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I. COMMENTS ON POWER VS. CURRENT CURVES

In the single-mode regime, the intracavity intensity of the single-mode determines the

strength of the parametric interaction with the sidebands. Therefore, we would like to

calculate the intracavity intensity from the measured output power. We remain true to the

distributed loss approximation, for which the output power is given by

Pout =
αm〈E2〉Lwh√

µ/ε
(1)

where αm = ln[1/(R1R2)]/(2L), the length, width, and height of the cavity are L, w, and

h, and the time-average intensity of the single-mode is 〈E2〉 = 2|E0|2. We are assuming a

uniform field intensity in the transverse dimensions, and therefore not worrying about the

transverse overlap factor. We can rearrange this equation for the intracavity intensity

|Ẽ0|2 ≡ κ2T1T2|E0|2 =
2d2T1T2

√
µ0/ε0

~2neffαmLwh
Pout. (2)

With this equation, we can convert the measured total output power of each laser into the

intracavity intensity, using our measured values of the refractive index neff and the dephasing

time T2, our best estimates for d and T1, and in the case of the HR/AR laser we have used

R1 = 1, R2 = 0.01. The result is plotted in Fig. S1 as a function of J/Jth, which is the same

as the inset in Fig. 1 of the main text.

The theoretical formula for the intracavity intensity is

|Ẽ0|2 =
p− 1

1 + γD/2
, (3)

where p ≡ weq/wth is the pump parameter. We emphasize that p is not the same as J/Jth.

The slope of |Ẽ0|2 vs. p is always between 2/3 and 1, depending on the diffusion parameter

γD. The reference line in Fig. S1 is drawn with a slope of one to indicate that each of the

|Ẽ0|2 vs. J/Jth curves has a slope greater than one. Therefore, we conclude that J/Jth must

underestimate p. One factor that contributes to this underestimation is the transparency

current Jtrans: a fixed amount of current that must be delivered to the active region simply

to raise the inversion from a negative number to zero. To understand this simply, suppose

that the equilibrium inversion scales like weq ∝ J −Jtrans, and that Jtrans remains a constant

number at threshold and above. Then the pump parameter p ≡ weq/wth is expressed in

terms of J as

p =
J − Jtrans

Jth − Jtrans

. (4)
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FIG. S1. The measured output power of each QCL (from both facets) is converted to the intracavity

intensity |Ẽ0|2, and plotted against J/Jth. Each curve is color-coded to indicate the range over which

the laser operates in a single-mode, harmonic state, or dense state. Note that the quantity |Ẽ0|2

is only meaningful in the single-mode regime, because we are interested in the intensity of the

single-mode before the harmonic regime sets in. A line with a slope of one is drawn as a reference.

For example, suppose that for a laser with Jth = 500 mA the harmonic state kicks in at

550 mA, or J/Jth = 1.1. If the transparency current was Jtrans = 250 mA, (in other words,

half of the threshold current, which is reasonable for QCLs), then the pump parameter

at the harmonic state onset would be p = (550 − 250)/(500 − 250) = 1.2. Thus, J/Jth

underestimates p.

A more rigorous study is required to determine Jtrans for each laser, which can be done by

measuring many lasers of the same active region but different lengths. Once Jtrans is known,

the slope of |Ẽ0|2 vs. p should fall between 2/3 and 1 and in principle a value for γD can be

extracted, allowing one to quantify the amount of diffusion present.

II. HYSTERESIS OF IV CURVE

The IV curve of device DS-3.8 shown in Fig. S2 demonstrates a hysteresis. When starting

below threshold and increasing the current (red), the voltage of the laser decreases (negative

differential resistance) when the noisy harmonic state transitions to the dense state at 523

mA. (In the spectra shown in Fig. 3(c) of the manuscript, this transition occurs at 502 mA.

3



FIG. S2. The IV curve of DS-3.8 exhibits a hysteresis as the current is increased (red) and decreased

(blue). The hysteresis is correlated with the transition from the noisy harmonic state to the dense

state.

The exact current at which the transition occurs is not identical from one experiment to

another, but occurs predictably within a range of about 20 mA.) Once the laser reaches the

dense state and the current is subsequently decreased (blue), the laser persist in the dense

state at currents below 523 mA. This is responsible for the hysteresis loop. For the same

current, the voltage is 4.8 mV smaller when in the dense state than in the noisy harmonic

state. At 494 mA, the dense state transitions to the noisy harmonic state, and the two

voltage curves overlap again.

The lower voltage of the dense state indicates a larger radiative photocurrent, which

implies that the output power of the laser is slightly larger in the dense state than in the

harmonic state, for the same current pumping. (While we could have measured the output

power to demonstrate this, the IV measurement is more sensitive.) Thus, the dense state is

more efficient at extracting photons from upper state electrons and is, in one sense, more

stable. Therefore, once the laser enters the dense state, it likes to remain there even as the

current is decreased.
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FIG. S3. The spectra of the three uncoated devices as the current is ramped up and as it is ramped

down. Of the six plots, only (e) and (f) were not included in the main text.
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FIG. S4. The spectra of TL-4.6:HR/AR as the current is (a) ramped up and (b) ramped down.

Only plot (b) was not presented in the main text.

III. ADDITIONAL DATA ON SPECTRAL HYSTERESIS

In Fig. S3, the spectra of the three uncoated devices are plotted as the current is increased

starting from below threshold, and also as the current is decreased. For devices LL-9.8 and

TL-4.6, once the dense state is reached it persists as the current is decreased until the single-

mode state reappears. Device DS-3.8 also exhibits noisy harmonic states as the current is

decreased. For all three devices, it is true that the clean harmonic state never reappears

once the laser has reached the dense state.

In Fig. S4, the spectra of TL-4.6:HR/AR are plotted as the current is increased and then

decreased. As the current is decreased, the dense state persists until a noisy harmonic state

appears at 1.29Jth. Interestingly, in this device–unlike the uncoated ones–the clean harmonic

state with one pair of sidebands reappears at 885 mA, which is quite close to the instability

threshold of 880 mA found when the current is ramped upwards. The reappearance of the

harmonic state may also suggest that the sidebands are in the parametric enhancement

regime, in addition to the two pieces of evidence discussed in the main text; namely, the

large sideband spacing (46 FSR) and the large range of intracavity power over which the

harmonic state persists.
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IV. THEORY: SINGLE-MODE SOLUTION

This section gives a more detailed derivation of the single-mode solution, including the

intracavity power as a function of pumping, and the population inversion as a function of

position and pumping.

For a two level system with upper state |a〉 and lower state |b〉, the material equations in

the non-rotating frame and the field equation are

dρab
dt

= −iωbaρab −
id

~
E(t)w − ρab

T2

(5)

dw

dt
=
−2id

~
E(t)(ρab − ρ∗ab) +

weq − w
T1

+D
∂2w

∂z2
(6)

∂2E

∂z2
− 1

c2

∂2E

∂t2
= Ndµ

∂2

∂t2
(ρab + ρ∗ab). (7)

We emphasize that these equations are in the non-rotating frame, whereas the equations we

have used in the main text [1] were already in the rotating frame and the RWA had already

been applied. However, since we are here dealing with two counter-propagating waves, we

chose to more closely follow the approach in [2]. We make the following ansatzes:

E(z, t) =
1√
2

[
ER(z, t)e−i(ωt−kz) + EL(z, t)e−i(ωt+kz) + c.c.

]
(8)

ρab(z, t) = η∗R(z, t)e−i(ωt−kz) + η∗L(z, t)e−i(ωt+kz) (9)

w(z, t) = wDC(z, t) + w2(z, t)ei2kz + w∗2(z, t)e−i2kz. (10)

(We use the subscript “DC” rather than “0” for the spatial average of the population inver-

sion, wDC, because the subscript 0 is used throughout the text to refer to the primary mode.

No such ambiguity occurs for the subscript “2.”) Plugging the ansatzes into the differen-

tial equations, and making the RWA as well as the slowly-varying envelope approximation

7



(SVEA) yields the following equations:

dη∗R
dt

=
−iκ
2
√

2
(ERwDC + ELw2)−

(
1

T2

+ i∆

)
η∗R (11)

dη∗L
dt

=
−iκ
2
√

2
(ELwDC + ERw∗2)−

(
1

T2

+ i∆

)
η∗L (12)

dwDC

dt
=

iκ√
2

(ERηR + ELηL − c.c.) +
weq − wDC

T1

(13)

dw2

dt
=

iκ√
2

(ERηL − E∗Lη∗R)− w2

T1

− 4k2Dw2 (14)

1

c

∂ER
∂t

= −∂ER
∂z

+
i
√

2α

κT2

η∗R −
`0

2
ER (15)

1

c

∂EL
∂t

= +
∂EL
∂z

+
i
√

2α

κT2

η∗L −
`0

2
EL (16)

where κ = 2d/~, α = NωT2d
2
√
µ/ε/~ is the Beer absorption coefficient of the material, and

∆ = ωba−ω is the detuning of the field from the atomic resonance frequency. The loss term

`0 has been added to the field equation heuristically, and in this context it represents only

the waveguide loss.

We solve for the single-mode solution by setting the time-derivatives to zero and the

slowly-varying envelope functions to be constants. In doing so, we are now making the

distributed loss approximation because we are not allowing the fields to grow in space.

Thus, `0 must now be taken to be the total loss, waveguide plus mirror loss. We take ∆ = 0

for simplicity, because the single-mode will lase very close to the peak of the gain spectrum.

We denote the steady-state field amplitudes by ER = EL = E0 and find the LI curve

|Ẽ0|2 =
p− 1

1 + γD/2
(17)

where γD = (1 + 4k2DT1)−1 is the diffusion parameter. The steady-state population w0(z)

is given by

w0(z) = wth

[
1 +

γD
2

p− 1

1 + γD/2
− γD

p− 1

1 + γD/2
cos(2k0z)

]
. (18)

V. THEORY: POPULATION PULSATIONS

This section gives a more detailed derivation of the population pulsations, and demon-

strates how to include nonzero detuning ∆ and GVD into the formalism.

We begin by imagining a small volume of dipoles subject to a spatially uniform E-field

to develop an understanding of the non-linear effects caused by the Bloch dynamics. The
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electric field is given by

E(t) = E(t)eiωt + c.c. (19)

The Bloch equations in the rotating wave approximation are

σ̇ =

(
i∆− 1

T2

)
σ +

iκ

2
wE (20)

ẇ = iκ(E∗σ − Eσ∗)− w − weq
T1

(21)

where σ is the off-diagonal element of the density matrix in the rotating frame, w is the

population inversion (positive when inverted), ∆ = ωba − ω is the detuning between the

applied field and the resonant frequency of the two-level system, T1 is the (longitudinal)

population relaxation time, T2 is the (transverse) dephasing time, κ ≡ 2d/~ is the coupling

constant where d is the dipole matrix element (assumed to be real) and ~ is Planck’s constant,

and weq is the equilibrium population inversion in the absence of any electric field which is

determined by the pumping. (Note that these equations are identical to Eqs. 3.19(a)-(c)

in [1], except that we have allowed E to be complex and left the off-diagonal component of

the density matrix in complex notation rather than writing σ = (u + iv)/2.) With these

conventions, the macroscopic polarization P (dipole moment per volume) in a region with

a volume density of N dipoles is given by

P (t) = Ndσeiωt + c.c. (22)

First, we consider the effect of a monochromatic field at frequency ω, obtained from Eqs.

20-21 by setting E(t) = E0 and all time derivatives to zero. The result is a steady-state

polarization σ0 and population inversion w0 given by

σ0 =
iκT2

2(1− i∆T2)
w0E0 (23)

w0 =
weq

1 + κ2T1T2|E0|2
1+(∆T2)2

(24)

Note that the population inversion w0 is saturated as the field strength E0 increases: this is

responsible for saturable loss (when weq < 0) and saturable gain (when weq > 0).

A. Two-frequency operation

Next, we consider the E-field

E = E0 + E+e
iδωt (25)
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which consists of the strong field E0 at frequency ω superposed with the much weaker field

E+ detuned from ω by δω. A polarization will of course be induced at ω + δω. However, a

polarization at ω−δω also results due to the beat note at δω which modulates the intensity:

the resulting modulation of the population inversion with time (i.e., a population pulsation)

leads to nonlinear frequency mixing. We express the full polarization as

P (t) =
∑

m=−,0,+

Pmeiωmt + c.c. (26)

where ω+ ≡ ω + δω and ω− ≡ ω − δω. We can solve for the polarization as done in [3],

keeping only terms to first order in the weak field E+, which gives

P0 =
iε

ωba
ᾱw0

E0

1− i∆T2

(27)

P+ =
iε

ωba
ᾱw0

[
E+

1− i(∆− δω)T2

+ Λ+
+Ẽ0Ẽ∗0E+

]
(28)

P− =
iε

ωba
ᾱw0Λ+

−Ẽ0Ẽ0E∗+ (29)

where

Λ+
+ =

−[1 + i(∆ + δω)T2](1 + iδωT2/2)

[1− i(∆− δω)T2](1 + i∆T2)
[
(1 + iδωT1)[1 + i(∆ + δω)T2][1− i(∆− δω)T2] + (1 + iδωT2)|Ẽ0|2

]
(30)

Λ+
− =

−(1− iδωT2/2)

(1− i∆T2)
[
(1− iδωT1)[1 + i(∆− δω)T2][1− i(∆ + δω)T2] + (1− iδωT2)|Ẽ0|2

]
(31)

are the self-mixing and cross-mixing coupling coefficients, respectively. We consider the

dipoles to be embedded in a host medium of permittivity ε and permeability µ. (We adopt

the convention of [4]: ε, µ and the speed of light c = 1/
√
εµ always take their values in

the background host medium.) Many of the material properties of the two-level system are

lumped into the “Beer loss rate”

ᾱ =
Nd2T2ωbac

√
µ/ε

~
, (32)

which is related to the more familiar Beer absorption coefficient α (with units of inverse

length) that appears in Beers law of absorption by ᾱ = αc. (Note, however, that in our

expressions for the polarization due to the two-level system, all factors of ε and µ drop
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out; that is, these expressions do not contain the polarization contributions due to the

background medium.) The central mode amplitude E0 has been normalized such that Ẽ0 ≡

κ
√
T1T2E0. Note that P0 is unaffected to first order in E+. The polarization P+ comes from

two contributions. First, there is the linear contribution from the Lorentz oscillator which

E+ would induce even in the absence of the strong field E0. Second, there is a contribution

due to the PP which is described by the term Λ+
+. The term P− is due solely to the PP and

is governed by Λ+
−. Note that the full polarization is directly proportional to the steady-

state population inversion w0; this will be important when we generalize our results to

standing-wave cavities, where w0 varies with position.

Now that we have the polarization, we can calculate the gain seen by the sideband field.

We define the gain ḡ (with dimension of frequency) of the sideband as the power density

generated at ω + δω by the interaction of the field with the dipoles–considering only field

and polarization terms oscillating at ω + δω–divided by the energy density of the exciting

sideband field, or

ḡ+ ≡ −
〈EṖ 〉+
2ε|E+|2

(33)

=
iω+(E+P∗+ − E∗+P+)

2ε|E+|2
(34)

1. ∆ = 0

Here we consider the case of zero detuning, ∆ = 0, which simplifies the mathematical

expressions considerably and is a prerequisite to understanding the case of non-zero detuning.

Under this simplified scenario, we denote the self-mixing coefficient Λ+
+ by Λ, where

Λ =
−(1 + iδωT2/2)[

(1 + iδωT1)(1 + iδωT2)2 + (1 + iδωT2)|Ẽ0|2
] , (35)

and it is simple to show that the cross-coupling coefficient Λ+
− is simply Λ∗. The gain of the

sideband field is found to be

ḡ+ = ᾱw0

[
1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2

]
. (36)

(We have used (ω+δω)/ωba ≈ 1.) Thus, the gain can be nicely divided up into a contribution

from the Lorentz oscillator and a contribution from the PP. All of this is proportional to

ᾱw0: ᾱ gives you the gain of a weak field tuned to line-center in a perfectly inverted medium
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(or alternatively, the loss seen by a weak field tuned to line-center in a material in its ground

state), and w0 gives you the expectation value of finding an electron in the excited state

(equal to 1 when excited, -1 when in the ground state, and 0 at transparency). Note that

Real(Λ) can be positive or negative, which we will discuss shortly.

B. Three-frequency operation

Of course, the polarization created at ω − δω will create a field at that frequency, which

is precisely why in the experiments we always observe the two sidebands appearing simul-

taneously. One sideband cannot exist in isolation when the mixing terms naturally couple

them together. Therefore, we need to consider the field

E = E0 + E+e
iδωt + E−e−iδωt. (37)

The polarization at each sideband frequency now contains a Lorentzian term, a self-mixing

term, and a cross-mixing term:

P+ =
iε

ωba
ᾱw0

[
E+

[1− i(∆− δω)T2]
+ Λ+

+Ẽ0Ẽ∗0E+ + Λ−+Ẽ0Ẽ0E∗−
]

(38)

P− =
iε

ωba
ᾱw0

[
E−

[1− i(∆ + δω)T2]
+ Λ−−Ẽ0Ẽ∗0E− + Λ+

−Ẽ0Ẽ0E∗+
]

(39)

where Λ−− and Λ−+ are obtained by making the substitution δω → −δω in the expressions for

Λ+
+ and Λ+

−, respectively, given in Eqs. 30-31 .

1. ∆ = 0

Let us again focus on the case ∆ = 0, for which the polarization at each sideband

simplifies to

P+ =
iε

ωba
ᾱw0

[
E+

[1 + iδωT2]
+ ΛẼ0Ẽ∗0E+ + ΛẼ0Ẽ0E∗−

]
(40)

P− =
iε

ωba
ᾱw0

[
E−

[1− iδωT2]
+ Λ∗Ẽ0Ẽ∗0E− + Λ∗Ẽ0Ẽ0E∗+

]
, (41)

where Λ is simply Λ+
+ evaluated for ∆ = 0. We see the nice property that when ∆ = 0,

Λ+
+ = Λ−+ (≡ Λ), and Λ−− = Λ+

− (≡ Λ∗); in other words, the self- and cross-mixing coupling

coefficients are equal.
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The gain ḡ+ of the positive sideband is

ḡ+ = ᾱw0

{
1

1 + (δωT2)2
+ Real

[
Λ|Ẽ0|2

(
1 +

Ẽ2
0E∗−
|Ẽ0|2E+

)]}
, (42)

and a similar expression holds for the minus sideband. This equation tells us that the PP

contribution to the gain depends on the phase and amplitude relationships of E0, E−, and

E+, which is not too surprising because the amplitude of the PP itself is sensitive to these

parameters. Without loss of generality, we can take E0 to be real. If E+ = E∗−, then the

two sidebands’ contributions to the beat note at δω add constructively, resulting in a field

whose amplitude modulation (AM) is twice the strength of a field with only one sideband.

If E+ = −E∗−, then the two sidebands’ contributions to the beat note at δω destructively

cancel and there is no longer any amplitude modulation at frequency δω. We refer to such

a field as frequency-modulated (FM). We see from Eq. 42 that the AM sidebands therefore

experience a PP contribution to the gain that is twice as large as the single sideband case,

while the FM sidebands experiences only the background Lorentzian gain, consistent with

the fact that there is no PP in this case. We summarize this with the formula for the gain

ḡ of each sideband for the case of equal-amplitude sidebands (|E+| = |E−|),

ḡ = ᾱw0

 1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2

 2 ; AM

0 ; FM

 . (43)

Note that for a superposition of AM and FM, the gain due to the PP will fall between 0

and 2 times the factor Real(Λ)|Ẽ0|2.

VI. THEORY: INSTABILITY THRESHOLD

This section gives a more detailed derivation of the instability threshold, combining the

populating grating and the population pulsations into.

When a continuous-wave (cw) laser is pumped at its lasing threshold, only a single

frequency of light–the one nearest the gain peak that also satisfies the roundtrip phase

condition–has sufficient gain to overcome the roundtrip loss and begins to lase. As the

pumping is increased, the single-mode solution yields to multimode operation; this is known

as the single-mode instability. Our goal is to determine 1) how hard to pump the laser to

reach the single-mode instability and 2) which new frequencies start lasing.
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Consider a laser pumped above threshold that is lasing on a single-mode, which we

refer to as the primary or central mode. If another mode is to lase, it must be seeded by

a spontaneously generated photon at a different frequency. This photon will necessarily

create a beat note through its coexistence with the primary mode, resulting in a population

pulsation. The gain seen by the new frequency must therefore account for this parametric

gain in addition to the background Lorentzian gain. Furthermore, the PP couples the

sideband to the symmetrically detuned sideband frequency on the other side of the primary

mode, so we should in general assume the presence of both sidebands. Because the instability

threshold depends on the cavity geometry, we will consider a traveling-wave laser as well

as a standing-wave laser. In both cases, the strategy is the same. First, we solve for the

single-mode intensity E0 and the population inversion w0(z) as a function of the pumping,

entirely neglecting the sidebands. Knowing this, we can then calculate the sideband gain in

the presence of the primary mode.

We start with the wave equation

∂2E

∂z2
− 1

c2

∂2E

∂t2
= µ

∂2P

∂t2
. (44)

Following the approach used to calculate the optical parametric oscillation threshold in

optically pumped microresonators [5], we expand the field in terms of the cold cavity modes,

E(z, t) =
∑

m=−,0,+

Em(t)Υm(z)eiωmt + c.c. (45)

The spatial modes obey the normalization condition

1

L

∫ L

0

dz |Υm(z)|2 = 1. (46)

When group velocity dispersion (GVD) is non-zero, the two modes ω+ and ω− will not be

equidistant from ω0. We have also assumed that the spatial and temporal dependence of the

modes can be separated. This is a good approximation in the case of a laser, because we

know the intracavity field will be sharply resonant at the modes. The spatial variation of the

polarization can be described by making the substitution Em → EmΥm(z) and w0 → w0(z)

into the polarization Eqs. 38-39, which results in the polarization

P (z, t) =
∑

m=−,0,+

Pm(z, t)eiωmt + c.c. (47)
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where

P+(z, t) =
iε

ωba
ᾱw0(z)

[
E+Υ+(z)

[1− i(∆− δω)T2]
+ Λ+

+(z)|Υ0(z)|2Υ+(z)|Ẽ0|2E+ + Λ−+(z)Υ0(z)2Υ∗−(z)eiω̄tẼ2
0E∗−

]
(48)

P−(z, t) =
iε

ωba
ᾱw0(z)

[
E−Υ−(z)

[1− i(∆ + δω)T2]
+ Λ−−(z)|Υ0(z)|2Υ−(z)|Ẽ0|2E− + Λ+

−(z)Υ0(z)2Υ∗+(z)eiω̄tẼ2
0E∗+

]
.

(49)

We have introduced ω̄ ≡ 2ω0 − ω+ − ω−, the deviation of the cold cavity modes from equal

spacing. Note that the Λs now depend on z due to the term in their denominators dependent

on the primary mode amplitude. Because we no longer demand that the two sidebands have

the same detuning δω, Λ+
+ and Λ+

− should, strictly speaking, be calculated using the detuning

δω+ = ω+ − ω0, while Λ−− and Λ−+ should depend on δω− = ω0 − ω−. In practice, we can

ignore this difference in the Λs; the term eiω̄t captures the most important effect of GVD.

Plugging everything into the wave equation gives

∑
m

(
d2Υm

dz2
+
ω2
m

c2
Υm

)
Emeiωmt − 2i

c2

∑
m

ωm
dEm
dt

Υme
iωmt = µ

∑
m

−ω2
m(Pm − Pm,loss)e

iωmt

(50)

where the slowly-varying-envelope approximation allowed us to ignore second time deriva-

tives of Em on the left-hand side, and first and second derivatives of Em on the right-hand

side. The spatial modes Υm(z) are chosen so that the first term on the LHS equals zero. The

loss of each mode has been added to the equation in the form of a polarization contribution;

we assume each mode has the same linear loss, which can be expressed

Pm,loss(z, t) =
iε

ωba
¯̀Υm(z)Em(t). (51)

Equation 50 couples all of the modes Em. We can project this equation onto each mode

by multiplying by Υn(z) and integrating over the length of the laser cavity, thus taking

advantage of the orthonormality of the spatial modes Υm(z), and then equating terms which

oscillate at the same frequency (since terms with different frequencies will not affect the

time-averaged gain seen by a mode). The result is one equation for the central mode

Ė0 =

[
−

¯̀

2
+

ᾱ

2(1− i∆T2)

∫
dz

L
w0(z)|Υ0(z)|2

]
E0, (52)
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one for the positive sideband

Ė+ = −
¯̀

2
E+ +

ᾱ

2

[
E+

1− i(∆− δω)T2

∫
dz

L
w0(z)|Υ+(z)|2

+ |Ẽ0|2E+

∫
dz

L
w0(z)Λ+

+(z)|Υ0(z)|2|Υ+(z)|2

+Ẽ2
0E∗−eiω̄t

∫
dz

L
w0(z)Λ−+(z)Υ0(z)2Υ∗−(z)Υ∗+(z)

]
, (53)

and one for the negative sideband

Ė− = −
¯̀

2
E− +

ᾱ

2

[
E+

1− i(∆ + δω)T2

∫
dz

L
w0(z)|Υ−(z)|2

+ |Ẽ0|2E−
∫
dz

L
w0(z)Λ−−(z)|Υ0(z)|2|Υ−(z)|2

+Ẽ2
0E∗+eiω̄t

∫
dz

L
w0(z)Λ+

−(z)Υ0(z)2Υ∗+(z)Υ∗−(z)

]
. (54)

These three equations will be used to understand the instability threshold. In general, one

must first apply the steady-state condition Ė0 = 0 to Eq. 52 which, together with the Bloch

equation relating the field to the inversion, will yield the amplitude of the primary mode E0

along with the resulting population inversion w0(z), both as a function of the pumping weq.

This information is then used in Eqs. 53-54 to determine the minimum level of pumping weq

at which a pair of sidebands with detuning δω experiences more gain than loss. This is the

instability threshold.

So far, we have kept Eqs. 52-54 as general as possible to account for arbitrary spatial

profiles, GVD, and detuning ∆ between the lasing mode and the peak of the gain spectrum.

From here on we will simplify the problem by taking ω̄ = 0 (zero GVD) and ∆ = 0, and

apply these conditions to the simplest possible traveling-wave and standing-wave cavities.

A. Traveling-wave cavity

For the traveling-wave laser, the spatial modes are

Υm(z) = e−ikmz (55)

so every point in the cavity sees the same intensity. At and above threshold, the population

inversion is everywhere saturated to the threshold inversion, so w0 is independent of z. For

∆ = 0, the inversion is

w0 = wth ≡
¯̀

ᾱ
(56)
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and the intensity of the primary mode is given by

|Ẽ0|2 = p− 1 (57)

where we have made use of the normalized primary mode amplitude Ẽ0 ≡ κ
√
T1T2E0, and p

is the pumping parameter defined as p ≡ weq/wth. Because |Ẽ0|2 is independent of z, all of

the Λs are independent of z. Furthermore, since both w0 and the Λs are independent of z,

they can be pulled out of the spatial integrals in Eqs. 53-54. These integrals are then equal

to one, where we have used the zero GVD condition ω̄ = 0 in order for the cross-overlap

integral (the last integral in each equation) to equal one. The sideband equations become

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
E+

1 + iδωT2

+ Λ|Ẽ0|2E+ + ΛẼ2
0E∗−

]
(58)

Ė− = −
¯̀

2
E− +

ᾱwth
2

[
E−

1− iδωT2

+ Λ∗|Ẽ0|2E− + Λ∗Ẽ2
0E∗+

]
(59)

which can be written in matrix form Ė+

Ė∗−

 =

M+ R+

R∗− M∗
−

 E+

E∗−

 (60)

where

M+ = M∗
− = −

¯̀

2
+
ᾱwth

2

(
1

1 + iδωT2

+ Λ|Ẽ0|2
)

(61)

R+ = R∗− =
ᾱwth

2
Λ|Ẽ0|2. (62)

(In the last step, we have finally taken the freedom to choose Ẽ0 to be real, which we can do

at this point without loss of generality.)

Now, if we assume a solution of the form E± ∼ eλt, we find the two solutions for λ

λ =
1

2
[M+ +M∗

− ±
√

(M+ −M∗
−)2 + 4R+R∗−]. (63)

The net gain seen by each sideband is given by Real(2λ) (the factor of two is for intensity

gain rather than amplitude gain), which includes the gain minus the loss. Subtracting off

the loss, the gain ḡ seen by each sideband is

ḡ = ᾱwth

 1

1 + (δωT2)2
+

 2 Real(Λ)|Ẽ0|2 ; AM

0 ; FM

 (64)
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T1 / T2 = 1 T1 / T2 = 10 T1 / T2 = 100 

p=1 
p=5 
p=10 
p=14.9 

p=1 
p=3 
p=6 
p=9.59 

p=1 
p=3 
p=6 
p=9.06 

increasing 
p 

FIG. S5. The sideband gain ḡAM/¯̀ of a traveling-wave laser, given in Eq. 66, is plotted at various

pump strengths, for three different values of Z: 1, 10, and 100. The largest value of p in each plot

is equal to the instability threshold given in Eq. 69.

where the two solutions correspond to AM and FM sideband configurations. Finally, we

recognize that the gain is pinned at threshold, so ᾱwth = ¯̀, and we write down the sideband

gain normalized to the loss

ḡ
¯̀ =

1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2 ·

 2 ; AM

0 ; FM
. (65)

When the gain ḡ exceeds the loss ¯̀, the weak sideband amplitudes experience exponential

growth, therefore the single-mode solution becomes unstable. Note that the Lorentzian term

is always less than 1. This is a direct result of uniform gain clamping in the traveling-

wave laser, which clamps the net gain of the mode at the peak of the Lorentzian to zero,

and therefore any mode detuned from the peak will see slightly more loss than gain. FM

sidebands therefore never become unstable because they only see the Lorentzian gain. On

the other hand, AM sidebands induce a PP and with it a coherent gain term, which can

provide enough extra gain on top of the Lorentzian background to allow the sidebands to

lase,

ḡAM
¯̀ =

1

1 + (δωT2)2
+ 2 Real(Λ)|Ẽ0|2. (66)

To get a feel for the sideband gain, we have plotted ḡAM/¯̀ in Fig. S5 at various pump

strengths p for Z = 1, 10, and 100, where Z ≡ T1/T2. Graphically, we see that at large

enough p sidebands will become unstable. Analytically, it is a simple matter to calculate
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how hard to pump the laser p before the sidebands appear, starting from Eq. 66. We start

by replacing |Ẽ0|2 with p − 1, and note that this substitution must also be made in Λ,

which implicitly varies with |Ẽ0|2. Then, setting ḡAM/¯̀ equal to one, we can solve a simple

quadratic formula for δω2,

(δωT2)2 =
−1 + 3Z(p− 1)±

√
[1− 3Z(p− 1)]2 − 8Z2p(p− 1)

2Z2
. (67)

Finally, we must apply some physical reasoning: as p is increased past 1, the sideband gain

increases. Right at the moment when the instability threshold is reached, δω2 must take

on a single value. Thus, we set the radical in Eq. 67 to zero and solve for p. After solving

another simple quadratic equation, we find that

p = 5 +
3

Z
± 4

√
1 +

3

2Z
+

1

2Z2
. (68)

How do we choose between the plus and minus sign? By plugging this expression for p back

into Eq. 67, it is simple to check that only the plus sign yields real-valued solutions for δω.

Thus, we have found the instability threshold, which we denote pRNGH ,

pRNGH = 5 +
3

Z
+ 4

√
1 +

3

2Z
+

1

2Z2
(69)

because it is the well-known instability threshold found by Risken and Nummedal (see Eq.

3.10 in [6]) and Graham and Haken (see Eq. 7.35 in [7]). Plugging this value of p into Eq.

67 yields the value of δω of the sidebands when the instability sets in

(δωRNGHT2)2 =
4

Z2
+

6

Z

(
1 +

√
1 +

3

2Z
+

1

2Z2

)
. (70)

One thing to notice is that in the limit Z � 1 (transverse relaxation must faster than

longitudinal relaxation), the instability threshold pRNGH → 9 from above and δωRNGHT2 →√
12/Z.

B. Standing-Wave Cavity

As before, we restrict ourselves to the case ∆ = 0 and ω̄ = 0. We will see that calculations

for the standing-wave cavity are significantly more complicated than for the traveling-wave

cavity. The spatial variation of the primary mode causes the inversion w0 and the coupling
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Λ to both depend on z, which makes the integrals more difficult to compute. For this reason,

we treat the problem to first order in the primary mode intensity |Ẽ0|2, which allows us to

compute the integrals analytically. However, the theory can be extended to higher order at

will, or the integrals can always be computed numerically.

For the standing-wave laser with perfectly reflecting end mirrors, the spatial profile of

each mode is given by

Υm(z) =
√

2 cos(kmz). (71)

The spatial modulation of the intensity is responsible for the spatial modulation of the

population inversion w0(z), though mitigated somewhat by carrier diffusion. We calculated

w0(z) in Sec. IV of the supplementary information. The result is

w0(z) = wth

[
1 +

γD
2

p− 1

1 + γD/2
− γD

p− 1

1 + γD/2
cos(2k0z)

]
. (72)

to first order in |Ẽ0|2, where wth = ¯̀/ᾱ, and γD = (1 + 4k2DT1)−1 is the diffusion parameter.

The spatial variation of the inversion has important consequences. For one, it reduces the

power of the laser, which is given by

|Ẽ0|2 =
p− 1

1 + γD/2
. (73)

Secondly, the gain is no longer uniformly clamped by the primary lasing mode, which will

allow new modes to lase even in the absence of PPs.

The spatial variation of the primary lasing mode also causes Λ to vary with position. In

keeping with our approximations, we can expand Λ to zeroth order in |Ẽ0|2 because in our

equations Λ always multiplies |Ẽ0|2, so the final result is first order in |Ẽ0|2. We define the

zeroth order expansion of Λ to be

χ(3) =
−(1 + iδωT2/2)

(1 + iδωT1)(1 + iδωT2)2
, (74)

where the symbol χ(3) was chosen to emphasize that this term now plays the role of a

third-order nonlinear coefficient.

We start with the sideband Eqs. 53-54, replace w0(z) with Eq. 18, Λ(z) with χ(3), and

keep only terms to first order in |Ẽ0|2. The resulting equation for the growth of the positive
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sideband is

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
1 + γD

2
|Ẽ0|2

1 + iδωT2

E+

+ χ(3)|Ẽ0|2E+

∫
dz

L
|Υ0(z)|2|Υ+(z)|2

+χ(3)Ẽ2
0E∗−

∫
dz

L
Υ0(z)2Υ∗−(z)Υ∗+(z)

]
, (75)

and a similar equation can be written down for Ė−. We define the longitudinal overlap

integrals

Γself =

∫ L

0

dz

L
|Υ0(z)|2|Υ+(z)|2 = 1 (76)

Γcross =

∫ L

0

dz

L
Υ0(z)2Υ∗−(z)Υ∗+(z) = 1/2. (77)

The implication is that the self-mixing interaction of a sideband with itself, mediated by

the primary mode intensity, is twice as large as the cross-mixing interaction of one sideband

generating gain for the other sideband, again mediated by the primary mode intensity. This

is true only for the cosine-shaped modes that we have assumed, and the overlap integrals

will change when the longitudinal spatial profile changes, as when the non-unity reflectivity

of the facets is taken into account. The sideband Eqs. 53-54 become

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
1 + γD

2
|Ẽ0|2

1 + iδωT2

E+ + Γselfχ
(3)|Ẽ0|2E+ + Γcrossχ

(3)Ẽ2
0E∗−

]
(78)

Ė− = −
¯̀

2
E− +

ᾱwth
2

[
1 + γD

2
|Ẽ0|2

1− iδωT2

E− + Γselfχ
(3)∗|Ẽ0|2E− + Γcrossχ

(3)∗Ẽ2
0E∗+

]
, (79)

which we express as  Ė+

Ė∗−

 =

M+ R+

R∗− M∗
−

 E+

E∗−

 (80)

where

M+ = M∗
− = −

¯̀

2
+
ᾱwth

2

(
1 + γD

2
|Ẽ0|2

1 + iδωT2

+ Γselfχ
(3)|Ẽ0|2

)
(81)

R+ = R∗− =
ᾱwth

2
(Γcrossχ

(3)|Ẽ0|2). (82)

As we did for the traveling-wave laser, the sideband gain is easily calculated from these two

coupled first-order differential equations. Normalizing the gain to the total loss, we find

ḡ
¯̀ =

1 + γD
2
|Ẽ0|2

1 + (δωT2)2
+ Real[χ(3)]|Ẽ0|2 ·

 Γself + Γcross = 3
2

; AM

Γself − Γcross = 1
2

; FM
. (83)
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There are two things to notice here. As the laser pumping is increased, the term γD|Ẽ0|2/2

grows, and consequently the gain is not clamped at the threshold value. This is due to spatial

hole burning, or more precisely, the imperfect overlap of the standing-wave modes together

with a finite amount of carrier diffusion. We view this background gain as a Lorentzian-

shape whose amplitude increases with the pumping, and is therefore fully capable of pulling

the sidebands above threshold, without any additional PP contribution to the gain.

Secondly, the PP contribution to the gain never vanishes. Even when the sidebands are

phased such that an FM waveform is emitted from the laser, there is still a PP within the

laser cavity. The reason for this is the imperfect overlap of the two sidebands’ spatial modes,

which means that at any given position within the cavity, the plus and minus sideband are

likely to have different amplitudes. Therefore, even if the two sidebands are phased such

that their contributions to the beat note at δω destructively interfere with each other, the

destruction is not perfect. The amplitude of the PP varies with position in the cavity, and

in locations where the two sideband amplitudes are equal the PP will not exist, but the

spatially averaged effect of the FM PP yields the factor of 1/2 in Eq. 83. By the same

token, sidebands phased for AM will not fully constructively interfere, yielding a factor of

3/2 for the PP contribution to the gain rather than the factor 2, as it would be for the

traveling-wave laser.

VII. NUMERICALLY CALCULATING THE INSTABILITY THRESHOLD

In this section, we demonstrate the predictions of the theory for the three uncoated lasers,

and compare the results with the measurements.

Because the theory assumes end mirrors with unity reflectivity, we can only expect Eq.

83 to apply reasonably well to the uncoated QCLs. For each device, γD is calculated using

the theoretical value of Tup (calculated from the bandstructure) and the diffusion constant

D = 77 cm2/s [8], giving γD = 0.4 (DS-3.8), 0.49 (TL-4.6), and 0.93 (LL-9.8). For these

large values of γD, the incoherent gain increases rapidly with the pumping, and we find from

Eq. 83 that the FM instability will have a lower threshold than the AM instability, regardless

of the value of T1. The gain recovery time T1 of each QCL is not as easily calculable as Tup

because it depends on a few other time constants of the active region, such as the escape time

of the electron from one injector region to the next active region. Therefore, we treat T1 as a
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0.93  (LL-9.8) 
0.49  (TL-4.6) 
0.40  (DS-3.8) 

experimental 

(a) 

(b) 

FIG. S6. Numerical solutions of the instability threshold obtained by setting the gain ḡ in Eq. 83

equal to the loss ¯̀, yielding both (a) the sideband separation δωsbT2 and (b) the pumping psb. The

experimentally measured values of δωsbT2 are compared to the theory to infer T1/T2, which also

gives the theoretical prediction for the instability threshold psb.

variable and calculate the instability threshold psb and sideband spacing δωsb as a function of

T1. The resulting curves are shown in Fig. S6. By comparing the curves with the measured

values of δωsb, we can deduce the values T1 = 1.83 ps (DS-3.8), 1.15 ps (TL-4.6), and 0.91

ps (LL-9.8). For these values of T1, the theory predicts an instability threshold of psb = 1.02

(DS-3.8), 1.09 (TL-4.6), and 1.04 (LL-9.8). It is encouraging that these fitted values of T1

are close to the accepted value of the QCL gain recovery time, which has been shown by

pump-probe experiments [9, 10] and theory [11] to be around 2 ps. However, the predicted
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psb is significantly lower than the measured values Jsb/Jth = 1.12 (DS-3.8), 1.17 (TL-4.6),

and 1.14 (LL-9.8), and the discrepancy is made worse by the fact that J/Jth is likely an

underestimate of p (see the discussion in Sec. I of the supplement). The fact that the theory

underestimates the instability threshold is perhaps not surprising, as we have only made

sure that one of the two necessary conditions for sideband oscillation is satisfied (gain, not

phase). We hope that future work which accounts for the detuning ∆, the detuning between

the lasing mode and the cold cavity mode it occupies, and GVD can accurately predict the

instability threshold, which would be a milestone in the understanding of lasers, and also

yield a novel laser characterization method of lifetimes and diffusion rates by comparing

measured values of psb and δωsb to an established theory.
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