For each
feature subset that does not include itimes, when itimes are incorpo-
rated into the model, correlation increases.

It is also important to mention the possible threat of model overfitting.
In Figure 4.4, we see a correlation between model accuracy scores during
the grid search and the novel observation score during this testing phase;
the Pearson correlation coefficient between these two variables is 0.1807714.



4.3. Model Training and Testing 47

FIGURE 4.4: Though not necessarily strong, we see an ob-
vious correlation between model accuracy and fraction of

observations classified as novel.

In general, a higher accuracy score for classifying the single known class
loosely translates to a higher percentage of new observations flagged as
novel. For the system to minimize false positives and false negatives, it is
valuable to find some balance between the model accuracy and the novel
observation rate. We recognize that further testing on other known mali-
cious trace files will serve to provide more information about which models
continue to perform well as attack generalization increases.

Because we consider USBeSafe an offline USB event anomaly detection
system serving as the basis for a live detection system, these results beg the
question of when the system should flag activity as anomalous. There exist
several options for defining alert thresholds:

• Overall-score threshold: For an offline system, it is possible to define
an overall novel classification score threshold and alert if the score for
a given input exceeds this threshold.

• Consecutive-observation threshold: For both offline and live sys-
tems, it is possible to set a threshold for the number of consecutive
observations classified as anomalous before the system alerts on po-
tentially malicious activity.

• Window-fraction threshold: For both offline and live systems, a thresh-
old can be set for a given window size indicating the fraction of ob-
servations that must be classified as novel within that window before
the system presents an alert.

A production version of USBeSafe would likely use a combination of
these threshold metrics and leaves the door open for further research to
improve the system.

This research reveals that there exist features specific to USB keyboard
traffic that possess the ability to identify such traffic as benign or malicious,
and it is possible to leverage those features to train an OCSVM capable of
differentiating between a malicious code injection attack and benign key-
board traffic. We successfully applied OCSVM to model a large corpus of



48 Chapter 4. Experimentation and Results

benign USB keyboard traffic and tested viable models against a known ma-
licious attack with instances of high novel observation rates. We also found
significant correlations between inclusion of itime feature observations and
novel observation scores as well as increased n-gram window size to novel
observation score. We identified a subset of models from the search exper-
iment that perform strongly against the malicious trace, and introduced an
alert framework for both offline and live versions of USBeSafe.



49

Chapter 5

Conclusions and Future Work

In this chapter, we first present a final overview of USBeSafe and its con-
tributions to the fields of USB security and anomaly detection. We then
conclude by discussing a number of avenues for future research in the area
of USB event anomaly detection.

5.1 Conclusions

After the introduction of BadUSB as a brand new attack class via USB, it
seemed that protecting against malicious behavior built directly into device
firmware would prove extremely difficult, if not impossible. The implica-
tions for a lack of protection in this area are enormous; with the number of
USB devices in end-user computing continuing to rise, the surface area for
BadUSB-style attacks grows each day. Protection mechanisms such as IEEE
1667 [69] and GoodUSB [76] have been proposed, but they have gained lit-
tle to no mainstream traction and change the end-user operational status
quo for USB devices.

Through USBeSafe, we show that it is possible to leverage ML tech-
niques to successfully detect malicious USB traffic, thereby alleviating the
need to involve the user in precautionary security measures. USBeSafe, in
its current form, serves as a means of detecting a rogue-TD attack in which
a covert keyboard interface is defined and operating in the device firmware.

The development of USBeSafe contributes significant progress to USB
security when considering the threat from rogue-TD attacks. Through this
work, we accomplished the following:

1. Leveraged the Linux kernel module usbmon to create and character-
ize a corpus of USB device traffic from the perspective of the bus.

2. Achieved efficient extraction of USB traffic features and provided an
extensible framework for expanding the types of features and USB
device classes considered.

3. First-of-its-kind application of OCSVM to USB keyboard traffic fea-
tures, yielding accurate identification of benign keyboard traffic.

4. Completed comprehensive feature and model attribute selection for
USB keyboard traffic with analysis of feature and attribute relevance
specific to the corpus.

5. Provided a platform for applying OCSVM to both offline and live US-
BeSafe USB traffic anomaly detection systems.



50 Chapter 5. Conclusions and Future Work

There do exist some limitations to this research. First, we are required
to assume that the traffic corpus is wholly benign, containing no malicious
traffic whatsoever. This assumption is what allows us to leverage OCSVM;
though unlikely, the possibility of malicious traffic in the USBeSafe corpus
would lend to the use of a standard supervised learning-based SVM with
binary classification capabilities. We also recognize that a single malicious
attack test is not necessarily enough to indicate the viability of the approach
or a specific OCSVM model. Development of any new attack trace is sim-
ply a slight variation of the existing command injection attack trace and
may not necessarily prove useful. Lastly, we consider a fundamental short-
coming of anomaly detection: the potential for a mimicry attack in which
an adversary forms an attack input in such a way that it looks normal to
the anomaly detection mechanism [60]. We recognize this shortfall, espe-
cially with regards to USB packet itimes. Because many models that result
in high novel observation scores incorporate itimes, the potential exists for
an adversary to craft an attack that does match human typing patterns. For-
tunately, the overhead in developing malicious firmware for such an attack
is significantly greater than existing attack examples.

5.2 Future Work

While USBeSafe shows significant promise in detecting anomalous USB
traffic, there are many areas for future research in this field. Due to its flex-
ible nature, the rogue-TD attack vector possesses significant potency; there
exist a number of options to explore as to furthering the capabilities of US-
BeSafe as well exploring the technical shortcomings of other solutions.

Specific to our USBeSafe model search experiments, it is possible to ex-
amine how larger window size for n-grams affect OCSVM performance;
as we see an increase in accuracy from n = 1 to n = 2 (albeit small, but
measured independently from other attribute factors), increasing n further
may prove fruitful in terms of accuracy scores and detection performance
by providing more state and context for a given observation.

Another useful avenue of work would be to explore the generalizabil-
ity of the keyboard emulation attack detection mechanism. By gathering
a larger corpus from many users, we could determine if keyboard traffic
models are universally applicable or should be tuned on an individual ba-
sis.

We can also explore options for detecting the other types of attacks
demonstrated in BadUSB. For example, how can we leverage SVM tech-
nology to effectively characterize the network spoof attack? Such a prob-
lem may not involve only USB traffic; we may have to leverage and model
information found in system change logs pertinent to network configura-
tions.



51

Appendix A

USB Descriptors

Each table below [12] serves as a USB descriptor byte map, outlining the
contents of each descriptor type. The tables are listed in hierarchical order
with the device descriptor at the top of the descriptor hierarchy, as this is
the first descriptor the host receives from a device.

TABLE A.1: Contents of a device descriptor packet, by byte
[12].

Offset Field Size Value Description
0 bLength 1 Number Size of the Descriptor in Bytes (18 bytes)
1 bDescriptorType 1 Constant Device Descriptor (0x01)

2 bcdUSB 2 BCD USB Specification Number
which device complies too.

4 bDeviceClass 1 Class

Class Code (Assigned by USB Org)
0x00: each interface specifies class code.
0xFF: the class code is vendor specified.
Otherwise field is valid Class Code.

5 bDeviceSubClass 1 SubClass Subclass Code (Assigned by USB Org)
6 bDeviceProtocol 1 Protocol Protocol Code (Assigned by USB Org)

7 bMaxPacketSize 1 Number Maximum Packet Size for Zero Endpoint.
Valid Sizes are 8, 16, 32, 64

8 idVendor 2 ID Vendor ID (Assigned by USB Org)
10 idProduct 2 ID Product ID (Assigned by Manufacturer)
12 bcdDevice 2 BCD Device Release Number
14 iManufacturer 1 Index Index of Manufacturer String Descriptor
15 iProduct 1 Index Index of Product String Descriptor
16 iSerialNumber 1 Index Index of Serial Number String Descriptor
17 bNumConfigurations 1 Integer Number of Possible Configurations

TABLE A.2: Contents of a configuration descriptor packet,
by byte [12].

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes
1 bDescriptorType 1 Constant Configuration Descriptor (0x02)
2 wTotalLength 2 Number Total length in bytes of data returned
4 bNumInterfaces 1 Number Number of Interfaces
5 bConfigurationValue 1 Number Value to use as an argument to select this configuration
6 iConfiguration 1 Index Index of String Descriptor describing this configuration

7 bmAttributes 1 Bitmap

D7 Reserved, set to 1. (USB 1.0 Bus Powered)
D6 Self Powered
D5 Remote Wakeup
D4..0 Reserved, set to 0.

8 bMaxPower 1 mA Maximum Power Consumption in 2mA units

TABLE A.3: Contents of an interface descriptor packet, by
byte [12].

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes (9 Bytes)
1 bDescriptorType 1 Constant Interface Descriptor (0x04)
2 bInterfaceNumber 1 Number Number of Interface
3 bAlternateSetting 1 Number Value used to select alternative setting
4 bNumEndpoints 1 Number Number of Endpoints used for this interface
5 bInterfaceClass 1 Class Class Code (Assigned by USB Org)
6 bInterfaceSubClass 1 SubClass Subclass Code (Assigned by USB Org)
7 bInterfaceProtocol 1 Protocol Protocol Code (Assigned by USB Org)
8 iInterface 1 Index Index of String Descriptor Describing this interface



52 Appendix A. USB Descriptors

TABLE A.4: Contents of an endpoint descriptor packet, by
byte [12].

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes (7 bytes)
1 bDescriptorType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint

Endpoint Address
Bits 0..3b Endpoint Number.
Bits 4..6b Reserved. Set to Zero
Bits 7 Direction 0 = Out, 1 = In (Ignored for Control Endpoints)

3 bmAttributes 1 Bitmap

Bits 0..1 Transfer Type
00 = Control
01 = Isochronous
10 = Bulk
11 = Interrupt
Bits 2..7 are reserved. If Isochronous endpoint,
Bits 3..2 = Synchronisation Type (Iso Mode)
00 = No Synchronisation
01 = Asynchronous
10 = Adaptive
11 = Synchronous
Bits 5..4 = Usage Type (Iso Mode)
00 = Data Endpoint
01 = Feedback Endpoint
10 = Explicit Feedback Data Endpoint
11 = Reserved

4 wMaxPacketSize 2 Number Maximum Packet Size this endpoint is capable of sending or receiving

6 bInterval 1 Number
Interval for polling endpoint data transfers.
Value in frame counts. Ignored for Bulk & Control Endpoints.
Isochronous must equal 1; field may range [1, 255] for interrupt endpoints.

6 bInterfaceSubClass 1 SubClass Subclass Code (Assigned by USB Org)
7 bInterfaceProtocol 1 Protocol Protocol Code (Assigned by USB Org)
8 iInterface 1 Index Index of String Descriptor Describing this interface

TABLE A.5: Contents of a string descriptor packet, by byte
[12].

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes
1 bDescriptorType 1 Constant String Descriptor (0x03)

2 wLANGID[0] 2 number Supported Language Code Zero
(e.g. 0x0409 English - United States)

4 wLANGID[1] 2 number Supported Language Code One
(e.g. 0x0c09 English - Australian)

n wLANGID[x] 2 number Supported Language Code x
(e.g. 0x0407 German - Standard)



53

Appendix B

Interarrival Time Histograms
by pause Length

When determining session length to mitigate issues with potential infinitely
long itimes between packets (section 3.4.2), we considered three possible
pause values to determine the session cutoff: 20000ms, 40000ms, and 60000ms.
Manual examination of these normalized itimes involved graphing them in
a number of histograms with varying bin intervals. After an initial search,
we find that pause length has little impact on model performance and
choose to process itimes according to pause = 20000ms.

FIGURE B.1: Histogram showing interarrival times of USB
class code 0x00, normalized on a 20000ms pause with bin

intervals of 200ms.

FIGURE B.2: Histogram showing interarrival times of USB
class code 0x00, normalized on a 20000ms pause with bin

intervals of 500ms.



54 Appendix B. Interarrival Time Histograms by pause Length

FIGURE B.3: Histogram showing interarrival times of USB
class code 0x00, normalized on a 40000ms pause with bin

intervals of 200ms.

FIGURE B.4: Histogram showing interarrival times of USB
class code 0x00, normalized on a 40000ms pause with bin

intervals of 500ms.

FIGURE B.5: Histogram showing interarrival times of USB
class code 0x00, normalized on a 60000ms pause with bin

intervals of 200ms.



Appendix B. Interarrival Time Histograms by pause Length 55

FIGURE B.6: Histogram showing interarrival times of USB
class code 0x00, normalized on a 60000ms pause with bin

intervals of 500ms.

FIGURE B.7: Histogram showing interarrival times of USB
class code 0x03, normalized on a 20000ms pause with bin

intervals of 200ms.

FIGURE B.8: Histogram showing interarrival times of USB
class code 0x03, normalized on a 20000ms pause with bin

intervals of 500ms.



56 Appendix B. Interarrival Time Histograms by pause Length

FIGURE B.9: Histogram showing interarrival times of USB
class code 0x03, normalized on a 40000ms pause with bin

intervals of 200ms.

FIGURE B.10: Histogram showing interarrival times of USB
class code 0x03, normalized on a 40000ms pause with bin

intervals of 500ms.

FIGURE B.11: Histogram showing interarrival times of USB
class code 0x03, normalized on a 60000ms pause with bin

intervals of 200ms.



Appendix B. Interarrival Time Histograms by pause Length 57

FIGURE B.12: Histogram showing interarrival times of USB
class code 0x03, normalized on a 60000ms pause with bin

intervals of 500ms.





59

Appendix C

Model Training Requests

During model training in section 4.3, 51 models were generated according
to the below parameters. The file requests.train contains the below model
requests for training, each formatted as follows:

(USB class code, [feature types], {OCSVM parameters}, n-gram window size)

The 51 model requests are as follows:

(3, [’itime’, ’ptype’],
{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.01}, 2)

(3, [’itime’, ’ptype’],
{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 1}, 2)

(3, [’itime’, ’ptype’],
{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.1}, 1)

(3, [’itime’], {’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.0001}, 1)
(3, [’itime’], {’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.0001}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.001}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.1, ’degree’: 1}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’linear’, ’nu’: 0.01}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.0001, ’degree’: 1}, 1)
(3, [’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 1}, 1)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.0001, ’degree’: 3}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 1}, 2)
(3, [’itime’, ’payload’],

{’kernel’: ’linear’, ’nu’: 0.01}, 1)
(3, [’itime’, ’ptype’],

{’kernel’: ’linear’, ’nu’: 0.01}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.001}, 1)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.01, ’degree’: 1}, 1)
(3, [’itime’, ’payload’],



60 Appendix C. Model Training Requests

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.1}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 3}, 1)
(3, [’itime’, ’payload’],

{’kernel’: ’linear’, ’nu’: 0.01}, 2)
(3, [’itime’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.1, ’degree’: 1}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 3}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.0001}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.001}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 2)
(3, [’itime’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.0001}, 2)
(3, [’itime’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 2)
(3, [’itime’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.1}, 2)
(3, [’itime’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.001}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.1}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 1)
(3, [’itime’, ’payload’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 1)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.01}, 1)
(3, [’itime’, ’ptype’],

{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.0001}, 1)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’linear’, ’nu’: 0.01}, 1)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.1}, 1)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.1, ’degree’: 1}, 1)
(3, [’itime’, ’payload’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.1}, 1)
(3, [’itime’, ’ptype’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.1, ’degree’: 2}, 2)
(3, [’itime’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.01, ’degree’: 1}, 2)
(3, [’itime’, ’ptype’],

{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.1}, 2)
(3, [’itime’, ’ptype’, ’payload’],

{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.0001, ’degree’: 1}, 1)



Appendix C. Model Training Requests 61

(3, [’itime’, ’ptype’, ’payload’],
{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.0001}, 1)

(3, [’ptype’, ’payload’],
{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.01, ’degree’: 1}, 1)

(3, [’ptype’, ’payload’],
{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.001, ’degree’: 3}, 2)

(3, [’itime’, ’ptype’, ’payload’],
{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.01}, 1)

(3, [’itime’, ’payload’],
{’kernel’: ’rbf’, ’nu’: 0.01, ’gamma’: 0.001}, 1)

(3, [’payload’],
{’kernel’: ’poly’, ’nu’: 0.01, ’gamma’: 0.0001, ’degree’: 3}, 2)

(3, [’itime’, ’payload’],
{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.01}, 2)

(3, [’ptype’, ’payload’],
{’kernel’: ’sigmoid’, ’nu’: 0.01, ’gamma’: 0.01}, 1)





63

Appendix D

USBeSafe Project Files

Appendix D contains the USBeSafe project hierarchy and directory/file de-
scriptions. * serves as a wildcard character to condense similar files.

D.1 Project Hierarchy

USBeSafe
attack

1gram_vectors_20160420-110018.preprocessed
2gram_vectors_20160420-110026.preprocessed
features_20160420-105955.extracted
keyboard_filtered.pcap

experiments
search

generate_model.py
get_scores.bash
llgrid_search.bash
ngram_file_list.txt
parameter_space.txt
process_scores.py
search_requests

search_reqs_*.json
search_results.csv
test_logs

test_*.bash.log-*
test_scripts

test_*.bash
train

llgrid_train.bash
requests.train
training_info

class_3
model_*.OCSVM*

train_logs
train_*.bash.log-*

train_outputs
model_*.trained
models.trained

train.py
train_scripts

train_*.bash



64 Appendix D. USBeSafe Project Files

models.trained
models_1gram.trained
models_2gram.trained

ngrams.preprocessed
1gram_vectors_20160330-150842.preprocessed
2gram_vectors_20160330-151003.preprocessed
4gram_vectors_20160330-151235.preprocessed
8gram_vectors_20160330-151633.preprocessed

results.tested
results_20160420-114649.csv
results_20160420-114725.csv
results_combined.csv

supporting
R_data

itime_histograms
class_*_itime_*_ms_plots.pdf

itime_histograms.r
plot_search_results.r
plot_test_results.r
search_vs_test.r

search_vs_test.csv
usb.py

D.2 Directory and File Descriptions

For directory and file descriptions, directory names are labeled in red and
file names are labeled in blue.

attack: contains all files related to the malicious trace keyboard.pcap applied
against various trained models in section 4.3.2

1gram_vectors_20160420-110018.preprocessed: 1-gram attack feature vec-
tors used for testing against a given model

2gram_vectors_20160420-110026.preprocessed: 2-gram attack feature vec-
tors used for testing against a given model

features_20160420-105955.extracted: extracted attack features database

keyboard_filtered.pcap: a filtered PCAP file of the keyboard attack contain-
ing packets from Bus 0x03, Address 0x03 used as input for the malicious
input experiment in 4.3.2

experiments: contains the framework for the grid search and training ex-
periments

search: contains grid search experiment framework and auxiliary informa-
tion



D.2. Directory and File Descriptions 65

generate_model.py: Python script leveraged by llgrid_search.bash to gener-
ate a single model according to supplied attributes

get_scores.bash: pulls score information for training experiment post-processing
from test_*.bash.log-*; leveraged by process_scores.py

llgrid_search.bash: grid search experiment script that creates and invokes
all test_*.bash with associated log information in respective test_*.bash.log-*

ngram_file_list.txt: contains pathnames to the n-gram feature vector files
used in the grid search; leveraged by llgrid_search.bash

parameter_space.txt: contains all variations of OCSVM parameters for use
in the grid search; leveraged by llgrid_search.bash

process_scores.py: Python script used to generate overall score information
from grid search experiment and creates search_results.csv as output

search_requests: contains feature subset requests as attribute for grid search

search_reqs_*.json: files containing individual requests for all feature sub-
sets for a grid search; leveraged by llgrid_search.bash

search_results.csv: generated by process_scores.py and contains scoring in-
formation for each model with associated attributes sorted from high to
low accuracy score

test_logs: contains the logs generated from all 1,470 grid search tests

test_*.bash.log-*: each log, 1,470 in all, contains output from each OCSVM
instance in the grid search; generated by llgrid_search.bash

test_scripts: contains scripts generated to invoke all 1,470 grid search tests

test_*.bash: each script, 1,470 in all, invokes an OCSVM instance in the grid
search attribute space; generated by llgrid_search.bash

train: contains the model training experiment framework and auxiliary in-
formation

llgrid_train.bash: model training experiment script that creates and invokes
train_*.bash with associated log information in respective train_*.bash.log-*

requests.train: listing of models to train according to associated attributes
during the model training experiment

training_info: contains trained model files sorted by USB class code

class_3: contains trained model files for USB class code 0x03 traffic

model_*.OCSVM*: various models according to grid search test ID, with



66 Appendix D. USBeSafe Project Files

model_*.OCSVM serving as the base file for loading a given model and
model_*.OCSVM* acting as supporting model files, 10 for each model

train_logs: contains the logs generated from 51 OCSVM training instances

train_*.bash.log-*: each log, 51 in all, contains output from each OCSVM
instance in the model training experiment; generated by llgrid_train.bash

train_outputs: contains model training outputs from train.py

model_*.trained: each file, 51 in all, contains attribute and filepath informa-
tion for the trained model with which it is associated

models.trained: file containing all data from model_*.trained

train.py: Python script leveraged by llgrid_train.bash to generate a single
model according supplied attributes

train_scripts: contains scripts generated to invoke each of 51 model training
instances

train_*.bash: each script, 51 in all, invokes the training of an OCSVM in-
stance in the model training experiment; generated by llgrid_train.bash

models.trained: contains n-gram based listings of models trained during
the training experiment by llgrid_train.bash

models_1gram.trained: listing of model file paths trained on 1-grams by ll-
grid_train.bash; used as input for testing in 4.3.2

models_2gram.trained: listing of model file paths trained on 2-grams by ll-
grid_train.bash; used as input for testing in 4.3.2

ngrams.preprocessed: contains n-gram vector files generated from USB traf-
fic corpus

1gram_vectors_20160330-150842.preprocessed: 1-gram feature vector database
for the USB traffic corpus, sorted by USB class code

2gram_vectors_20160330-151003.preprocessed: 2-gram feature vector database
for the USB traffic corpus, sorted by USB class code

4gram_vectors_20160330-151235.preprocessed: 4-gram feature vector database
for the USB traffic corpus, sorted by USB class code

8gram_vectors_20160330-151633.preprocessed: 8-gram feature vector database
for the USB traffic corpus, sorted by USB class code

results.tested: contains results from model testing against keyboard_filtered.pcap



D.2. Directory and File Descriptions 67

results_20160420-114649.csv: 1-gram model testing results against keyboard_filtered.pcap

results_20160420-114725.csv: 2-gram model testing results against keyboard_filtered.pcap

results_combined.csv: combined results_20160420-114649.csv and results_20160420-
114725.csv, sorted on score from high to low

supporting: contains supporting scripts and outputs for analysis of results
during experiments

R_data: contains supporting R scripts and various outputs used in statisti-
cal result analysis

itime_histograms: contains the histograms generated to examine the effect
of various pause lengths on itime distribution

class_*_itime_*_ms_plots.pdf: series of histograms with varying USB class
codes that show the effective distribution of itimes when pause and bin
size vary

itime_histograms.r: R script that plots class_*_itime_*_ms_plots.pdf

plot_search_results.r: R script that plots model accuracy scores for each
model from the grid search with independent model attribute scope

plot_test_results.r: R script that plots novel observation scores for each
model tested against the malicious trace with independent model attribute
scope

search_vs_test.r: R script that plots the model accuracy scores vs. novel ob-
servation scores

search_vs_test.csv: a manually constructed comparison of grid search ac-
curacy scores vs. novel observation scores for the trained models

usb.py: self-contained USBeSafe Python codebase





69

Bibliography

[1] GIA. 3 Billion USB 3.0 Devices by 2018 – Global Industry Analysts. 2013.

[2] Noah Shachtman. “Under Worm Assault, Military Bans Disks, USB
Drives”. In: Wired, Nov (2008).

[3] David E Sanger. Confront and conceal: Obama’s secret wars and surprising
use of American power. Crown Pub, 2012.

[4] David E Sanger. “Obama order sped up wave of cyberattacks against
Iran”. In: The New York Times 1.06 (2012), p. 2012.

[5] Phil Muncaster. Indian navy computers stormed by malware-ridden USBs.
2012.

[6] Ponemon. 2011 Second Annual Cost of Cyber Crime Study Benchmark
Study of U.S. Companies. 2011.

[7] Karsten Nohl and Jakob Lell. “BadUSB–On accessories that turn evil”.
In: Black Hat USA (2014).

[8] K. Nohl, S. Krißler, and J. Lell. Turning USB peripherals into BadUSB.
2014.

[9] Jan Axelson. USB complete: the developer’s guide. Lakeview research
LLC, 2015.

[10] Abhishek Gupta. USB 3.0 vs USB 2.0: A quick reference summary for the
busy engineer. Cypress Semiconductor, 2014.

[11] HP. USB 3.0 Technology: Performance Advantage on HP Workstations.
2012.

[12] Craig Peacock. “USB in a nutshell. Making sense of the USB stan-
dard”. In: (2002).

[13] Microsoft. USB device class drivers included in Windows. 2016.

[14] Phil Simon. Too Big to Ignore: The Business Case for Big Data. Vol. 72.
John Wiley & Sons, 2013.

[15] Thomas M Mitchell et al. Machine learning. 1997.

[16] Christopher M Bishop. “Pattern Recognition”. In: Machine Learning
(2006).

[17] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foun-
dations of machine learning. MIT press, 2012.

[18] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up?:
sentiment classification using machine learning techniques”. In: Pro-
ceedings of the ACL-02 conference on Empirical methods in natural lan-
guage processing-Volume 10. Association for Computational Linguis-
tics. 2002, pp. 79–86.

[19] Thiago S Guzella and Walmir M Caminhas. “A review of machine
learning approaches to spam filtering”. In: Expert Systems with Appli-
cations 36.7 (2009), pp. 10206–10222.



70 BIBLIOGRAPHY

[20] Simon Tong and Edward Chang. “Support vector machine active learn-
ing for image retrieval”. In: Proceedings of the ninth ACM international
conference on Multimedia. ACM. 2001, pp. 107–118.

[21] Adam Coates et al. “Text detection and character recognition in scene
images with unsupervised feature learning”. In: Document Analysis
and Recognition (ICDAR), 2011 International Conference on. IEEE. 2011,
pp. 440–445.

[22] Geoffrey Hinton et al. “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups”. In:
Signal Processing Magazine, IEEE 29.6 (2012), pp. 82–97.

[23] Sachin Agarwal and Shilpa Arora. “Context based word prediction
for texting language”. In: Large Scale Semantic Access to Content (Text,
Image, Video, and Sound). LE CENTRE DE HAUTES ETUDES INTER-
NATIONALES D’INFORMATIQUE DOCUMENTAIRE. 2007, pp. 360–
368.

[24] Yingbo Song, Angelos D Keromytis, and Salvatore Stolfo. “Spectro-
gram: A mixture-of-markov-chains model for anomaly detection in
web traffic”. In: Network and Distributed System Security Symposium
2009: February 8-11, 2009, San Diego, California: Proceedings. Internet
Society. 2009, pp. 121–135.

[25] Gustavo EAPA Batista and Maria Carolina Monard. “An analysis of
four missing data treatment methods for supervised learning”. In:
Applied Artificial Intelligence 17.5-6 (2003), pp. 519–533.

[26] Pat Langley et al. Selection of relevant features in machine learning. De-
fense Technical Information Center, 1994.

[27] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine
learning: A review of classification techniques. 2007.

[28] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based
on mutual information criteria of max-dependency, max-relevance,
and min-redundancy”. In: Pattern Analysis and Machine Intelligence,
IEEE Transactions on 27.8 (2005), pp. 1226–1238.

[29] Mark A Hall. “Correlation-based feature selection for machine learn-
ing”. PhD thesis. The University of Waikato, 1999.

[30] Stuart Russell and Peter Norvig. “Artificial Intelligence: A modern
approach”. In: Artificial Intelligence. Prentice-Hall, Englewood Cliffs 25
(1995), p. 27.

[31] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Ma-
chine learning: An artificial intelligence approach. Springer Science & Busi-
ness Media, 2013.

[32] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[33] Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pintelas.
“Machine learning: a review of classification and combining tech-
niques”. In: Artificial Intelligence Review 26.3 (2006), pp. 159–190.

[34] Bernhard Scholkopf. “Support Vector Machines: A Practical Conse-
quence of Learning Theory”. In: IEEE Intelligent systems 13 (1998).



BIBLIOGRAPHY 71

[35] Armin Shmilovici. “Data Mining and Knowledge Discovery Hand-
book”. In: ed. by Oded Maimon and Lior Rokach. Boston, MA: Springer
US, 2005. Chap. Support Vector Machines, pp. 257–276. DOI: 10 .
1007/0-387-25465-X_12.

[36] Roemer Vlasveld. Introduction to One-class Support Vector Machines.
Blog. 2013.

[37] Thorsten Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. Springer, 1998.

[38] Sujun Hua and Zhirong Sun. “Support vector machine approach for
protein subcellular localization prediction”. In: Bioinformatics 17.8 (2001),
pp. 721–728.

[39] Li-Juan Cao and Francis EH Tay. “Support vector machine with adap-
tive parameters in financial time series forecasting”. In: Neural Net-
works, IEEE Transactions on 14.6 (2003), pp. 1506–1518.

[40] Bernhard Schölkopf et al. “Support Vector Method for Novelty De-
tection.” In: NIPS. Vol. 12. Citeseer. 1999, pp. 582–588.

[41] Cynthia Wagner, Jérôme François, Thomas Engel, et al. “Machine learn-
ing approach for ip-flow record anomaly detection”. In: NETWORK-
ING 2011. Springer, 2011, pp. 28–39.

[42] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. “A practical
guide to support vector classification”. In: (2003).

[43] Hsuan-Tien Lin and Chih-Jen Lin. “A study on sigmoid kernels for
SVM and the training of non-PSD kernels by SMO-type methods”.
In: submitted to Neural Computation (2003), pp. 1–32.

[44] Ron Kohavi et al. “A study of cross-validation and bootstrap for accu-
racy estimation and model selection”. In: Ijcai. Vol. 14. 2. 1995, pp. 1137–
1145.

[45] Vern Paxson. “Bro: a system for detecting network intruders in real-
time”. In: Computer networks 31.23 (1999), pp. 2435–2463.

[46] Dat Tran et al. “Fuzzy vector quantization for network intrusion de-
tection”. In: Granular Computing, 2007. GRC 2007. IEEE International
Conference on. IEEE. 2007, pp. 566–566.

[47] Emeric Nasi. Bypass Antivirus Dynamic Analysis: Limitations of the AV
model and how to exploit them. 2014.

[48] James P Anderson. Computer security threat monitoring and surveillance.
Tech. rep. Technical report, James P. Anderson Company, Fort Wash-
ington, Pennsylvania, 1980.

[49] Terran Lane and Carla E Brodley. “An application of machine learn-
ing to anomaly detection”. In: Proceedings of the 20th National Infor-
mation Systems Security Conference. Vol. 377. Baltimore, USA. 1997,
pp. 366–380.

[50] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal Ku-
mar Kalita. “Network anomaly detection: methods, systems and tools”.
In: Communications Surveys & Tutorials, IEEE 16.1 (2014), pp. 303–336.

http://dx.doi.org/10.1007/0-387-25465-X_12
http://dx.doi.org/10.1007/0-387-25465-X_12


72 BIBLIOGRAPHY

[51] Zheng Zhang et al. “HIDE: a hierarchical network intrusion detection
system using statistical preprocessing and neural network classifica-
tion”. In: Proc. IEEE Workshop on Information Assurance and Security.
2001, pp. 85–90.

[52] Anup K Ghosh and Aaron Schwartzbard. “A Study in Using Neural
Networks for Anomaly and Misuse Detection.” In: USENIX Security.
1999.

[53] Guisong Liu, Zhang Yi, and Shangming Yang. “A hierarchical intru-
sion detection model based on the PCA neural networks”. In: Neuro-
computing 70.7 (2007), pp. 1561–1568.

[54] Ugo Fiore et al. “Network anomaly detection with the restricted Boltz-
mann machine”. In: Neurocomputing 122 (2013), pp. 13–23.

[55] Cuixiao Zhang, Guobing Zhang, and Shanshan Sun. “A mixed unsu-
pervised clustering-based intrusion detection model”. In: Genetic and
Evolutionary Computing, 2009. WGEC’09. 3rd International Conference
on. IEEE. 2009, pp. 426–428.

[56] Kingsly Leung and Christopher Leckie. “Unsupervised anomaly de-
tection in network intrusion detection using clusters”. In: Proceedings
of the Twenty-eighth Australasian conference on Computer Science-Volume
38. Australian Computer Society, Inc. 2005, pp. 333–342.

[57] Martin Roesch et al. “Snort: Lightweight Intrusion Detection for Net-
works.” In: LISA. Vol. 99. 1. 1999, pp. 229–238.

[58] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. “Intru-
sion detection using neural networks and support vector machines”.
In: Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 Interna-
tional Joint Conference on. Vol. 2. IEEE. 2002, pp. 1702–1707.

[59] Francesco Palmieri et al. “On the detection of card-sharing traffic through
wavelet analysis and Support Vector Machines”. In: Applied Soft Com-
puting 13.1 (2013), pp. 615–627.

[60] Ke Wang, Janak J Parekh, and Salvatore J Stolfo. “Anagram: A content
anomaly detector resistant to mimicry attack”. In: Recent Advances in
Intrusion Detection. Springer. 2006, pp. 226–248.

[61] Christopher Kruegel, Giovanni Vigna, and William Robertson. “A
multi-model approach to the detection of web-based attacks”. In: Com-
puter Networks 48.5 (2005), pp. 717–738.

[62] Yangxin Wang, Johnny Wong, and Andrew Miner. “Anomaly intru-
sion detection using one class SVM”. In: Information Assurance Work-
shop, 2004. Proceedings from the Fifth Annual IEEE SMC. IEEE. 2004,
pp. 358–364.

[63] C. Edwards, O. Kharif, and M. Riley. “Human Errors Fuel Hacking
as Test Shows Nothing Stops Idiocy”. In: Zugriff am 3 (2011).

[64] Vinoo Thomas, Prashanth Ramagopal, and Rahul Mohandas. “The
rise of autorun-based malware”. In: McAfee Avert Labs., McAfee Inc
(2009).

[65] Ben Gottesman. U3. PC Magazine, 2005.

[66] Hak5. USB Switchblade. 2016.



BIBLIOGRAPHY 73

[67] BlackHat. BadUSB - On Accessories that Turn Evil by Karsten Nohl +
Jakob Lell. Youtube, 2014.

[68] Paul Ducklin. BadUSB – now with Do-It-Yourself instructions. 2014.

[69] Donald Rich. “Authentication in transient storage device attachments”.
In: Computer 40.4 (2007), pp. 102–104.

[70] Microsoft. About Enhanced Storage. 2016.

[71] Kingston. Kingston Digital Ships 960GB Business-Class SSD. 2015.

[72] Jon Coulter. Crucial MX200 500GB SSD Review. 2015.

[73] Les Tokar. Seagate SandForce SF3500 On Display as Seagate Moves Sand-
Force in a New Direction – Computex 2015 Update. 2015.

[74] Kristian Vättö. The Samsung SSD 850 EVO mSATA/M.2 Review. 2015.

[75] Brian Westover. IronKey Personal S250 16GB Secure Drive. 2013.

[76] Dave Jing Tian, Adam Bates, and Kevin Butler. “Defending Against
Malicious USB Firmware with GoodUSB”. In: Proceedings of the 31st
Annual Computer Security Applications Conference. ACM. 2015, pp. 261–
270.

[77] Microsoft. Microsoft Security Bulletin MS16-033 - Important. 2016.

[78] Pete Zaitcev. “The usbmon: USB monitoring framework”. In: Linux
Symposium. 2005, p. 291.

[79] Wireshark: Go Deep. Webpage. Wireshark Foundation.

[80] Introduction to One-class Support Vector Machines. Code library. Core
Security, 2007.

[81] Yu-Fang Zhang, Zhong-Yang Xiong, and Xiu-Qiong Wang. “Distributed
intrusion detection based on clustering”. In: Machine Learning and Cy-
bernetics, 2005. Proceedings of 2005 International Conference on. Vol. 4.
IEEE. 2005, pp. 2379–2383.

[82] Pedro Casas, Johan Mazel, and Philippe Owezarski. “Unsupervised
network intrusion detection systems: Detecting the unknown with-
out knowledge”. In: Computer Communications 35.7 (2012), pp. 772–
783.

[83] I Hareesh et al. “Anomaly detection system based on analysis of packet
header and payload histograms”. In: Recent Trends in Information Tech-
nology (ICRTIT), 2011 International Conference on. IEEE. 2011, pp. 412–
416.

[84] Yuji Waizumi et al. “Distributed early worm detection based on pay-
load histograms”. In: Communications, 2007. ICC’07. IEEE International
Conference on. IEEE. 2007, pp. 1404–1408.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	TD-based Security Threats
	Motivation: Solving the "Rogue TD" Problem
	Focus and Contributions

	Background and Related Works
	The Universal Serial Bus
	History and Overview
	Benefits of USB
	How does the USB Protocol Work?
	Endpoints and Transactions
	Transfer Types
	Enumeration: Learning about the Device


	The Science of Machine Learning
	Raw Data vs. Features
	An Example Feature: n-grams
	Feature Selection

	Categorization: Learning vs. Output
	Classification Problems
	Support Vector Machines
	OCSVM Specifications and Parameters

	Model Fitting
	Parameter Estimation
	k-Fold Cross Validation


	Detecting Malicious Activity
	Anomaly Detection
	SVM-based NAD Systems


	Review of USB-based Attack Vectors
	Oops... I Dropped It
	Autorun.inf

	BadUSB – A Novel Type of Attack
	Existing Defenses and Limitations
	IEEE 1667
	Linux and the GoodUSB Response
	Windows Patch 3143142

	Enter: USBeSafe


	Formalization and Implementation
	Threat Modeling
	System Overview
	Data Collection
	usbmon
	Traffic Capture
	Understanding the Data

	Feature Extraction
	Data Preprocessing
	Potential Feature Selection and Extraction
	Packet Interarrival Times
	Packet Type
	Packet Payload
	Extraction and Storage


	Feature Preprocessing
	Scaling
	n-grams

	Model Searching
	Framing the Search Space
	Search Algorithm

	Model Training
	Model Testing

	Experimentation and Results
	Data Collection and Feature Generation
	Expectation vs. Reality

	Model Searching
	Performing the Search
	n-gram Possibilities
	Features Selection
	Parameter Settings
	k-Fold CV
	Scoring Mechanisms

	Search Experiment Framework
	Experiment Results and Discussion

	Model Training and Testing
	Model Training Experiment
	Model Testing Experiment Framework
	Model Testing Results


	Conclusions and Future Work
	Conclusions
	Future Work

	USB Descriptors
	Interarrival Time Histograms by pause Length
	Model Training Requests
	USBeSafe Project Files
	Project Hierarchy
	Directory and File Descriptions

	Bibliography



