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1 Introduction 

Most sectors providing the underpinnings of modern society have come to critically rely on 

computers and computer networks to function properly. These sectors include public health, 

finance and banking, business and retail, media and telecommunications, national defense, along 

with more fundamental critical infrastructure such as electrical power, water utilities, and food 

distribution. Our deep reliance on these sectors makes them particularly attractive targets for 

attack [29]. Adversaries can leverage computer or network vulnerabilities to interfere with the 

proper functioning of American society.   

Trusted networks are used by the Department of Defense (DoD), Law Enforcement and the 

Intelligence Community (LE/IC), as well as countless Business and Industrial Enterprises (BIE) 

to provide access to critical information and services that are vital to accomplishing their 

respective missions. Collectively, we will refer to the DoD, LE/IC, and BIE as the trusted 

network user base (TNUB). Vulnerabilities on these trusted networks confer opportunity to 

adversaries of the TNUB to interfere with mission execution. Adversaries can leverage 

vulnerabilities to gain unauthorized access to the trusted network or to prevent authorized users 

from having access, either of which can negatively impact the missions of the TNUB. The 

motivation of adversaries to exploit vulnerabilities on a trusted network can be classified broadly 

according to five major categories: (i) Espionage and Intelligence Gathering, (ii) Denial of 

Service, (iii) Data Corruption and Misinformation, (iv) Kinetic and Cyber-Physical Effects, and 

(v) Hijack of Asset Control. A specific vulnerability may enable one or more of these classes of 
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adversary operations. The extent to which an adversary can leverage the vulnerability to interfere 

with mission success depends on (i) which of these five categories the vulnerability may enable 

and (ii) the extent to which mission execution can withstand adversary activity in each category. 

Therefore, the inherent risk presented by a vulnerability is specific to each mission that is 

impacted. 

 

A critical national need in support of TNUB missions is to augment the current capabilities of 

vulnerability assessment tools to realistically assess attacker access to existing vulnerabilities and 

to improve the ability of mission leaders and planners to triage which system vulnerabilities 

present the highest risk to mission assurance. This requires a dynamic approach to vulnerability 

assessment rather than a static approach, because the attacker posture and vulnerability access as 

well as the way the trusted network is being leveraged to accomplish the mission are both subject 

to significant variability in time. The inherent challenge to filling this national need is that the 

available data are constrained to a limited number of observable vantage points: vulnerabilities 

are collected at the host locations, and observations of network traffic are limited to a small 

number of centralized tap locations, whereas the non-local problem of the attacker access 

depends more globally on the network topology. It will be necessary to estimate the vulnerability 

and resulting mission risk on the basis of incomplete information, gathered from myriad sensor 

types deployed at strategic locations. There are several enabling technologies that will be critical 

for satisfying this national need, none of which is currently deployed or exists. First is 

technology to dynamically infer network topology and the interconnection of hosts. Second is the 

ability to use this information, in conjunction with existing scans and other observations such as 

network traffic capture, to assess the severity of a vulnerability in terms of its specific impact to a 
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particular mission or set of missions. To this end, technology will also be needed to assess which 

assets each mission is leveraging as a function of time.   

 

As the vulnerabilities and attack surface of assets grow in complexity and size, threats and 

malware also grow more pervasive, while cyber sensors generate more data to be analyzed. 

Intrusions are often obfuscated to the extent that its traces and fingerprints are hidden within 

different types of data (e.g., intrusion detection system [IDS] alerts, firewall logs, reconnaissance 

scans, network traffic patterns, and other computer monitoring data) that are involved with a 

wide range of assets and time points. However, even a small organization’s security operation 

center may end up dealing with an increasingly huge volume of daily data. Given the time 

constraints, service level agreements, and computational and storage resource constraints in the 

analysis of such data, we aim at first identifying and extracting high-quality data products 

describing cyber events from the raw data. The analysis and assessment of these high-quality 

data products can be performed more quickly and dynamically by requiring a smaller amount of 

time and computational resources. We address the questions of (i) how the raw data size of cyber 

events can be reduced significantly at close to real time and (ii) what effective methods can be 

used to detect and analyze the noisy data of intrusion and vulnerability detections and 

exploitations. To this end, we undertake a holistic approach of considering the size and analysis 

of intrusion data, together with the analysis of vulnerability data and exploitations, by 

investigating how the cyber events and processes of intrusions and vulnerabilities are detected, 

cross-correlated, analyzed, and assessed.   

 

In answering the two questions above, we present why data analytics, machine learning, and 
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temporal causality analysis are considered essential components, and we show how they 

interactively function in very important roles. High-quality data products can be extracted from 

raw cyber data by pinpointing the specific assets and time instances involved with intrusions. We 

suggest to use temporal causality analysis of main cyber sensor observations and events 

including intrusion alerts, vulnerabilities, attacker activities, firewall and HBSS log data, and 

network traffic. Our premise is that if we know what vulnerabilities exist in the system and how 

these vulnerabilities can be exploited by intrusion, then we can develop a causality analysis 

diagram for cyber events, vulnerabilities, intrusions, and observations of attacker activities. This 

causality analysis narrows down the cyber data to be searched and analyzed, leading to a 

significant reduction in size and scope from the raw cyber data. This results in faster data 

analysis, less computational resources, and potentially more accurate results. This chapter 

presents how data analytics could potentially leverage vulnerability assessment and causality 

analysis of vulnerability exploitation in the detection of intrusion and vulnerabilities so that 

cyber analysts can investigate alerts and vulnerabilities more effectively and faster.  

The remainder of this chapter is organized as follows. Section 2 provides background 

information on vulnerability assessment, attribution, and exploitation, along with a use case. 

Section Error! Reference source not found. presents the state-of-art vulnerability assessment 

tools, data sources, and analytics. Section 4 first provides comparison of some security 

information and event management (SIEM) tools and then presents our temporal and causality 

analysis to enhance the analysis and management of vulnerabilities, exploitations, and intrusion 

alerts. Concluding remarks are made in Section 5.  
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2 Vulnerability Assessment, Attribution, and Exploitation 

This section presents basic background information on vulnerability assessment, scoring, and 

attributes and then discusses a use case on the identification of attribution and exploitation within 

a cyber analytics environment.  

2.1 Vulnerability Assessment 

In general, vulnerability refers to any weakness of information technology, assets, or cyber-

physical or control systems that could be exploited to launch an attack by adversary. 

Vulnerability identification, detection, and assessment are essential to cybersecurity, particularly 

risk assessment. Any combination of security penetration tests and auditing, ethical hacking, and 

vulnerability scanners may be used to detect vulnerabilities at various processing layers of 

information, communication, and operations of a system within a cybersecurity environment. 

Once vulnerabilities are identified, they are ranked with respect to severity and risk score. This 

helps determine the order in which the prioritized vulnerabilities are put through the patching or 

recovery process to mitigate system risk, while maintaining system functionality at an acceptable 

level. To develop a reasonable assessment for a vulnerability, its meaningful attributes should be 

determined and quantified dynamically by considering system and environmental conditions, as 

well as its relationship with other relevant vulnerabilities in the space and time domain.  

 

The minimal software attributes of a vulnerability can be listed as authentication, access 

complexity, and access vector. The minimal impact factors that need to be taken into 

consideration in case of vulnerability exploitation are confidentiality impact, integrity impact, 

and availability impact. In general, an attack (e.g., a denial of service attack) can exploit a 

vulnerability at various network layers, including physical layer (e.g., wireless jamming attack), 
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MAC layer (e.g., an attack forging address resolution protocol), network and transport layers 

(e.g., an attack degrading the routing and delivery of information), and application layer (e.g., an 

attack making intensive requests to overwhelm computer resources). A dynamic accurate 

assessment of detection capability, exploit likelihood, and exploitation impact associated with a 

vulnerability assists network defenders and decision makers in improving the assessment of 

situational awareness and risk of a system. Our approach to achieving such accurate assessment 

is to determine dynamically not only individual vulnerability attributes and characteristics, but 

also dependencies, interactions, and probabilistic correlations among vulnerabilities, and then to 

harness the power of big data analytics to determine correlations and temporal causality among 

vulnerabilities and cyber events. The vulnerability dependencies and correlations of assets can 

provide cues about the severity of their attack surface.  

 

Given that zero-day vulnerabilities and exploits always exist, it is critical to have timely 

detection and control of vulnerabilities and attacks, along with timely recovery and patching of 

vulnerabilities. For controlling and limiting damage of vulnerability exploitations as well as 

providing mission assurance, the basic tasks include determining the following: criticality of 

assets (to a dynamically evolving mission landscape), infection and exploitation status of assets, 

the movement and propagation paths of exploits, exploitation likelihood, impact and spread of 

attacks, recognition of adversary strategies and activities, and mission assurance requirements. 

The common objective of all these tasks at a high level can be expressed as providing real-time 

detection, containment, and control of vulnerabilities and attacks over a cybersecurity 

environment that ideally supports at least the following five features: (i) use of end-to-end 

visibility and observability tools across an enterprise network system; (ii) understanding the 
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context and correlation of data, user, and adversary activities; (iii) performing real-time analysis; 

(iv) implementing an in-depth defense by monitoring networks and detecting compromised 

assets and attacker activities; and (v) reducing damage and dwell time of attacker within network 

[1]. The adverse impact of vulnerability exploitations should be minimized by controlling their 

spread and maintaining mission assurance of systems and operations.   

 

The minimal software attributes of a vulnerability can be listed as authentication, access 

complexity, and access vector, as stated in Common Vulnerability Scoring System (CVSS) [7-

10]. CVSS indicates that the minimal impact factors to consider in case of a vulnerability 

exploitation are confidentiality impact, integrity impact, and availability impact. Although 

vulnerability scoring in CVSS and similar type of systems are carefully designed using expert 

knowledge, they are still inherently ad hoc in nature and possibly assign scores incorrectly to 

some vulnerabilities. Therefore, it is highly desirable that security evaluation of both individual 

and collective assets is conducted objectively and systematically [11]. CVSS provides a score for 

each new software vulnerability discovered that prioritizes the importance of the vulnerability. 

However, the existing methods and by-default standards such as CVSS do not take into 

consideration varying conditions in time, environmental factors, and collective behaviors of 

vulnerabilities and attack impacts, nor does it make unrealistic assumptions about cyber 

vulnerabilities, exploits, observations, and their models.  

The current CVSS base score aggregates several factors: access vector, access complexity, 

authentication, confidentiality impact, integrity impact, and availability impact. However, it has 

two main shortcomings. First, only an atomic attack (i.e., a single-stage attack) is considered. 

Second, as a direct consequence of the first, the damage of assets that would be a result of multi-
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stage incremental attacks is not included in the vulnerability assessment. In current CVSS, the 

base score is a function of access vector, access complexity, authentication, confidentiality 

impact, integrity impact, and availability impact, where only atomic attack (i.e., single-stage 

attack) is considered, and no damage on assets is included. In [11], we introduced both 

theoretical and experimental methods to enhance the assessment of vulnerabilities and 

vulnerability exploitations, starting initially with CVSS scores and Bayesian network of 

vulnerability dependencies, and then using Markov models for identifying the most probable 

exploited vulnerabilities.  

 

One shortfall with vulnerability assessments as they exist today is that the level of criticality of 

the vulnerability is associated only with the vulnerability itself, but not with the exposure of that 

vulnerability to an attacker. A technological mechanism that could help address this shortfall is 

to cross-correlate the existence of a vulnerability with the occurrence of known signatures of 

adversary behavior. These signatures could be event logs on a system, or specific combinations 

of event logs that occur within a given timeframe, or they could be based on traffic patterns such 

as a sudden increase in outbound volume of data. The co-occurrence of the vulnerability with 

anomalies in system logs or traffic patterns is an indication that the criticality assessment of the 

vulnerability should be escalated. Furthermore, if the vulnerable host is buried deep inside 

several layers of security apparatus, it is important to be able to trace the traffic as it crosses 

through the various proxies and firewalls all the way to an attacker on the Internet, in order to 

assess the risk to the programs or missions being supported by the vulnerable host.   

 

There are many shared challenges in traffic attribution and in discovering co-occurrence of 
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vulnerability and system or traffic anomalies. The relevant data are often difficult to identify 

because the different tiers in the security apparatus collect disparate data from separate locations. 

Often there is minimal overlap in assets between separate data sets, and even datasets that 

include shared events and assets but are generated on different hosts can suffer arbitrary timing 

differences and latencies between associated observations. Network address translation further 

complicates valid cross-correlation by obfuscating the true start and endpoints of flow records.   

Surmounting these challenges to improve vulnerability assessment requires a centralized data 

store, coupled with a process that aggregates data streams from multiple sensors, normalizes the 

data across the different sources to allow pivoting from data collected in one location to data 

collected in another, and labels the data with appropriate knowledge engineering to provide 

analysts ready access to the data coupled with discoverable knowledge about the provenance and 

contents of the data. Centralization of different data streams would enable automatable analytics 

to simultaneously process data collected in multiple locations.   

 

Developing improved vulnerability assessment apparatus is likely to be an iterative process in 

which an analyst explores various correlations and patterns in the data, forms a hypothesis, tests 

the hypothesis by querying the data, develops a more robust signature for the attack mode under 

investigation, and automates the association of that attack mode with a known vulnerability using 

the signature and the data available in the data store. An example of a portion of this process, 

leveraging the Scalable Cyber Analytic Processing Environment (SCAPE) technology [6], is 

carried out at the U.S. Army Research Laboratory.   

2.2 Use Case: Identification and Attribution of Vulnerability Exploitation 

A computer network defense service provider (CNDSP) is an accredited organization responsible 
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for delivering protection, detection, response, and sustainment services to its subscribers [30]. 

Such an organization typically assembles large datasets consisting of IDS alerts, firewall logs, 

reconnaissance scans, network traffic patterns, and other computer monitoring data. In this 

particular example, such CNDSP-collected data have been stored in an Accumulo database, 

which has been made available to an analyst for data exploration purposes via the SCAPE 

(formerly known as LLCySA [6]). This is illustrated as a big data cyber analytic system 

architecture in                                          Figure 1.  

 

                                         Figure 1: A big data cyber analytics framework [6]. 

 

The SCAPE environment provides knowledge engineering that allows an analyst to access the 

data without detailed a priori technical expertise regarding where data have been collected, 

which sensors have been deployed, or knowledge of the data storage format and schema. In this 

particular example, the goal is to identify an attack deep inside the DoD network and trace the 

net flows back to an attacker on the Internet. Host intrusion data are used to provide the initial 

tip. SCAPE is used to conduct an interactive investigation, pivoting between different relevant 

data sources to develop a hypothesis and confirm illicit activity. A simple aggregating analytic 
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identifies a subset of hosts with the highest number of Host Intrusion Protection System (HIPS) 

alerts. Using SCAPE, the analyst pivots to the associated NetFlow data communicating with 

these hosts and identifies a suspicious flow revealing a late-night surge of Server Message Block 

(SMB) activity for one of these Internet Protocols (IPs). This process is depicted on the right 

hand side of                                        Figure 2, which also shows a plot of NetFlow activity 

associated with this time period. Comparison with the previous several days of traffic suggests 

that the volume of data exchange on December 11th is potentially atypical for the host in 

question.  

 

 

                                       Figure 2: Sample SCAPE workflow and resulting graphic output. 

 

The SCAPE environment provides an easy-access interface to multiple cyber data sources, 

allowing an analyst to quickly pivot from host intrusion protection events to NetFlow. The 

correlation of HIPS alerts with suspicious flow activity may imply that the assessment of the 

associated vulnerability should be escalated to a higher level of priority.  

Closer inspection of the HIPS data on the host uncovered evidence in this time period of a 

possible SMB brute force attempt. The next step in this investigation would be to aggregate 
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network address translation logs from the various firewall and proxy devices that intervene 

between this host and the remote host on the open internet. Doing so would allow the analyst to 

determine the destination of the large outflux of data.   

An analysis of this type could be used to improve an existing assessment of the vulnerability 

associated with this host, and others like it. Having discovered the specific signatures associated 

with a breach of this type, the co-occurrence of the existing vulnerability with significant HIPS 

activity or with significant changes in network traffic could be used to escalate the associated 

severity of the vulnerability, indicating that a higher priority should be designated to this host, 

because of indications of potential exposure to an adversarial entity.  

3 State-of-Art Vulnerability Assessment Tools, Data Sources, and Analytics 

3.1 Vulnerability Assessment Tools 

Vulnerability is thought to be the intersection of three elements: a system susceptibility or flaw, 

attacker access to the flaw, and attacker capability to exploit the flaw [3]. Many vulnerability 

assessment tools exist, both in industry and within the TNUB, to detect the presence of such 

flaws. The tools typically leverage extensive databases of known software vulnerabilities and 

itemize the observed malware and other attacks that leverage each vulnerability to assess its 

severity. Network-based scanners perform credentialed or uncredentialed scans of endpoint hosts 

to enumerate open ports, identify which software is installed, and detect missing patches. Web 

application and database scanners check for flaws in data validation and other mechanisms for 

command injection or information leakage. Host-based scanners look for known problems, such 

as viruses, or faulty operating system configurations to identify security gaps. Collectively, these 

tools exhibit a weakness; the scan can identify a system flaw or susceptibility, and a database can 
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estimate the attacker capability to exploit the flaw, but none of the tools is equipped to quantify 

the extent to which an attacker can access a flaw. The fundamental reason driving this weakness 

is that all current vulnerability assessment processes are inherently local to each host. Assessing 

attacker access to a flaw is inherently a non-local problem that involves not only the 

vulnerabilities on a given system, but also the vulnerabilities of systems that are connected to it 

on the network.  

3.2 Data Sources, Assessment, and Parsing Methods 

Identifying data sources for use in vulnerability assessment and exploitation is a straightforward 

proposition. There are literally hundreds, if not thousands, of security tools and information 

technology systems that generate data useful for enhancing or enriching an organization’s 

situational awareness posture and providing content pertinent to a vulnerability assessment and 

exploitation exercise. However, the challenge is not in finding the data sources but rather 

adopting approaches or tools that aggregate and correlate the data in a meaningful manner. 

To illustrate this point, let us walk through a hypothetical data collection exercise in preparation 

for a vulnerability assessment. For the sake of simplicity, consider three data sources in this 

example, although there could be dozens of data sources in an actual assessment. The first data 

source is Nessus, which is an industry-recognized vulnerability assessment scanning tool. Nessus 

is developed and maintained commercially by Tenable Network Security and provides a variety 

of features, including the following: network vulnerability scanning, application vulnerability 

scanning, device compliance assessment, and network host discovery.1 The second data source is 

McAfee ePolicy Orchestrator (ePO), which is an industry-recognized, host-based security tool. 

The ePO is developed and maintained commercially by Intel Security and provides many 
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features, including the following: host intrusion prevention, policy auditing, and anti-malware.2 

The third data source is Snort,3 which is an open-source network intrusion detection and 

intrusion prevention tool. Martin Roesch developed Snort for public use and dissemination in 

1998. Snort is freely available for download, and there are hundreds of thousands of community 

members that use, maintain, and contribute to the tool. Snort provides intrusion detection and 

prevention capabilities by means of network traffic analysis and packet capture. 

These example tools all independently provide some degree of situational awareness. A naive 

approach toward vulnerability assessment would be to consider the output from each tool in 

isolation. So, Nessus output would be used for application vulnerability assessment, McAfee 

ePO would be used for host policy compliance assessment, and Snort would be used for 

exploitation detection and assessment. Although this approach may be straightforward to 

understand and easy to implement, there is no correlation occurring between the different data 

sources, leaving the potential for major holes in the analysis of vulnerability exploitation process.   

 

As an illustrative example, imagine a scenario where a Snort subject matter expert named 

Samantha is providing intrusion detection analysis services to a small organization. During her 

shift, Samantha receives two alerts identifying unauthorized remote access attempts on two 

separate network segments: Alpha and Beta. Without consulting any additional information 

sources, how would Samantha assess which alert to investigate first? The alerts are identical (i.e., 

triggered by the same intrusion detection signature), so there is no clear way to gauge which 

subnet should be prioritized. Samantha could assess the alerts in a sequential manner based upon 

                                                                                                                                                       

1 http://www.tenable.com/products/nessus-vulnerability-scanner 
2 http://www.mcafee.com/us/products/epolicy-orchestrator.aspx 
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the time of notification and investigate subnet Alpha first. However, what if the software patches 

for the assets in subnet Alpha are all current, whereas in subnet Beta they are months old? Snort 

cannot detect this, but a vulnerability scanner such as Nessus can. Moreover, what if the assets in 

subnet Beta have not received updated anti-virus signatures in weeks, but subnet Alpha received 

the latest definitions the previous night. Again, Snort does not have visibility, but a host-based 

security system such as McAfee ePO does. Furthermore, what if the alerts have a causal 

relationship? Insights provided by other tools could establish such relationships and provide the 

analyst with means to detect future attacks. The failure to establish even the most basic of 

associations between the various tools and data sources ultimately increases the risk of more 

vulnerability exploitations on Samantha’s watch.   

An improved approach is the analyst-to-analyst or ad hoc correlation of tools and sources. Some 

refer to this as the “swivel-chair” approach because it involves an analyst turning in her chair in 

order to request assistance from a colleague operating a different tool. The swivel-chair approach 

mitigates some of the concerns in our hypothetical scenario by Samantha engaging with her team 

of colleagues. The swivel-chair approach is an improvement over relying on a tool in isolation 

because diverse data increase the probability of making better-informed decisions. However, this 

approach suffers from its own drawbacks: namely, timeliness of information gathered and 

consistency of analysis. What questions will Samantha ask of her colleagues? Will her 

colleagues interpret her questions correctly? Will her colleagues be able to provide her with 

relevant responses within the same temporal domain as the alerts she is investigating? How long 

will it take for Samantha to receive responses from her colleagues? More importantly, if 

Samantha and her colleagues miss something critical, there is no digital record of the swivel-

                                                                                                                                                       

3 https://www.snort.org/ 
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chair exchange, and no way to track which observations led the team to the direction they 

ultimately took in the investigation. Human fatigue may also play a role in increasing the risk of 

errors. In addition, different levels of education and experience will yield different analysis 

methodologies. As a result, manual or ad hoc correlation of data sources is also problematic and 

may not yield consistent and comprehensive results. 

A more formal and analytic approach to vulnerability analysis may improve reliability and 

produce actionable results. This approach stages the various data sets to support a variety of 

interfaces and visual representations of the data. This approach also ensures that relationships 

established between the various data sets are stable with consistent and unique key values. The 

approach is also the basis for data analytics. Data analytics includes a conceptual data modeling 

process that needs to be applied to the various data sources. This process helps the understanding 

of underlying attributes of the individual datasets and the current schema of the individual 

datasets. The common attributes across the datasets serve to establish relationships between the 

data sources. In our example, all three data sources share IP address information. When 

modeling these data, keying on the IP address would be one method to allow for a comparison of 

the elements across the data sources. In addition, during the data modeling process, a common 

taxonomy or data dictionary for the data elements of interest should be established. The data 

dictionary is an important tool to establish proper relationships between entities in the different 

data sources. All three data sources have multiple references to IP addresses in their schema. 

McAfee ePO references IP in multiple ways, including the following: AnalyzerIPv4, 

SourceIPv4, TargetIPv4, and IPAddress. Nessus has several references, including the following: 

IPS, Host IP, Scanner IP, and IP. Snort also has several references, including the following: 

IPv4, IP Source, and IP Destination. Without a taxonomy defining the various IP elements across 
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the data sources, establishing a relationship using McAfee SourceIPv4 and Snort IPv4 may yield 

incorrect results. Indeed, even though they are both IPv4 addresses, they do not necessarily 

represent the same node. 

Once the data modeling process is complete, the data elements identified in the modeling phase 

need to be extracted and stored in a common data format. This phase consists of developing 

parser(s) to extract, transform and load (ETL) the data. Multiple parsers may be required for each 

data source in order to account for different input formats. In our example, each of our tools has 

various output formats, including the following: XML, JSON, CSV, CEF, and PCAP. The 

parsing process involves extracting the data attributes of interest, tagging the attributes with 

metadata and taxonomic details, and outputting the data in a common format for efficient 

querying. In addition, unlike the swivel-chair approach, the analytics approach automates the 

majority of the steps after modeling the data. Automation ensures a consistent stream of 

correlated data is available to support a vulnerability event and affords a decision maker more 

time to take an appropriate course of action. In our example, all three tools have Application 

Programming Interfaces (APIs) that allow for the programmatic extraction of data, in order to be 

used in other applications. Automating this approach would be as straightforward as reviewing 

the respective API documentation for each tool and writing scripts in order to extract the 

attributes of interest. The APIs generally support high-level programming languages (i.e., 

Python, Java, Perl, etc.). In addition, many of these software manufacturers and support 

communities already have preconfigured scripts that can be tweaked to fit most purposes.  

4 Secure Management of Cyber Events Involved with Vulnerability and Exploitation 

This section first describes the basics and comparison of three well-known SIEM tools. Then, to 
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enhance the dynamic analysis and management of cyber events, we present the basic idea and 

method behind temporal causality analysis by addressing the Structured Query Language (SQL) 

injection attack.  

4.1 Comparison of Current SIEM Tools 

SIEM tools are designed to correlate a variety of log events in order to enhance an organization’s 

situational awareness. SIEM tools accomplish this by collecting log events from multiple data 

sources and across numerous hosts, leveraging a variety of analytical methods to establish 

relationships between disparate events, and, finally, providing security analysts a central console 

for managing and visualizing events in a unified manner.  

 

Each SIEM product has features that set it apart from competing products; however, at a 

minimum, each SIEM must provide three basic capabilities: namely, a mechanism for data 

ingestion, a mechanism for event correlation/analysis, and a mechanism for reporting and 

visualization. Many SIEMs go further and offer additional capabilities such as native integration 

with common log and event generating tools, providing threat intelligence feeds, enhanced 

logging via deployable agents, and automatable response capabilities. SIEM tools are a critical 

part of every industry due to the sheer volume and velocity of events that organizations generate 

on a daily basis. It is literally impossible for a security analyst to review pages upon pages of log 

events from dozens of sources and expect to pinpoint threats and vulnerabilities with any 

reasonable degree of accuracy or timeliness. The usage of SIEM tools is not exclusive to 

activities in the vulnerability assessment or cybersecurity domain; however, these activities 

greatly benefit from the use of SIEMs for two major reasons:  



19 

  

i) First, SIEMs can detect anomalous events obfuscated by large volumes of benign traffic. 

By correlating events from a variety of sources, it becomes increasingly difficult for 

an attacker to hide actions that would not occur during “normal” business operations.  

Individual events in operating system logs, application logs, firewall logs, and 

directory service logs may seem innocuous, but through the lens of a SIEM, 

relationships that were once invisible become transparent. For example, take the 

following four events: (i) user downloads an email attachment on her workstation, (ii) 

workstation makes Domain Name System (DNS) requests to several unknown 

domains, (iii) workstation attempts the installation of an unsigned executable, (iv) 

workstation experiences a spike in outbound network traffic over Transition Control 

Protocol (TCP) port 443. Collected from different logging systems and assessed 

independently, these events may or may not raise red flags. However, upon 

correlation and investigation as one unified event in multiple stages, this activity 

could be deemed highly anomalous, potentially malicious, and warrant further 

investigation. 

ii) Second, SIEMs can enhance the efficacy of incident-handling practices. By automating 

the correlation and aggregation of cyber events, providing reports and descriptive 

statistics, and, in some instances, supporting automated responses, SIEMs can be 

thought of as a virtual incident response team that helps a security analyst prioritize 

what is noise or benign and what is suspicious or malicious. SIEMs use a variety of 

statistical and analytical methods to transform and relate events over long periods of 

time. For example, a low and slow data exfiltration event is difficult to detect because 

it occurs over an extended period of time (i.e., weeks, months, or longer), and only a 
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small fraction of a target file is transferred during each session. A web log entry 

documenting a 10 MB HTTP transfer to a public web server on any given day is 

uninteresting and quite common. On the other hand, a SIEM that correlates six 

months’ worth of web logs and discovers a 10 MB HTTP transfer each day to the 

same web server is quite interesting and suspicious! 

In this section, we discuss three SIEM tools: one open source, one traditional, and one non-

traditional. We broadly focus on their strengths and weaknesses in five major areas: cost of 

adoption, correlation capabilities, compatibility with common logging sources, threat intelligence 

capabilities, and scalability. We did not include visualization capabilities as one of the criteria of 

comparison because the topic is highly subjective.  

                                                            Figure 3 below summarizes of our findings. 

 

 Correlation 

Capabilities 

Compatibility with 

Common Log 

Formats 

Threat Intelligence Scalability 

OSSIM Handful of 

community 

submitted correlating 

rules. Custom engine 

to create new and 

more complex rules. 

Native support for a 

variety of logging 

formats including 

server logs, 

vulnerability 

assessment tools, and 

system monitoring 

tools 

AlienVault Open 

Threat Exchange.  

Community of 

interest feeds, free 

and open source 

Limited to 

deployment on a 

single server  

 

 

HP ArcSight ESM HP proprietary 

CORR-Engine for 

optimized log and 

event correlation. 

Hundreds of out-of-

the-box rules 

configured for 

perimeter and 

network security 

monitoring 

Smart connectors 

and flex connectors 

used to parse raw 

log/event data into 

ArcSight’s common 

event format (CEF).  

Forwarding 

connectors used to 

export events from 

ESM to other tools in 

CEF format. 

STIX/TAXII 

compliant threat intel 

providers, such as 

Verisign iDefense 

(requires a separate 

subscription) or HP 

Threat Central 

Highly scalable.  

Vertical scaling 

unnecessary supports 

clustered 

deployments. 

 

 

Splunk Search Processing 

Language (SPL) 

supports statistical 

and analytical 

correlation; manual 

correlation across 

universally indexed 

data based on 

temporal domain or 

field values.  

Automatic 

Handles raw log files 

with universal 

indexing.  

Automatically 

separates log stream 

into searchable 

events. Supports 

manual indexing for 

custom feeds. 

Enterprise Security 

App for ingesting 

external threat feeds 

and correlating the 

indicators of 

compromise with 

existing events 

indexed in Splunk. 

Highly scalable.  

Vertical scaling 

unnecessary supports 

clustered 

deployments. 
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correlation of events 

with similar field 

values. 

 

                                                            Figure 3: Summary of SIEM tool comparison. 

4.1.1 Open Source SIEM tools 

AlienVault Open Source Security Information and Event Management (OSSIM) is a community 

supported open source SIEM tool and the “lite” version of AlienVault’s commercial SIEM: 

Unified Security Management (USM) [12]. The OSSIM project began in 2003 in Madrid, Spain, 

and it became the basis of the Alien Vault Company founded in 2007. Of the three tools 

presented in this chapter, OSSIM is the only one that is free to download and use without 

restriction. However, the cost of adoption is not free. Using and supporting OSSIM requires time 

and effort in reviewing documentation, posting questions on online forums, and researching 

functionality. OSSIM has an online threat intelligence portal called the Open Threat Exchange 

(OTX) that gathers daily threat events with indicators of compromise, referred to as pulses [14]. 

The portal is configured in a publish-subscribe fashion, so anyone in the community can publish 

pulses, and anyone in the community can subscribe to specific publishers and feeds of interest. 

Threat intelligence is an important but often understated aspect of the vulnerability assessment 

process. It is a critical component because these indicators act as a supplement for threats, and an 

organization should be on the watch for these indicators. For example, most threat intelligence 

services (including OTX) host a list of known bad IPs. This list can be used by a SIEM as a 

watch list, and any traffic originating or destined for one of these bad domains should 

immediately be flagged as suspicious. 

OSSIM can natively parse and ingest a variety of common logging sources, including the 

following: Apache, IIS, OpenVAS, OSSEC, Nagios, Nessus, NMAP, Ntop, Snare, Snort, and 

Syslog. OSSIM leverages regular expressions to parse data, which allows for a custom parser to 
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be written and extend its support to any data source that outputs in a text format. In addition, 

OSSIM comes equipped with a host IDS that can be deployed as an agent for collecting system 

and log events if no preferred collection tools are present in a given environment [12]. 

OSSIM performs correlation by relating events in a sequential and temporal fashion. OSSIM 

comes packaged with a handful of built-in directives for common cyber events such as brute-

force attacks, DOS attacks, enumeration, and fingerprinting scans, etc. Beyond the handful of 

preconfigured templates, OSSIMs have a correlation engine that allows for the creation of 

custom directives. Figure 4 below illustrates a logical sequence of events that could be built as a 

custom correlation directive in OSSIM to uncover a potential brute-force attack [13]. At each 

level, an alert can be sent to the appropriate parties indicating a potential threat. Furthermore, 

time can be introduced as an additional attribute of interest, so that if the failed logins are 

occurring at a particular frequency, a different alert or severity level can be triggered. 

 

Figure 4: Example brute-force attack correlation logic. 

OSSIM is not an enterprise class SIEM and cannot scale beyond one host or server. If there is a 

need for a large deployment, OSSIM’s commercial counterpart USM provides support for 

horizontal scaling (adding more servers instead of buying bigger servers) and may be a better 

choice. OSSIM is the least expensive USM license [12] that includes hundreds of professionally 

developed correlation directives and forensic logging capabilities not included in the open source 
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version. OSSIM does not support integration with big data technologies such as Hadoop, nor 

does it natively support exporting of events to external relational databases. OSSIM supports 

basic authentication or integration into directory services such as LDAP or Active Directory. 

More information about OSSIM and a free download of their SIEM software (ISO format) can 

be found on their website [32].   

4.1.2 Traditional SIEM tool 

ArcSight has been developing SIEM tools since 2000 and is one of the oldest players in the 

market. In 2010, Hewlett Packard (HP) acquired ArcSight USD [28] and extended their portfolio 

of services to include enterprise cybersecurity. Today, HP ArcSight Enterprise Security 

Management (ESM) is arguably the most heavily adopted SIEM tool by commercial and 

government organizations alike. ESM takes a modular approach towards SIEM. The standalone 

configuration of ESM excels in the three basic requirements of a SIEM tool (i.e., ingest, 

correlation, and visualization). Additional features such as central log management and threat 

intelligence can subscribed to and deployed separately, to further enhance the capabilities of 

ESM. The cost of the ESM software and professional support is not clear, and it appears to 

fluctuate based upon the deployment configuration, number of data sources, and volume of 

ingest. 

ESM has hundreds of built-in features all configurable from the ESM graphical user interface. If 

configured properly, these built-in features can substantially increase the resolution of an 

incident handler and decrease her time of response. Some of the features include the following: 

(i) data enrichment with user, asset, or key-terrain information; (ii) prioritization and 

normalization of events; (iii) “near-real time” correlation of data and threat intelligence; (iv) data 

forensics and historical and trending analysis; and (v) a vast library of predefined security use 



24 

  

cases, compliance automation, and reporting tools, which are designed to minimize time spent on 

creating compliance content and custom reports; and (vi) workflow automation, which generates 

alerts and escalates events based on elapsed time [15]. 

ESM is feature rich and, as a result, there is a steep learning curve. As seen from Figure 5 

below, the ESM console is loaded with options, and it is arguably the least user-friendly 

interface. ESM protects its user console and data with authentication and authorization via 

directory service (e.g., LDAP, Active Directory) integration and role-based access control.  

 

Figure 5: ArcSight ESM 6.8 console. 

For threat intelligence, ESM takes a standards-based approach and can receive feeds in the STIX 

or TAXII formats. STIX stands for Structured Threat Information eXpression and TAXII stands 

for Trusted Automated eXchange of Indicator Information. Both standards are part of 

cybersecurity information sharing efforts led by the Department of Homeland Security. A list of 

threat intelligence providers that support STIX and TAXII can be found at 

https://stixproject.github.io/supporters/. In addition, HP provides a community intelligence portal 

“HP Threat Central” that hosts private security forums, threat databases, and anonymized 

https://stixproject.github.io/supporters/
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indicators of compromise (IOC) [19].  

Out-of-the-box, the ESM smart-connector natively supports the parsing, ingestion, and 

conversion of hundreds of industry-recognized technologies into ArcSight’s Common Event 

Format standard. Some technology examples include the following: operating systems 

(Microsoft, Apple, Redhat Enterprise Linux, Oracle Solaris) anti-malware tools (Kaspersky, 

McAfee, Symantec, Trend Micro), application security (Bit-9, RSA, McAfee), network devices 

(Cisco, Juniper), and cloud (Amazon Web Service) [18]. 

In the event that the smart-connector does not support a particular feed, a custom feed can be 

written using the ESM flex-connector. The flex-connector framework is a software development 

kit (SDK) that enables the creation of a smart-connector tailored to the specific event data format 

[16]. 

ESM performs log correlation via the proprietary HP ArcSight’s Correlation Optimized 

Retention and Retrieval (CORR) Engine. The CORR engine is a flat file system optimized for 

read performance. According to the ArcSight team, it is 5× more efficient at event correlation 

and 10× more efficient at data storage [17] than the previous SQL-based correlation engine. 

ESM has rule-based, statistical, or algorithmic correlation, as well as other methods that include 

relating different events to each other and events to contextual data. In addition, ESM has 

hundreds of preconfigured rules for advanced correlation and with the integration of threat 

intelligence sources; the correlation engine can quickly identify IOC [18]. A few examples rules 

that are available out-of-the-box include the following: top attackers and internal targets, top 

infected systems, top alert sources and destinations, bandwidth usage trends, and login activity 

trends [19]. More information about HP ArcSight ESM can be found on their website [33].  
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4.1.3 Non-traditional SIEM tool 

In 2002, Eric Swan and Rob Das [24] founded Splunk on the premise that it would serve as the 

Google (i.e., search engine) for enterprise log data. Splunk satisfies the basic requirements of a 

SIEM (i.e., data ingest, correlation, and visualization), but it is not a traditional SIEM. 

Traditional SIEMs often have a fixed schema of attributes that can be correlated against one 

another. Data are ingested and bucketed into those attributes and then correlation rules are 

applied to establish relationships and insights. Splunk was designed in a more flexible manner to 

ingest any type of log data, automatically index it, and extract searchable events. If Splunk’s 

automatic indexing is off base, manual user intervention can be taken to tweak the indexing for a 

specific data source/type. Once the data are indexed and searchable, Splunk offers a variety of 

methods to interact with the data, including methods that support enterprise security use cases. 

Splunk initially offers its product for free via a 500MB/day data-indexing license. However, 

500MB/day can quickly be consumed in minutes when multiple sources are being indexed. 

Splunk’s cost model is based on the volume of raw and uncompressed data indexed per day. 

Similar to ESM and OSSIM, Splunk protects its user console and data stores with authentication 

and authorization via directory service integration and role-based access control. 

Splunk includes an application for enterprise security [25] that supports ingestion of external 

threat feeds for correlation with log events. Splunk itself does not offer any threat intelligence 

feeds or host a threat intelligence portal. It relies on external feeds and can support both open 

source as well as subscription-based models. External threat intelligence feeds can be thought of 

as an additional data source that Splunk can automatically ingest, index, and create searchable 

events. 

Splunk does not rely on predefined correlation rules. Splunk’s approach toward event correlation 
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is to provide the end user with a powerful search processing language (SPL) and present her with 

a unified, indexed, and searchable database of events. SPL is designed to transform statistical 

correlation methods into queries across the unified search database [26]. This pool of indexed 

data can also be searched in a manual fashion, and events can be correlated on the basis of time 

of occurrence or attribute of interest. Splunk can also perform automatic correlations based upon 

event attributes with similar values. An added advantage Splunk has over some of its 

competition is that if an export is available, Splunk can ingest and correlate events processed by 

other SIEM tools.  

Splunk is highly scalable as illustrated in Figure 6 [27]. Depending upon the use case, all of the 

Splunk roles can run on a single host or run distributed across hundreds of hosts. 

 

Figure 6: Splunk three-tier architecture. 

More information about Splunk and a 60-day free trial download of the Enterprise version of 

their software can be found on their website [34].     

 

There are various documented reports that quantify the return on investment that SIEMs tools 

provide. HP commissioned one such investigation where they identified millions in time and 

monetary savings across a variety of organizations [28]. The majority of the savings appear to be 

the result of SIEMs tools transforming assessment work from a large team of analysts to a 



28 

  

handful of specialists. For many industries, SIEM tools are the current answer to the question of 

how to enhance situational awareness and look at vulnerabilities from a holistic perspective. 

Unfortunately, many SIEM tools, including the three discussed in this chapter, suffer from 

drawbacks, resulting in a false sense of security. 

The majority of SIEM tools such as OSSIM and ArcSight ESM rely heavily on rule-based 

correlation. As a result, these systems require frequent tuning in order to account for false 

positives and false negatives. As the volume of data increases, so do the false positives. As 

correlation rules are tuned to account for false positives, the number of false negatives increases. 

This is a known and often poorly addressed fact of SIEM and standalone security tools alike. 

Splunk’s approach is a bit better than the traditional SIEM tool because it doesn’t focus on pre-

defined correlation rules. Giving the end user a language (e.g., SPL) with which to interact with 

the data is a step in the right direction. However, this approach is limited by how creative an 

analyst’s queries are and how well the language can transform an analyst inquiry into queries 

across the data. 

SIEM tools cook the data (e.g., pre-processing and normalizing) using a variety of methods that 

primarily support their pre-defined correlation capabilities. This approach works well to detect 

and mitigate known threats, but unknown threats are still a problem. Again, Splunk’s approach is 

somewhat better in that it attempts to automatically index and make all the data searchable. The 

question is, however, how accurate is their automatic indexing? It is also convenient that 

Splunk’s cost model is based upon volume of indexing. 

Horizontal scaling for SIEM tools only slightly mitigates bandwidth and storage constraints. If 

there is a spike in volume or velocity of log data for a given organization, adding more nodes to 

enhance a SIEM tool’s capacity and performance only works until the next spike occurs, not to 
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mention the challenges of using SIEM tools in a decentralized model. For instance, if an 

enterprise is geographically dispersed between two continents, how will the logs from one site be 

transferred to the other site in order to be processed by a SIEM tool in a timely fashion? The 

answer is they will not be transferred. Each site will likely have its own SIEM tool infrastructure 

on premises with some mechanism to cross-correlate the data. This is not a trivial proposition. 

Some SIEM tool manufacturers have started offering “cloud”-based models to better support this 

use case, but it is not yet clear whether this approach is beneficial. 

4.2 Temporal Causality Analysis for Enhancing Management of Cyber Events 

This subsection introduces a novel temporal causality analysis for cyber events classified into 

five processes: namely, attacker, vulnerability detection and protection, intrusion detection, 

agility, and risk assessment. This temporal causality analysis differs from the current SIEM tools 

in that it provides vector-time, vulnerability-centric causality pairing graphs, and context-specific 

vulnerability-centric causality pairing graphs of events including agility and risk actions, which 

can also provide cues for the detection of zero-day vulnerabilities and attacks. With the help of 

timestamps of events, the vector-time concept that is imported from distributed systems [31] 

allows analysts to investigate the events in temporal domain, even if time synchronization is not 

available among the hosts of a cybersecurity environment. In addition, this causality analysis can 

incorporate human factor from the perspectives of user, defender, and adversary, although it is 

not included in this section due to space constraints. 

 

To protect against malware detection and spread control are essential to maintaining the 

functionality or mission assurance of a system. The success of the protective measures depends 

on a number of factors, including the accuracy of IDS, the system’s resilience against attacks, the 
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strength of vulnerability patching and recovery, the level of situational awareness, and the 

correlation of sensor observations and measurements. It is highly desirable to perform real-time 

data analytics of cyber events, observations, and sensor measurements to discover interactions 

and characteristics of cyber events. In stealthy malware, the adversary aims to make the malware 

invisible and undetected to a cyber-defensive mechanism over a target network. To achieve this, 

the adversary gathers information on the state of defensive mechanisms. In addition, the 

adversary may choose to obfuscate the real intent by performing misleading activities and 

operations.  

 

The causal interpretation of networks is essential to understand how events and entities trigger 

each other, thereby indicating their causalities. Causal models help determine how the sequence 

of events or entities trigger each other. There can be numerous latent variables within a system 

that are not observable. Although it may be tolerable to not model some latent variables in 

answering probabilistic queries, it is highly desirable for causality analysis to identify latent 

variables when correlations between them represent causal relationships. In general, correlations 

between any set of variables may form a set of both causal and non-causal relationships. A 

causal model can be represented as a directed acyclic graph over random variables, where the 

value of each random variable is computed as a stochastic function of the values of its parents 

[2]. In [4], the triggering relations in causality reasoning about network events are addressed by 

comparing rule- and learning-based methods on network data of stealthy malware activities.     

Our overall goal is not only to detect vulnerabilities and exploit but also to mitigate the adverse 

impact of vulnerability exploitations. Indeed, it is highly desirable that the adverse impact of 

vulnerability exploitations do not lead to an unacceptable level in mission assurance. This may 
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be achieved by using the approaches of both reactive mitigations and proactive mitigations. 

Therefore, in addition to considering the cyber events of attacker, vulnerability 

detection/protection, and intrusion detection, we also consider the cyber events of agility and risk 

assessment. So, we consider five cyber processes in the temporal causality analysis of cyber 

events, where an event denotes any observable occurrence of an activity or action in a system or 

network. An event may have physical attributes (e.g., network topology, frequency of event 

occurrences over a period), meta-data attributes (e.g., IP addresses, port addresses, timestamps, 

control or user data types, TCP, or UDP), event interaction attributes (e.g., vector time, where the 

sequence of past values of vector-time indicate the interaction of causal events of different 

processes; lag time of event responses), or cross-layer attributes of OSI model (e.g., application 

type, file type, protocol type). In the figures below, directed edges between events of different 

processes indicate causality, whereas undirected edges indicate that events exhibit temporal order 

but are not necessarily causal. To keep track of interactions between five cyber processes, we use 

the vector-time concept in distributed system events. Vector time characterizes causality and 

temporal order such that the kth entry of a vector time that corresponds to process Pk is 

incremented by 1 each time an event occurs in process Pk. Whenever an event of Pk receives the 

vector time of another process’ event, the vector time entries of Pk’s event are aggregated with 

the vector time entries of the other process. 

 

As an example, let us consider a SQL injection attack that takes advantage of the ability of 

influencing SQL queries formed and submitted to a backend database by an application such as a 

web application using inputs received from potentially untrusted sources [12]. Figure 2 shows that 

the attacker activities can be classified into at least seven categories, labeled as a1 to a7, 
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corresponding to (a1) performing reconnaissance, (a2) exploiting a vulnerabilities of (a3) the 

webserver and (a4) the database server, (a5) delivering malware to escalate privileges, (a6) 

installing a backdoor on system, and (a7) stealing data. Some of these attacker events involved 

events of other cyber processes. For instance, network-based IDS and/or host-based IDS may 

detect some of these attacker events and generate alerts; some vulnerabilities may get exploited 

and then recovered; agility events may help avoid or mitigate impact of attacks, with the help of 

risk assessment events; and the tasks prioritization of vulnerability and intrusion detection 

processes can be strengthened with the guidance of risk assessment events. The causality 

between different processes in Figure 7 is illustrated by directed edges.  



33 

  

 

Figure 2: Causality edges of cyber events for a SQL use case. Attacking process events (a1: reconnaissance; a2: use 

SQL injection to exploit v2 of webserver; a3: use SQL injection to exploit v3 of database server; a4: deliver 

malware and tools to escalate privileges; a5: install a backdoor on system by exploiting v4; a6: exfiltration of 

system credentials; a7: theft of data); vulnerability process events (v1, v2: web server; v3: database server; v4: 

backdoor); intrusion detection process events (d1, d2, d3, d4, d5); agility events: g1, g2, g3, g4, g5); and risk 

assessment events (r1, r2, r3, r4, r5). 

 

Once the causality edges and the vector-times of events are established as shown in Figure 3, 

time intervals with predefined durations can be designated so that all causal and temporal edges 

of each time interval can be studied in-depth. Figure 3 illustrates how all those directed edges 

that are involved with vulnerability v4 can form causal pairs. However, some temporal edges can 

also be causal, and, therefore, the next step is to find out which temporal edges are causal (see 

Figure 4). Then, all causal edges are used to form the so-called vulnerability-centric pairing 

graph (VCP), as shown in Figure 4. The cyber data corresponding to the interactions of the VCP 

edges can represent the quality data of its time interval. These quality data are stored properly in 
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the database so that they can be extracted easily and instantaneously by database queries formed 

by cyber analysts. Hence, big data of cyber events can be reduced to a smaller size of the 

aggregated quality data of temporal causal events.  

 

 

Figure 3: Causality edges of SQL cyber events within the middle time interval, where vulnerability v4 is found to be 

exploited. (VCP)  

of Causal Events over a Time Interval 
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Figure 4: Causality edges of SQL cyber events with the VCP graph. 

 

5 Summary and Future Work 

Computer systems and networks have become so essential to the functioning of modern society 

that they have become a primary target for adversaries, for ideological or nationalistic purposes 

as an element of modern day warfare, as well as for individual personal or financial gain. Trusted 

networks are penetrated and exploited to commit espionage and intelligence gathering, perpetrate 

a denial of service, corrupt data or disseminate misinformation, achieve kinetic or cyber-physical 

effects, and potentially hijack control of valuable assets. In each vulnerable sector of society, it is 

essential to prioritize mission essential functions by conducting dependency and risk analysis of 

network assets, engineering robust and resilient architectures, and identifying the optimal 

network locations to monitor and swiftly detect compromise of key computer assets.  
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Many industry and open source tools exist to collect, aggregate, summarize, and organize data 

collected from hosts and at strategic network locations. Antivirus software and vulnerability 

scanning tools can systematically search hosts for signatures of malicious code or security flaws 

in benign code. Intrusion detection and prevention systems can generate alerts that indicate 

unusual or suspicious activity on computers in the trusted network. The difficulty with these 

tools is that they generate far too many alerts and indicators, many of which do not truly have 

security implications. Although an SIEM can be used to assemble, organize and query the data, 

and help analysts to cope with the large data volumes being generated, existing methods to 

prioritize the alerts and indicators suffer from various problems and could be improved.  

 

We submit that detecting and comprehending actual threats that exist on the network requires a 

more dynamic approach. We suggest that correlations between various signatures on a host and 

indicators of potential exposure to an adversarial entity that may exist in the traffic passing to 

and from the host might be used to escalate the priority of a known vulnerability. The difficulty 

is in the sheer volume of signatures and traffic to be processed; it is not a tractable problem for a 

human being to perform a correlation analysis on each and every set of indicators. We propose 

certain methods for identifying events of interest, summarizing them, and storing them properly 

in a database so that cyber analysts can query them easily and instantaneously. Such methods 

could be combined with SIEM data architectures to provide a more seamless integration with 

existing methodologies. 

 

The challenge of detecting, assessing, and mitigating vulnerabilities and intrusions necessitates 

collecting, correlating, and analyzing cyber vulnerability and intrusion data in real-time because 
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cybersecurity situations evolve rapidly and get complicated with incomplete information and 

uncertainties. However, current cybersecurity tools and methods have limited capability 

extensibility and scalability to deal with such complicated situations and big data in real-time. In 

this chapter, we first presented the basics of vulnerability assessment, data sources and tools, and 

main components of big data analytics. We then provided a use case on identification and 

attribution of vulnerability exploitations. Temporal causality analysis of cyber events is 

described how to determine the quality data needed for the analysis of vulnerabilities and 

exploitation by determining the temporal interactions and causality of various types of cyber 

events, including attacker activities, vulnerability detection and protection, and intrusion alerts. 

This analysis may also assist detecting zero-day vulnerabilities and exploitations whenever the 

known vulnerabilities and exploits do not provide sufficient reasoning for explaining the 

suspicious interactions and uncertainties among the observed interactions of attacker activity, 

vulnerability, and intrusion alerts. For the future research, we suggest that this detection process 

of zero-day vulnerability and attack be enhanced further by incorporating outlier detection 

capability into cyber data analytics and causality analysis. To have a better management of cyber 

events, it would be desirable to add interventions [2] on the values of causality parameters so that 

the values are not just observed but are also manipulated. In order for cyber analysts to benefit 

from these scalable data analytics and causality analysis, they should have the capability of 

forming accurate queries and receiving fast responses by the analytics-driven processing 

environment of cybersecurity. 
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