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ABSTRACT

The detection of chemical vapor plumes using passive hyperspectral sensors operating in the longwave infrared is a
challenging problem with many applications. For adequate performance, detection algorithms require an estimate
of a scene’s background statistics, including the mean and covariance. Diffuse plumes with a large spatial extent are
particularly difficult to detect in single-image schemes because of contamination of background statistics by the plume.
To mitigate the effects of plume contamination, a first pass of the detector can be used to create a background mask.
However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be reduced by
using smoothed detection results as a background mask.

In the proposed procedure, a detector bank is run on the cube, and a threshold applied to produce a binary image.
The binary image can be modeled as a spatial point process consisting of high density and low density regions. By
applying a spatial filter to the detection image, regions with overall higher intensity are detected as containing plume
and can be removed from background statistic estimates. The key intuition is that regions with a higher density of hits
are more likely to contain plume since plumes are spatially contiguous. We demonstrate with real plume data that this
method can drastically improve detection performance over the single-pass method, and explore tradeoffs between
different filter sizes and thresholds.
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1. INTRODUCTION

Hyperspectral imagers operating in the long wave infrared (LWIR) have a variety of military and commercial remote
sensing applications. The main objectives when using LWIR sensors are the detection of surface materials over a wide
area, and the detection of chemical vapors in the atmosphere. Hyperspectral imagers have the high spatial and spectral
resolutions necessary to completely both goals. While there are many algorithms available for the general detection
problem, for adequate performance, there are many aspects of the sensing environment that must be considered. In
particular, looking for rare single-pixel targets in the visible and near-infrared (VNIR) presents different challenges from
locating a large spatially-contiguous vapor cloud in the LWIR. In this paper, we focus on cases where the plume is large
(relative to the image), and provide a method for handling this scenario. The method we develop is inspired by spatial
point process analysis techniques, and involves an iterative filtering process.

The detection of chemical vapors is accomplished by comparing a library of known absorption signatures to the
observed data using a detection algorithm. The most common algorithms used in LWIR detection problems are the
matched filter (MF) and the adaptive cosine/coherence estimator (ACE); we focus on the ACE detector. These algorithms
are based on the assumption that the data are Gaussian, and require estimates of the mean and covariance of the
background of the scene. The processing pipelines that we examine are shown in Fig. 1. The pipeline in Fig. 1b requires
an estimate of the plume-free background parameters either obtained using the background mask from Fig. 1a, or from
secondary data. The highlighted areas are places where spatial processing could be incorporated.

Parameter estimates usually come from secondary background data, when plume-free data is available. When the
background is changing, because of platform movement, or atmospheric effects, statistics for the background may
have to be estimated using data that contains the chemical plume. When the covariance matrix is estimated using
plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid
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Figure 1: (a) Plume free background estimation (PFBE) pipeline. (b) Detection and identification pipeline.

contamination, the data is automatically pre-screened in a process called plume-free background estimation (PFBE),
usually in a single pass. However, a single pass of the plume-free estimation procedure may not completely remove
contamination. We demonstrate that using multiple passes of the PFBE with a spatial filter, can result in improved
performance when the plume is relatively large.

After thresholding the output of the detection algorithm there are three types of results that are of interest:

1. unstructured background false alarms;

2. structured background false alarms; and

3. structured plume hits.

In this context, structuring refers to spatial clustering of detection pixels in the image; when the detections are unstruc-
tured, they are said to follow complete spatial randomness (CSR). Unstructured false alarms do not exhibit clustering,
and can be removed through filtering. Structured false alarms cannot be removed this way, but filtering can help identify
structured plume hits. It is desirable for the false alarms to be unstructured for removal with filtering. Whether the false
alarms are CSR depends on several parameters of the detection system including the threshold, the PFBE procedure, the
signature and the scene.

The PFBE procedure involves running a detector using a robust covariance estimate. The robust estimate involves
adding a small positive value to the main diagonal of the covariance matrix. This procedure makes detection of the
plume possible in the presence of some contamination, but has several negative side-effects. We show that, while it



is a useful tool for PFBE, diagonal loading can lead to structured false alarms, and reduces algorithm identification
performance.

The remainder of the paper is organized as follows. Section 2 gives an overview of the chemical detection pipeline
including signal models and robust detection for PFBE. Section 3 gives an review of simple spatial point processes and
the concept of CSR. In Section 4, we discuss the data we used and the development of “ground-truth ”. The main results
are presented in Section 5, while a summary is given in Section 6.

2. CHEMICAL PLUME DETECTION OVERVIEW

There have been a variety of processing pipelines proposed and analyzed for detecting plumes in hyperspectral images.
The technique we analyze consists of a PFBE step followed by a final detection or identification step, as shown in Fig. ??.
The PFBE step consists of running a bank of robust detectors and then keeping a percentage of the pixels with lowest
scores as the background. When only a single chemical from the library is considered, the detector bank reduces to a
single detector instead.

2.1 Chemical Plume Detection Overview

To detect which pixels contain plume, a detection algorithm is run on each pixel in the image, which compares the
pixel spectrum to a library signature. Starting with a simplified radiative transfer model (the three-layer model), the
measured radiance can be rewritten for use in detection algorithms. A pixel with plume can be expressed in terms of the
background radiance as

x(λ) ≈∆T τa(λ)
m∑
i
αi si (λ)+Loff(λ) (1)

where

λ is wavelength;

x is the pixel under test;

τ is the atmospheric transmission;

∆T is the temperature contrast between the plume and background;

m is the number of chemicals in the pixel;

αi is the concentration of the i th chemical;

si is the i th library signature, and

Loff is the radiance emitted by the background.

Sampling at a set of band centers [λ1, . . . ,λp ] yields the measurement vector x = [x1, . . . , xp ]T where p is the number
of sensor channels. The library signatures si (λ) are multiplied by the assumed atmospheric transmission τa(λ) and
downsampled to the band centers to obtain sampled signatures si . Organizing the signatures as a matrix S and the bi ’s
as a vector b, we have

x=
m∑

i=1
si bi +v =Sb+v, v ∼N (mb,Cb) (2)

where mb is the background clutter mean and Cb is the clutter covariance. The assumption in Eq. 2 is that the noise and
background clutter v are well modeled by a multivariate Gaussian distribution. Defining the whitening matrix C−1/2

b
and whitened vectors

x̃=C−1/2
b (x−mb), S̃ =C−1/2

b S, ṽ =C−1/2
b (v−mb) (3)

yields the standard regression model

x̃=
m∑

i=1
s̃i b̃i + ṽ = S̃b̃+ ṽ, ṽ ∼N (0,I) . (4)



where the clutter and noise is zero mean and has identity covariance.

When there is a single chemical in the library, a detection algorithm can be used to decide whether that chemical is
present or not. Perhaps the most well known detection algorithm used in hyperspectral imagery is the matched filter
(MF).1 However, the adaptive cosine/coherence estimator (ACE) is considered the state-of-the-art detector. The ACE
detector for the kth library signature is defined as

yk = (x̃Ts̃k )2

||x̃||2 ||s̃k ||2
= cos2(θ̃k ). (5)

where θ̃k is the angle between the whitened signature s̃k and the whitened pixel x̃. Finally, the score yk is compared to a
threshold η to make a decision about each pixels in the scene.

2.2 Robust Detection

In the detection process, the mean and covariance of the background must be estimated from the available data. Usually,
these estimates are denoted m̂b and Ĉb, and are directly substituted into the whitening equations given earlier. For
decent performance, it is crucial that any pixels that contain plume be removed from the estimates.2 In the VNIR, where
target materials usually consist of a few rare and often spectrally distinct pixels, a single pass of the PFBE procedure may
be sufficient.3 However, in plume detection, multiple passes over the data can improve performance when the plume is
large. For simplicity, a single detector with the known chemical

To mitigate the effects of contamination caused by estimating background statistics using pixels within the plume, a
first pass with a robust detector can be used. Detection algorithms can be made robust to both noise and signature mis-
match through covariance loading and dominant mode rejection (DMR), which both involve modifying the eigenvalues
of the estimated covariance matrix.4 We consider the diagonal loading approach, which results in modification of the
eigenvalues of Ĉ. Using the singular value decomposition (SVD) the modification becomes

Ĉ+δI =U (Λ+δI)UT (6)

where U contains of eigenvectors of Ĉ, and Λ is a diagonal matrix with the singular values σ2
k on the main diagonal

sorted from largest to smallest.

Ĉ−1
δ = (Ĉ+δI)−1 (7)

where δ is the loading factor. Selection of the loading factor is critically important and depends on both the data and the
application. Large eigenvalues inΛ correspond to small eigenvalues in the inverse, and vice-versa. The addition of δ
affects the smallest eigenvalues of C more than the largest and effectively reduces the overall spread of eigenvalues in
both Ĉ and its inverse.

3. SPATIAL POINT PROCESSES

After thresholding the detector output, we have a binary image or point pattern, where each one in the image is called
an event. Usually, spatial point patterns are defined on a continuous region of the x y-plane, but the principles are very
much the same.

In the continuous case, if the point process follows complete spatial randomness (CSR) then the number of events in
any region A follow a Poisson distribution with intensity λ|A| where λ is the intensity or expected number of events per
unit area,5 and |A| is the area of A. The probability of finding k events in a region of size |A| becomes

P (k;λ) = e−λ|A|(λ|A|)k

k !
(8)

where the parameter λ is constant over A. If the process is CSR, the events E are independent and uniformly distributed
on the region A. When the intensity is a function of position over the region, the process is called inhomogeneous. One
way to estimate the intensity of an inhomogeneous process is by partitioning the region into sub regions called quadrats,
and to then tally the number of events in each quadrat. This is known as a quadrat count and provides an spatially
varying intensity estimate.



For a binary detection image, the region is already partitioned into cells, but at most one event can occur in each cell.
In this case, the region A is the rectangular region [0, MS ]× [0, ML] in the x y-plane. The pixel locations can be defined at
equally spaced positions on the interior of the region, with the first pixel is located at (0.5,0.5). There is a subset of pixels
that have a value of 1 (the hits) with locations ei = (xi , yi ), i = 1, . . . , N , which form the set of events E . Since each pixel
can either be a 0 or a 1, the number of events at any particular location is at most 1. If the events occur randomly and
independently with some probability of occurrence p, then the image can be modeled as a series of Bernoulli trials.6 In
this case, taking any subset of the image with M pixels, the total number of events will follow a binomial distribution.
That is, the probability of having k detections in N pixels is

B(k; p, M) =
(

M

k

)
pk (1−p)(M−k) k ∈ {0, . . . , M } (9)

where p is the probability of a detection occurring. When the probability of occurrence p is small and the number of
pixels is large, the binomial distribution can be approximated by a Poisson distribution.

The maximum likelihood estimate of p is the average number of events over the estimation area, written as

p̂ML = k

M
(10)

where M is the number of pixels being considered, and k is the number of events or sum of the pixels in the region. For
the inhomogeneous case the spatially varying intensity can be estimated using quadrat counting, or a non-parametric
estimator such as

z(x, y) =
N∑

i=1

1

wi
h(x −xi , y − yi ) (11)

where the function h is centered at each event ei = (xi , yi ) in E and may be weighted by an edge-correction factor wi .
The edge correction factor is used when the event is near a boundary causing the estimator to be biased. The function z
is a continuous function over A that, when evaluated at a grid of points results in an image. Since the image only takes
values of 1 at the locations of the events, the operation in (11) is a convolution of a binary image with a filter function h.

To get an estimate of the probability of success p at each point in the image, we can create a 2-D averaging filter
defined as

h[m,n] =
{

1/N (m,n) ∈ B

0 otherwise.
(12)

where B defines a square region of N points. Since plumes have smooth boundaries a disk filter or Gaussian filter; are
more appropriate. Fig. 2 shows a disk filter and Gaussian filter generated using Matlab’s fspecial function

Assuming that within the region there are at least two processes with different spatially varying intensities, it is
possible to partition the region based on local intensity estimates.7 Of particular interest is when one of the processes
has a low intensity and represents background noise and clutter while the other is a higher intensity process which
contains the signal of interest.

3.1 Summary Statistics for Spatial Point Patterns

To test whether or not a particular spatial point pattern arose under CSR, one of several summary or test statistics can be
developed. This type of hypothesis test does not tell us much about the actual underlying process, except that if the data
are CSR the generating process does not have any underlying structure. However, it is useful for our application to test
whether or not background false alarms are well modeled as CSR or not. A summary of the statistics discussed is shown
in Table 1.

In analyzing a spatial point pattern, the distances between neighboring points are of primary interest. Given the
set of events E , distances can be represented by an adjacency matrix D with elements di j = ||ei − e j ||, the matrix
contains the pairwise distances from each event (detection) to every other event. The elements of the matrix are



(a) (b)
Figure 2: Filters used in spatial processing problems. (a) Gaussian filter of size 17 with σ= 3; (b) disk filter with radius 7.

Symbol Name Definition

G(r ) Nearest neighbor distance 1
N

∑N
i=1 I (min j 6=i (di j ) ≤ r )

F (r ) Point to nearest event distance 1
M

∑M
k=1 I (mini (||sk −ei ||) ≤ r )

E(r ) Expected events in radius r 1
N

∑N
i=1

∑
j 6=i

1
wi j

I (di j ≤ r )

K (r ) Ripley’s K-function |A|
N (N−1)

∑N
i=1

∑
j 6=i

1
wi j

I (di j ≤ r )

Table 1: Commonly used summary statistics for spatial processes. wi j are edge corrections.

di j = ||ei −e j || for all. The distance matrix is size N 2, has non-negative elements and zeros on the main diagonal. The
cumulative-nearest-neighbor distribution, is defined with respect to distance r as

G(r ) = 1

N

N∑
i=1

I (min
j 6=i

(di j ) ≤ r ) (13)

where I (.) is the indicator function. The function G measures the cumulative fraction of events whose closest neighbor
is less than a distance r away.

The point-to-nearest-event distribution F (r ) describes the distance from arbitrary sampling locations to the nearest
event. The number of sampling points and their locations can be varied, but is typically a grid of points over the region.
For a set of sampling points sk , the function is estimated as

F (r ) = 1

K

K∑
k=1

I (min
i

(||sk −ei ||) ≤ r ) (14)

where M is the number of sampling locations. Both of the functions F and G follow the same distribution under CSR,
namely

F (r ) =G(r ) = 1−e−λπr 2
(15)

where πr 2 is the area of a circle of radius r . Instead of examining distributions that consider individual events, statistics
that consider pairs of events may be used. The function E(r ) is defined as

E(r ) = 1

N

N∑
i=1

∑
j 6=i

1

wi j
I (di j ≤ r ) (16)
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Figure 3: QQ-Plot of K (r ) for various single gas ACE thresholds of plume-free cube. (a) Chemical B background cube. (b)
Chemical C background cube. QQ-Plot of G(r ) for various single gas ACE thresholds of plume-free cube.

and measures the expected number of events within a distance r from an arbitrary event. Taking the ratio E(r )/λ, we
obtain a weighted inter-event distance function, also known as Ripley’s K-function, defined as

K̂ (r ) = Ê(r )
|A|

N −1
= |A|

N (N −1)

N∑
i=1

∑
j 6=i

1

wi j
I (di j ≤ r ) (17)

where the estimate of the intensity is approximated by |A|/(N −1). The edge correction weights wi j used for E and K are
defined as the proportion of the circumference of a circle centered at ei , with radius ||ei −e j ||, that intersects the region
A. For a rectangular region the edge correction weights wi j have a simple closed form solution.5 Edge-corrections
for (13) and (14) are also available, but are related to the area of a circle instead of the circumference.8 Several edge
correction weights are available for each of the estimators discussed, but for large enough sample sizes with sufficiently
small choices of r , the difference in weighting should be negligible.9 Using Ripley’s K-function K (r ), we can assess
how CSR-like a pattern is as a function of threshold. For some choices of A, closed-form expressions for K exist, but
in practice it is easier to use Monte-Carlo (MC) simulation to estimate the function under CSR, as with many of the
functions used to analyze spatial point patterns. Fig. 3 shows a QQ-plot of the empirical K-function and the theoretical
one for ACE scores at different thresholds. Counter-intuitively, lower thresholds lead to a closer fit between the empirical
and theoretical. Since the K-function measures the distribution of pair-wise distances, as the threshold is lowered, the
false alarms become more regularly spaced, leading to a better fit. This suggests that background false alarms with the
highest scores exhibit spatial structure, but that the pattern of false alarms becomes more CSR-like for lower thresholds.
Spatial filtering could be used to remove these false alarms, but may not remove the most problematic.

4. DATA DESCRIPTION

Per-pixel ground truth for real side-looking hyperspectral data is generally unavailable because the exact spatial extent of
the plume is unknown. However, when the camera is stationary and the atmospheric conditions sufficiently similar over
a viewing time period, the statistics of a plume-free cube can be used to detect the plume in later images. In practice,
where the system may be running for a long time under varying weather conditions, or on a mobile system, this strategy
for detecting plumes may not work.

The datasets we have that contain real chemical releases are taken over a relatively short time interval of approxi-
mately 20 minutes. During this interval, several pre-release cubes are available to estimate background statistics from.
Using the estimated mean and covariance from the plume-free cube, resolves the problem of having to excise the plume



Run Chemical Data Characteristics

1 A Very large plume at maximum size.

2 A Moderately sized plume at maximum.

3 B Weak plume throughout; structured background false alarms

Name Notes

Library The library contained 12 signatures.

Chemical A Much easier to detect, and did not have many confusers.

Chemical B More difficult to detect, and produced several large false alarm regions.

Table 2: Description of experimental data.

before estimating background statistics. Table 2 lists three different runs from the full dataset and gives a qualitative
description of each. We focus on the first run because of how large the plume became.

To create masks for detection, we ran a detector using the estimated background parameters from an earlier cube
in the series, as shown in Fig. 4. A disk filter with radius 25 was applied to the thresholded detection image, with low
threshold of 0.1. After filtering using (11), the pixels with estimated intensity greater than 0.1 were used to construct an
optimistic guard mask of where the plume might be. This mask includes pixels that initially did not pass the detection
threshold, but that had many neighbors pass the threshold. The pixels that passed the threshold and had an estimated
intensity greater than 0.1 were used as the ground truth. For all analysis, the pixels in the envelope but not in the
true-plume, were excluded from consideration.

Figure 4: Illustration of ground-truth creation procedure.

Using this ground truth, the fraction of the image taken up by the plume in each cube was estimated, as shown in
Fig. 5. Generally, the larger and more dispersed the plume the, harder it was to detect using background data from the
same cube, due to covariance contamination, being optically thinner and potentially a lower temperature contrast. For
these reasons, we considered cube 16 from run number 1. In cube number 8, the plume is still expanding, while number
16 is where the plume is at its maximum size relative to the size of the image. Chemical A was generally easier to detect
and identify than chemical B, except when the plume became relatively large. Although ground truth created this way is
not perfect, it provides a way to compare the best-case detection results to the single-image results.
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5. RESULTS

To evaluate the effectiveness of adding an additional spatial processing step to the existing processing pipeline, a single
set of cubes from the same release was used. In our analysis in this section, only a single detector with the correct library
signature was used. This experiment represents the best case situation where a single chemical is in the library and is
the chemical observed. In most situations, instead of having a single chemical signature, a series of signatures will need
to be examined. While the library we used had 12 signatures, introducing results for each signature complicates analysis
considerably.

Having a positive loading factor makes the detection and identification algorithms less sensitive to mismatches
between the library signature and the measured signal.10 The effect of the loading factor on the detection scores can
be substantial. In Fig. 6(a) the detection scores for a background cube match the theoretical distribution of ACE when
no loading factor is used, but deviate significantly as the loading factor is increased. The theoretical distribution only
applies when the whitening transformation leads to uncorrelated and identically distributed Gaussian data. Since these
assumptions do not hold when a large loading factor is used, deviation from the theoretical is expected.

The assumption of perfect whitening leads to good agreement between the theoretical distribution of ACE and the
empirical distribution, but also makes false alarms relatively CSR, as discussed in Section 3.1. Deviation in the ACE
scores from the theoretical distribution affects some pixels more than others. If a group of affected pixels are spatially
contiguous, then deviation from CSR is expected. This is useful for highlighting potential plume pixels. However,
background false alarms may also be emphasized, which can lead to large structured false alarm regions. Fig. 6(b) show
a QQ-plot of the theoretical K -function and the empirical K -function for false alarms at the same set of loading factors
as the previous example. The same false alarm rate was set for each loading factor. Increasing the loading factor led
to larger deviations from the theoretical CSR distribution, though even without a loading factor, the false alarms were
not perfectly CSR. Using the preliminary detection results from a robust detector, a mask for the estimated background
pixels can be created before re-estimating background statistics and re-running the detection algorithms.

Fig. 7 shows a scree plot of the eigenvalues of an estimated covariance matrix over several cubes. A scree plot shows
the eigenvalues of the estimated covariance matrix sorted from largest to smallest. Since the smallest eigenvalues of the
covariance matrix are on the order of 10−16 and the distribution of these eigenvalues is fairly flat (aside from the largest
few), even a loading factor on the order of 10−16 is large relative to the smallest eigenvalues.

The distinct spatial structure of both background false alarms and the plume, suggests that it is possible to separate
these pixels from other randomly distributed false alarms in the image. However, it is difficult to differentiate structured
false alarm regions from plume regions, without additional processing. Thus, using a relatively large loading factor for a
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Figure 6: (a) Probability of exceedance plots of ACE scores for a background-only cube, with various loading factors.
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first detection pass, leads to a good estimate of regions that may contain plume. Though this is a conservative estimate
that may contain background pixels, contamination should be avoided.

5.1 Iterative Background Estimation

Instead of setting a static threshold on the detection scores to do PFBE, through extensive testing a quantile-based
approach has been found to be both easier to implement and less sensitive to threshold. In a quantile-based approach,
assume that the plume takes up at most a fraction of the image, denoted 1−q . Then, a plume-free background estimate
can be formed by taking the pixels with detection scores up to the qth quantile. Using such a technique, the same



fraction of every cube is excluded from background estimates as plume.

When the cube is a background-only cube, background pixels will be incorrectly labeled as plume pixels and will be
excluded from estimates of the background statistics. Just as excluding the plume from background estimates improves
detection of the plume, excluding background pixels from background estimates, can increase the false alarm rate for
a given threshold. This is especially important for structured background false alarms, because they may be spatially
contiguous.

If the initial background estimates do not remove all of the plume, but a portion of the plume is detected, it is possible
to iteratively improve the background estimates and thereby improve performance. If at each step, the plume pixels
fall in a higher quantile, more of the plume will be excluded from the background estimates, and consequently fewer
background pixels will be labeled as plume, making overall detection improve.

The iterative algorithm is described as follows:

1. Initialize background mask to whole image.

2. Run a robust ACE detector to get y0.

3. Form a detection mask with y > η.

4. Apply disk filter with radius r to the detection image to get intensity estimates p̂.

5. Calculate quantiles of filtered detection image.

6. Keep bottom q fraction of filtered image as background mask.

7. Re-estimate background statistics.

8. Repeat steps 2-7, up to K times.

We have found that for a single chemical detector, 7-10 iterations were needed for good results, while when using a
library of 12 chemicals, 15-25 iterations were needed. Since, we knew that the plume was at most approximately 40% of
the scene, q was set to 0.6. The resulting background masks are shown in Fig. 8

Background

Plume

Mask Detector OutputIteration

1
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5
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7

3

Figure 8: (left) Plume free background estimates at first 7 iterations. (right) Robust detector output after each iteration.

Fig. 9a shows the resulting ROC curves at each iteration of the procedure, for a total of 7 iterations, with the final
two ROC curves being nearly identical. The first iteration is a slight improvement on the robust detector described in
previous sections, but the later iterations are a vast improvement. The probability of detection at zero false alarm rate is
substantially better than all previous examples, and each iteration appears to improve performance. Fig. 9b shows the



fraction of the plume pixels included in the background estimate as a function of iteration. Initially, a relatively large
portion of the plume is included in the estimates, leading to substantial performance degradation. However, in each
iteration of the procedure, more of the plume is excluded from the background statistics, and performance improves
substantially.

Probability of False Alarm

10-5 10-4 10-3 10-2 10-1 100

P
ro

b
a

b
il

it
y

 o
f 

D
e

te
c

ti
o

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iterative Background Estimates (q=0.6,η=0.1)

Iteration = 1

Iteration = 2

Iteration = 3

Iteration = 4

Iteration = 5

Iteration = 6

Iteration = 7

Iteration Number

1 2 3 4 5 6 7 8 9 10
F

ra
c

ti
o

n
 o

f 
P

lu
m

e
0

0.05

0.1

0.15

0.2

0.25

0.3
Fraction of Plume in Background Estimate

Figure 9: (a) Iteratively taking the bottom q fraction of intensity scores as background, while thresholding the ACE scores
at 0.1. (b) Fraction of plume in background estimates, as a function of iteration.

When there is no plume in the scene, removing a portion of the cube as background has the effect of increasing the
overall detection scores. This effect can increase the false alarm rate substantially without proper thresholding. Fig. 10
shows the probability of exceedance of the ACE filter bank at different stages of the process. The initial scores when no
loading factor or PFBE are used, is shown in solid blue. After the iterative PFBE is run, the slightly heavier-tailed purple
curve results. The highest detection score moves from about 0.5 to about 0.6, which must be accounted for when trying
to set a CFAR threshold.
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Figure 10: Chemical A, Run 1, Cube # 1. Probability of exceedance for a plume-free cube and ACE detector bank with:
(blue) no loading factor and no background estimation, and (orange) a robust covariance inverse. (yellow) Robust
detection after PFBE. (purple) Detection without loading factor after PFBE. A disk filter of radius 15 was used and the top
60% of the filtered hits used for iterative background estimation.

When using the full library of chemical signatures, a bank of ACE detectors was used and the maximum detection



score for each pixel was kept. These maximum scores were then thresholded to get a detection map. Some of the
signatures in the library produce higher scores for background false alarms than others, resulting in larger background
false alarm areas than in the single-detector case. Using the modified procedure on the same cube as in Fig. 8 resulted
in the same type of performance as when using a single-gas detector. However, the number of iterations required to
achieve the same performance increased by about 2-fold. Fig. ?? shows ROC curves at several different iterations through
the process. At termination, the ROC curve is worse than the one for a single chemical. This is primarily due to other
library chemicals (aside from the correct one) causing additional false alarms. As shown in Fig. 11, approximately 15
iterations were required to remove most of the plume from the background statistics in this case.
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Figure 11: (a) Chemical A, Run 1, Cube # 16 with a library of 12 signatures. ROC curves using iterative background
estimation, taking the bottom q fraction of intensity scores as background, while thresholding the ACE scores at 0.2
and applying a disk filter. (light blue) Final detection performance after iteratively improving background estimate. (b)
Fraction of the plume included in background estimates as a function of iteration. A library of 12 gases was used along
with an ACE detector bank.

6. SUMMARY AND CONCLUSIONS

Plume contamination of the background parameter estimates remains a difficult problem to address for plume detection
systems, especially when the background is relatively rapidly changing. This type of situation can occur when the sensor
is in motion, or if the weather or atmospheric conditions are changing quickly. The sensor in this paper was stationary,
and the background relatively similar for each cube examined. This allowed us to develop a pseudo ground-truth
for ROC curve construction, and to quantitatively examine detector performance on a difficult dataset. Without this
ground-truth, regions of the image would have to hand-labeled as containing plume, which is impractical for a large
number of cubes and pixels. Essentially, we compare a detector with imperfect knowledge of the background to one
with perfect knowledge of the background.

The use of spatial point patterns for describing detection images is useful in assessing whether or not there is
structure in the detection results. When false alarms are CSR and the plume exhibits spatial clustering, a spatial filter
can be applied to separate the high density plume regions from the low-density false alarm regions. We showed that
iteratively applying this technique could be used to remove plume contamination before a final pass of the detector.

We showed that using a relatively large loading factor lead to detections being more non-CSR than using no loading
factor. When the plume was present, the regions that exhibited clustering were more likely to contain the plume, leading
to better PFBE. However, when the cube did not contain plume, the loading factor increased the scores of undesirable
background false alarms.
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