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Abstract— We consider the use of a mobile agent to monitor
stochastic, transient events that occur in discrete locations in
the environment with the objective of maximizing the number
of event observations in a balanced manner. We assume that
the events of interest at each station follow a stochastic process
with an initially unknown and station-specific rate parameter.
Consequently, the persistent monitoring problem we address
in this paper is a bandit problem -similar to the canonical
Multi-Armed Bandit problem- in which we are faced with
the inherent trade-off between exploration and exploitation.
We introduce a novel monitoring algorithm with provable
guarantees that leverages variance estimates to generate policies
capable of simultaneously taking into account the pertinent
monitoring objectives and the balance between exploration and
exploitation. We present analysis establishing lower bounds for
the performance of our algorithm measured with respect to
the quality of the policies generated. We present experimental
results supporting our proposed algorithm and comparing
its performance to that of current state-of-the-art monitoring
algorithms.

I. INTRODUCTION

We consider the problem of using a single mobile robot
to monitor stochastic, transient events of interest occurring
at discrete locations in the environment. We assume that
events at each location follow a stochastic process with an
unknown rate that is independent of other locations’ rates.
Since the events are stochastic and transient, their exact
time of occurrence cannot be known apriori. Hence, the
monitoring process requires the robot to visit each location
and remain at that location for some amount of time in
anticipation of events to occur.

An example of a surveillance task involving the moni-
toring of different bird species by a documentary maker is
shown in Fig. 1. Additional examples of scenarios following
this setting include robots patrolling the city in search of
possible suspicious activities or mobile sensors roaming the
environment to track wildlife around oases in the desert.
The aforementioned scenarios each outline a persistent mon-
itoring problem for which we would like to use a single
mobile agent to monitor stochastic events in an information-
driven way. The fact that we cannot concurrently monitor
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each location due to limited mobile resources motivates the
need for optimal monitoring policies.

Fig. 1. A persistent monitoring application in which a documentary maker
would like to monitor three different species of birds appearing in three
discrete, species-specific locations. Bird sightings at each location follow a
stochastic process with a rate that is initially unknown to the documentary
maker and must be learned and approximated throughout the monitoring
process. Given a cyclic path defining the sequence of stations to visit,
the documentary maker would like to traverse this cyclic path repeatedly,
stopping at each station for an appropriate amount of time to observe the
birds.

We assume that we are given a cyclic patrolling route and
seek to generate the optimal observation time to be spent
at each location subject to a given optimality criteria [1],
[2]. There may be several competing objectives of interest
in a real-world monitoring scenario. These may include
objectives pertaining to the number of events observed, the
distribution of attention to all the stations, the time between
consecutive observations at a station, and the classical trade-
off between exploration and exploitation given the unknown
rates of the stations. In this paper, we consider our overarch-
ing objective to be maximizing the number of observations
across all stations in a balanced way while simultaneously
balancing the inherent exploration and exploitation trade-off.
We note this case can be extended to the case of reasoning
over different trajectories as shown in [3].

Policy generation is rendered challenging by the fact that
the exact timing of (stochastic) events cannot be predicted
in advance and further the event statistics are assumed to be
unknown apriori. These relaxed assumptions are in contrast
to previous problem definitions such as those in [1], [2], [3],
where the statistics of events occurring at different locations
– such as rate of occurrence – were assumed to be known.
In our case, the relaxation of this assumption results in
the canonical exploration and exploitation problem, as the
robot must simultaneously learn the statistics about events
in the environment and adjust its policy in order to optimize
the pertinent monitoring objective. The trade-off between
exploration and exploitation that we address in this paper



is also faced by the canonical multi-armed bandit problem
[4], [5] and reinforcement learning [6].

In this paper, we introduce a novel persistent monitoring
algorithm with provable guarantees that quantifies and em-
ploys the uncertainty of our rate approximations to generate
policies in order to reason about and explicitly consider the
inherent exploration and exploitation trade-off. We present
analysis proving probabilistic error bounds on the accuracy
of rate approximations and the optimality of generated poli-
cies as a function of the number of the monitoring cycles.
We present simulation results that compare the performance
of our algorithm with that of an adaptive strategy and a state-
of-the-art monitoring algorithm [2].

II. RELATED WORK

In part due to the ubiquity of persistent monitoring tasks,
the problem of persistent surveillance has been previously
addressed with respect to a variety of applications and
environments. For instance, in [7] the authors considered per-
sistent surveillance of discrete locations -such as buildings,
windows, doors- using a team of autonomous micro-aerial
vehicles (MAVs). While UAVs are predominantly associated
with persistent monitoring tasks, in [8] the authors consid-
ered the generation of monitoring policies for autonomous
underwater vehicles with the objective of facilitating efficient
high-value data collection. Furthermore, in [2] and [9], the
authors present different approaches to the min-max latency
walk problem in the context of discrete stations.

Persistent monitoring problems for multiple agents have
also been studied with regard to a variety of different objec-
tives. In [10], the authors consider the problem of controlling
multiple agents to minimize an uncertainty metric in the
context of a 1-D mission space. Furthermore, decentralized
approaches to controlling a network of robots for purposes
of sensory coverage has been investigated in [11], where the
authors presented a control law to drive a network of mobile
robots to an optimal sensing configuration.

In addition to persistent monitoring work in static envi-
ronments, the case of dynamic environments has also been
an avenue of interest [12], [13], [14]. Namely, authors of
[12] considered optimal sensing in a time-changing Gaussian
Random Field and proposed a new randomized path planning
algorithm to find the optimal infinite horizon trajectory.
In [13], the authors considered a changing environment
modeled as a field which grows in locations that are not in the
range of the robot and proposed a linear program to generate
speed controllers capable of keeping the field bounded.

Persistent surveillance is inherently closely related to
sensor scheduling [15], sensor positioning [16], and coverage
problems [17]. Thus, previous approaches have considered
the problem of persistent monitoring in the context of a mo-
bile sensor [18]. For instance, in [19], the authors considered
the problem of finding shortest watchman routes that enable
the watchman to traverse paths along which every point in a
given space is visible; the authors showed that this problem
is NP-hard in general.

From the perspective of the persistent monitoring problem
scenario that we address in this paper, our work can be seen
as most similar to that of [2], where the authors considered
the monitoring of stochastic, transient events occurring in
discrete locations in the environment. The authors imposed
the relatively strong assumption of having exact and full
knowledge of the event statistics governing each stochastic
process at each location prior to the monitoring process.
In the context of this assumption, the authors presented a
provably-optimal algorithm that generates the unique opti-
mal policy maximizing the balance of observations while
minimizing the maximum time between two consecutive
observations at each station [2].

Viewed from the perspective of sequential decision making
in the context of uncertainty, there exists parallels between
the monitoring problem that we consider in this paper and
the canonical problem of prediction with expert advice where
the best expert is unknown apriori. An even more profound
relationship and similarity exists between our problem and
the widely-studied Multi-Armed Bandit (MAB) problem, in
which a gambler is faced with a row of K slot machines
that each yield a stochastic reward according to a machine-
specific probability distribution with a finite mean which
is initially unknown [4], [5]. The objective is to maximize
accumulated reward by choosing the optimal machine to play
at each discrete time step so that the expected regret with
respect to the reward accumulated after a finite number of
time is minimized.

There exist algorithms with provable regret guarantees
even in the finite-horizon case for both the prediction for ex-
perts problem [20] and MAB [4], [5]. Unfortunately however,
application or extension of these algorithms to the problem of
persistent surveillance is rendered non-trivial due to salient
differences between the persistent monitoring problem that
we consider and a widely-studied bandit problem such as
MAB. Namely, the persistent surveillance problem that we
address in this paper exhibits a continuous state and param-
eter space, which is in contrast to MAB where the bandit
attempts to choose the optimal lever to pull among a finite
set of levers at discrete time steps, i.e. rounds. Furthermore,
the monitoring problem we consider allows traveling the
given cyclic path multiple times. This necessitates additional
reasoning for iteration-dependent policies that consider the
trade-off between the cost (i.e., wasted travel time that could
otherwise be spent on observing) incurred by traveling from
one station to the next and the total time that should be spent
in traversing each monitoring cycle.

In contrast to all of the aforementioned prior work in
the realm of persistent surveillance, we present algorithms
with provable guarantees for the problem of monitoring of
stochastic and transient events occurring in discrete stations
in which the event statistics are unknown apriori. We employ
Bayesian inference to efficiently learn, approximate, and rea-
son about the event statistics at each station. Our algorithm
explicitly quantifies and considers the uncertainties over our
approximations to generate time-efficient, adaptive policies
which simultaneously achieve near-optimal monitoring ob-



jective values and balance exploration and exploitation.

III. PROBLEM DEFINITION

Let there be n ∈ N+ stations, labeled by i ∈ [n], whose
locations are known. Events of interest occur at each sta-
tion i and follow a Poisson process with an unknown rate
parameter, denoted by λi, where the rate for each station
is independent of other stations’ rates. We assume that the
stations are spatially distributed in the domain and hence the
robot must spend a non-zero travel time ci, j ∈R+ as it travels
from one station i to another station j.

We assume that we are given a cyclic path between
the stations and our goal is to generate a policy stating
the observation time that the robot should spend at each
station to optimize an arbitrary monitoring objective. Over a
monitoring period that is presumably bounded by resource
constraints, a robot may traverse the given cyclic path
multiple times and execute a variety of policies. We formally
define a monitoring cycle as the complete execution of a
monitoring policy and let k ∈ N+ denote each cycle. Under
this terminology, a policy to be executed at cycle k, πk, is
defined as the sequence of observation times per station, i.e.
πk := (t1,k, t2,k, . . . , tn,k) where ti,k ∈ R+ is the time to spend
at each station i ∈ [n].

Due to the presence of stochastic events, there will be
inevitable variability from the execution of one monitoring
cycle to the next. As will detailed further in Sec. IV, the
number of events observed, ni,k and the time spent, ti,k, at
each station i constitute sufficient statistics to be considered
at each cycle k; we let Xk

i := (ni,k, ti,k) denote this pair of
values and the set of all relevant statistics obtained from
the start of the monitoring task to iteration k as X1:k

i :=
{X1

i ,X
2
i , . . . ,X

k}.
As mentioned in Sec. II, the majority of problems that

face the exploration and exploitation trade-off, such as
MAB, define the overarching optimization problem as the
minimization of regret after a finite amount of time. MAB
is concerned with the sole objective of maximizing the
cumulative reward obtained, hence there is only one ob-
jective function (regarding the accumulated reward) that is
considered. However, in the persistent monitoring problem
that we address in this paper, the overarching goal is to
simultaneously maximize the number of events observed and
maximize the balance of observations across all stations.
Consequently, the multi-objective problem we consider in
persistent monitoring renders the definition of regret with
respect to multiple objectives to be non-trivial.

We instead recast the problem of persistent monitoring
in to an optimization problem with respect to individual
monitoring cycles and present an alternative, per-cycle defi-
nition for the optimization problem. Defining the monitoring
problem in this way that is local with respect to individual
monitoring cycles can be viewed as a heuristic approach for
greedily generating high-quality policies which perform well
in minimizing regret with respect to both objectives.

We formalize our overarching objective functions as fol-
lows. We let fobs(πk) be the objective function regarding the

expected number of observations made across all stations,
i.e.

fobs(πk) :=
n

∑
i=1

E[Ni(πk)] (1)

where E[Ni(πk)] = λiti,k by definition of expectation for
a Poisson process with rate λi. In order to reason about
balanced attention, we formalize the notion of observation
balance by letting the function fbal(πk) denote as in [2] the
expected observations ratio for a given πk which we seek to
maximize,

fbal(πk) := min
i

E[Ni(πk)]

∑
n
j=1E[N j(πk)]

. (2)

The theoretical and idealized definition of persistent
surveillance is traditionally defined as an infinite-horizon
problem in which the total monitoring time is unbounded.
Intuitively, we expect the agent execute multiple monitoring
cycles of varying time length depending on iteration-specific
policies that consider past history and observations. In light
of a possibly unbounded monitoring time, the two aforemen-
tioned objective functions defined above do not help establish
an appropriate upper bound on the total time that should be
spent per monitoring cycle.

Rather than imposing an arbitrary bound on the monitoring
time per cycle, we let the bound be a function of the
uncertainty over the rates at each station. Namely, we seek to
establish an adaptive bound on the observation time for each
station in a way that considers the trade-off between travel-
cost and the need to execute multiple monitoring cycles so
that each station can be visited more than once. In what
follows, we introduce a class policy optimization problems
subject to the uncertainty constraint, a hard constraint that
adaptively balances exploration and exploitation by control-
ling the decay of uncertainty over time. In short, the premise
of the uncertainty constraint is to induce a rapid decrease
of approximation uncertainty, which enables more accurate
evaluations of prospective policies in the subsequent cycle,
leading to the generation of high-quality policies within a
short amount of time.

More formally, let υi : N → R≥0 be a function that
quantifies the uncertainty in our estimate of the rate of each
station i after a certain number of iterations. At each iteration
k, having gathered and observed the events in the previous
k−1 monitoring cycles, we would like to generate a policy πk
such that our uncertainty in our approximations decreases by
some factor after executing πk, with high probability. More
formally, for a given δ ∈ (0,1),ε ∈ (0, 1

2 ), each policy πk
must satisfy the following uncertainty constraint ∀i ∈ [n]

P
(
υi(k|πk)≤ δυi(k−1)

∣∣X1:k−1
i

)
> 1− ε. (3)

In light of our monitoring objectives and the uncertainty
constraint, we formalize the per-cycle optimization problem
as follows.

Problem 1 (Per-cycle Monitoring Optimization Problem). In
each iteration k ∈ N+ generate a policy π∗k that simultane-
ously satisfies the uncertainty constraint (3) and maximizes



the balance of observations, i.e.,

π
∗
k ∈ argmax

πk

fbal(πk) (4)

s.t. P
(
υi(k|π∗k )≤ δυi(k−1)

∣∣X1:k−1
i

)
> 1− ε ∀i ∈ [n].

The per-cycle problem above defines the optimization
to be solved at each cycle k ∈ N+ in order to generate
an appropriate monitoring policy πk. By associating the
optimization problem with each cycle, we ensure that the
generated policies are adaptive to the events that occur in
previous cycles and enable the consideration of refined rate
approximations. In the following section, we introduce a
method for generating adaptive policies at each iteration that
are optimal with respect to the optimization problem defined
above.

IV. METHODS

In this section, we introduce a novel monitoring algorithm
that generates optimal policies at each monitoring cycle with
respect to the optimization problem defined in Sec. III. We
describe the sub-procedure for learning and approximating
event statistics using Bayesian inference, which enables the
incorporation of apriori knowledge and the generation of
rate approximations for each station. We outline and provide
pseudo-code for generating dynamic, adaptive policies that
appropriately interleave learning and approximating event
statistics (exploration) with generating and executing policies
(exploitation).

A. Learning and Approximating Event Statistics

Prior to the monitoring process, we may have prior beliefs
about what the rate λi could be for each station i. To model
and incorporate any beforehand knowledge regarding the rate
parameter, we use a Gamma distribution defined by the shape
hyper-parameter αi and the scale hyper-parameter βi as the
conjugate prior for the parameter λi. The hyper-parameters
αi and βi will be initialized to values representing the prior
beliefs, which we denote as the hyper-parameters αi,0 and
βi,0 and will then be updated during the monitoring process
to represent our posterior beliefs given observations.

We can obtain the posterior distribution for the rate of any
arbitrary station by updating the hyper-parameters αi and βi.
Given the current values of αi and βi at cycle k, consider
observing ni,k observations in ti,k time. Then, our posterior
distribution in light of the observations X1:k is defined as:

P(λi | X1:k) =
P(X1:k

i | λi)P(λi)

P(X1:k
i )

∝ Gamma(αi +ni,k,βi + ti,k). (5)

where (5) follows by conjugacy. For any arbitrary number of
ni,k events observed during ti,k time, the posterior update pro-
cedure simply entails updating the hyper-parameters based
on their previous values and the values of ni,k and ti,k, i.e.
αi←αi+ni,k and βi← βi+ti,k at each cycle. More generally,
after k monitoring cycles our posterior distribution is given
by Gamma(αi,0 +∑

k
j=1 ni, j,βi +∑

k
j=1 ti, j).

After updating, we can employ the posterior distribution
to generate a refined approximation, i.e. a point estimate,
of the rate parameter for station i. Since our approximations
will be iteratively changing, let (λ̂i)k∈N+ denote the sequence
of approximations for λi with respect to cycle k. For each
cycle k we can leverage the fact that our updated posterior
distribution is Gamma(αi,0 +∑

k
j=1 ni, j,βi +∑

k
j=1 ti, j) and set

our approximation to be the posterior mean, i.e.,

λ̂i,k := E[λi|X1:k] =
αi,0 +∑

n
i=1 ni,k

βi,0 +∑
n
i=1 ti,k

=
αi

βi

which follows by definition of the Gamma distribution. Once
updated approximations for the rates of all stations are
available, i.e. λ̂1,k, . . . , λ̂n,k, they can subsequently be used
to evaluate the objective functions described in Sec. III.

B. Controlling Approximation Uncertainty

We formalize the definitions of the uncertainty function
and the uncertainty constraint (3) introduced in Sec. III and
present a method to generate policies subject to the uncer-
tainty constraint. The premise of the uncertainty approach
is to enable efficient generation of high-quality policies
by enforcing a controlled and rapid expected decay of the
uncertainty of our approximations with high probability.

Recall from Sec. III, at cycle k, υi :N+→R≥0 is a function
that quantifies our uncertainty in our rate estimate for the rate
at station i. We choose to formally define the uncertainty
function as the variance of the posterior distribution after k
cycles, i.e.,

υi(k) :=Var(λi|X1:k) =
αi

β 2
i
=

αi,0 +∑
n
i=1 ni,k

(βi,0 +∑
n
i=1 ti,k)2 . (6)

Under this setting, for a given policy πk at cycle k ∈N+ the
uncertainty constraint as defined in Sec. III is equivalent to:

P
(
Var(λi|X1:k)≤ δVar(λi|X1:k−1

i )|X1:k−1
i

)
> 1− ε

for all stations i ∈ [n]. We further simplify the uncertainty
constraint by employing the definition of posterior variance
and obtain

P
(αi +Ni,k(πk)

(βi + ti,k)2 ≤ δ
αi

β 2
i
|X1:k−1

i
)

(7)

= P
(
Ni,k(ti,k)≤ δK(ti,k)|X1:k−1

i
)
> 1− ε (8)

where Ni,k(ti,k) ∼ Poisson(λiti,k) and K(ti,k) := δ
αi
β 2

i
(βi +

ti,k)2−αi.
Generating an appropriate ti,k that satisfies the inequality

given by (8) above requires that we reason about the possible
values that the random variable Ni,k(πk) can assume. Hence,
in order to make a more informed decision in generating the
observation time ti,k, we leverage the notion of a credible
interval in our policy generation process. Namely, given a
fixed ε ∈ (0, 1

2 ) and past observations X1:k−1
i at station i, we

construct a credible interval for λi denoted by the open set
Ci(X1:k−1

i ) := (λ l
i ,λ

u
i ) such that:

∀λi ∈ R+ P(λi ∈ (λ l
i ,λ

u
i )|X1:k−1

i ) = 1− ε



for the rate parameter λi of each station i. In constructing
the the credible interval, we reason about the regularized
Gamma function, denoted by Q(a,s), due to its inherent
relationship with the cumulative distribution function of
the posterior Gamma distribution. Namely, we employ the
inverse of the regularized Gamma function with respect to
the second variable, Q−1(a,s), to generate an equal-tailed
credible interval Ci(X1:k−1

i ) as follows:

λ
l
i :=

Q−1(αi,1− ε

2 )

βi
λ

u
i :=

Q−1(βi,
ε

2 )

βi
.

In addition, we have the property that
Since we have constructed an equal-tails credible interval

with respect to ε ∈ (0, 1
2 ), the following holds by definition:

∀λi ∈ R+ P(λ l
i > λi|X1:k−1

i ) = P(λ u
i < λi|X1:k−1

i ) =
ε

2
.

Now, putting it all together, given observations X1:k−1
i

after having executed k− 1 cycles and the end points of
the confidence interval λ l

i and λ u
i , generating an optimal

observation time ti,k for each station i entails efficiently
generating an observation time t∗i,k that satisfies the inequality
given by (8). A notable observation in this context is the
existence of an uncountably infinite values of ti,k that satisfy
this inequality. This follows from the fact that the expression
K(ti,k) follows a quadratic relationship with respect to ti,k,
whereas a linear relationship exists in the expression defining
the distribution’s parameter, i.e. λiti,k. Recalling that achiev-
ing low-latency, i.e. monitoring cycles with small amount of
observation times, is preferable for a monitoring task, we
pick the minimum ti,k possible.

In other words, the optimal t∗i,k is defined as the optimal
solution to the following optimization:

inf
ti,k∈R+

ti,k

s.t. P
(
Ni,k(ti,k)≤ δK(ti,k)|X1:k−1

i
)
> 1− ε.

Unfortunately, due to the inherent complexity of the cumu-
lative distribution function for the Poisson random variable,
using a non-linear optimization method to generate the opti-
mal solution is rendered computationally expensive. Hence,
instead of performing exact computation for the quantile
function, we employ a sharp inequality provided by [21]
which improves upon the Chernoff-Hoeffding inequalities
by a factor of at least two in approximating the cumulative
distribution function introduced.

As demonstrated rigorously in the analysis section (Sec.
V), the use of this approximation combined with the obser-
vation regarding the quadratic-linear relationship of K(ti,k)
and λiti,k results in a simplified solution for t∗i,k. Namely, an
appropriate choice of t∗i,k is given by

t∗i,k := t ∈ R+ | H(λ u
i t,K(t))− 1

2
W
( (ε−2)2

2ε2π

)
= 0, (9)

where H(m,k) is the Kullback-Leibler (KL) divergence be-
tween two Poisson distributed random variables with means
m and k and W is the Lambert W function. . An appropriate

value for t∗i,k can be efficiently obtained by invoking a root-
finding algorithm such as Brent’s method on equation above.

The constant factor δ ∈ (0,1) controls the rapidness of
uncertainty decay. There exists a tradeoff between low values
of δ , which lead to lengthy, but also risky policies, and
high values for δ which lead to shorter, but less efficient
policies due to incurred travel time. Thus, in order to pick
an appropriate value of δ , we use the following generalized
sigmoid function that takes into account the number of
stations and the total travel time per cycle:

δ (n) := δmin +
δmax−δmin

1+ e−Ttrn

where δmin,δmax ∈ (0,1),Ttr := (∑n−1
i=1 ci,i+1 + cn,1)

−1 ∈ R+

are the lower asymptote, the upper asymptote, and the
growth rate respectively. where δmin = 1/4,δmax = 0.99,δr =
(∑n−1

i=1 ci,i+1 + cn,1)
−1 are the lower asymptote, the upper

asymptote, and the growth rate respectively. It is worth noting
that δ is a static variable and is initialized only once in the
beginning of the monitoring process.

C. Generating Balanced Policies that Consider Approxima-
tion Uncertainty

We extend the method defined in the previous section
so that the generated policy π∗k simultaneously satisfies the
uncertainty constraint and balances attention given to all
stations in the minimum time possible. The key insight
behind our approach is that if we first compute a πlow :=
(t low

1 , . . . , t low
n ) where each t low

i is defined by the expression
given by Eq. (9) acts as a lower bound on each of the
observation times. In other words, any observation time ti for
a particular station i that is higher than t low

i given by πlow is
ensured to satisfy uncertainty constraint by monotonicity as
described in Sec. V. Now, we can initially set πk := πlow to
ensure that πk and any policy with higher observation times
satisfies the uncertainty constraint.

In addition to satisfying the uncertainty constraint on
the observation times, we must also satisfy the balance
constraint, i.e. maximize objective function 2. The idea is
to generate a new policy π∗k by increasing the observation
times of πk so that π∗k satisfies the balance and uncertainty
constraints. Note that π∗k achieves the optimal balance value
if and only if:

E[N1(π
∗
k )] = E[N2(π

∗
k )] = · · ·= E[Nn(π

∗
k )] = λ̂n,kt∗n,k.

For the initial lower bound policy πk = πlow = (t low
1 , . . . , t low

n )
from the expression in the previous section, it may very well
be the case that the above equality does not hold. However,
πk can be modified by first looking at the maximum number
of expected events that needs to be matched, i.e. Nmax :=
maxi∈[n] λ̂it low

i .
Now, using Nmax we can increase the observation times in

πk to generate the true optimal policy π∗k = (t∗1,k, . . . , t
∗
n,k). The

generation procedure for each observation time is as follows:

t∗i,k :=
Nmax

λ̂i,k
= Nmax

βi

αi
.



Our policy generating function that summarizes the sequence
of steps described above is shown in Alg. 2. The entirety
of our monitoring algorithm which employs Alg. 2 as a
subprocedure to generate policies is shown as Alg. 1.

Algorithm 1 Executes the entirety of the monitoring process
and employs Algorithm 2 as a sub-procedure to generate
policies.
Input:

(αi,0,βi,0): prior parameters for each station i
ci, j: travel times for all pairs of stations i, j

1: αi← αi,0
2: βi← βi,0
3: Ttr← ∑

n−1
i=1 ci,i+1 + cn,0

4: while NotDoneMonitoring() do
5: for i ∈ [n] do
6: λ̂i← αi

βi

7: π∗← Algorithm2(αi,βi,Ttr)
8: // Monitoring loop
9: for i ∈ [n] do

10: // Observe events for time t∗i
11: Nobserved← ObserveEvents(t∗i )
12: // Update hyper-parameters of the posterior
13: αi← αi +Nobserved
14: βi← βi + t∗i
15: return π∗ = (t∗1 , . . . , t

∗
n )

V. ANALYSIS

In this section, we present analysis proving the fact that
the each iterations-specific policy generated by our algorithm
described in Sec. IV is an optimal solution with respect to
the optimization problem defined in Sec. III with respect
to the generated rate approximations λ̂i,k, i ∈ [n] at each
iteration k ∈ N+. Subsequently, we establish guarantees on
the posterior variance and absolute error of our rate approxi-
mations as a function of optimization iterations. We conclude
by employing the aforementioned properties to establish a
bound on the quality of our generated solutions with respect
to those generated by an Oracle Algorithm that is assumed
to have perfect knowledge of the ground-truth rates.

We begin by showing that at every monitoring iteration k∈
N+, the policy defined by the sequence of observation times,
each generated according to the expression in 9 presented in
Sec. IV, is optimal with respect to the rate approximations.

Lemma 1 (Satisfaction of the Uncertainty Constraint). For
a given ε ∈ (0, 1

2 ),δ ∈ (0,1) at iteration k ∈ N, a value of
t∗i,k given by Eq. (9) satisfies the uncertainty constraint (Eq.
3).

Lemma 2 (Optimality of Generated Observation Times).
For all ε ∈ (0, 1

2 ),δ ∈ (0,1) at iteration k ∈ N, an optimal
observation time for each station with respect to optimization

Algorithm 2 Generates to an optimal policy with respect to
optimization problem 1 defined in Sec. III
Input:

(αi,βi): hyper-parameters of the posterior
Ttr: total travel time for the given cycle
ε ∈ (0, 1

2 ): user-given input
Output:

π∗ = (t∗1 , . . . , t
∗
n ): optimal policy

1: // Calculate the lower bound for π

2: δ ← δmin +
δmax−δmin
1+e−nTtr

3: // Upper end-point of the 1− ε credible interval
4: λu←

Q−1(βi,
ε
2 )

βi
5: for i ∈ [n] do
6: // Define the function Ki(t)
7: Ki(t) := δ

αi
β 2

i
(βi + ti,k)2−αi

8: t low
i ← t ∈ R+ | H(λut,Ki(t))− 1

2W
( (ε−2)2

2ε2π

)
= 0

9: πlow← (t low
1 , . . . , t low

n )
10: // Calculate the maximum E[Ni(πlow)]
11: Nmax←maxi∈[n] t low

i
αi
βi

12: // Balance attention based on Nmax
13: for i ∈ [n] do
14: t∗i ← Nmax

βi
αi

15: return π∗ = (t∗1 , . . . , t
∗
n )

problem 1 presented in Sec. III is given by

t∗i,k :=
Nmax

λ̂i,k
= Nmax

βi

αi

where Nmax :=maxi∈[n] λ̂i,kt low
i,k and t low

i,k is given by expression
(9).

In light of the appropriateness of our choices for the obser-
vation time, we can establish further guarantees that pertain
to the posterior variance and the error of our approximations.

Lemma 3 (Bound on Posterior Variance). For any ε ∈
(0, 1

2 ),δ ∈ (0,1), after k ∈ N+ iterations, the posterior vari-
ance Var(λi|X (1:k)) is bounded above by δ kVar(λi) with
probability at least (1− ε)k, i.e.,

P
(
Var(λi|X (1:k)

i )≤ δ
kVar(λi)|X (1:k))> (1− ε)k

for all stations i ∈ [n] where Var(λi) := αi,0
β 2

i,0
is the prior

variance.

Corollary 4 (Bound on Approximation Variance). For any
ε ∈ (0, 1

2 ),δ ∈ (0,1), after k ∈N+ iterations, the variance of
our approximation Var

(
λ̂i,k|X (1:k−1)

)
is bounded above by

δ k−1Var(λi) with probability greater than (1− ε)k−1, i.e.,

P
(
Var(λ̂i,k|X (1:k−1))≤ δ

k−1Var(λi)|X (1:k−1))> (1− ε)k−1

for all stations i ∈ [n].



Theorem 5 (ξ -Bound on the Approximation Error). For any
ε ∈ (0, 1

2 ),δ ∈ (0,1), after k ∈N+ iterations, for any ξ ∈R+,
our approximation λ̂i,k lies within a ball of radius ξ centered
at λi with probability at least (1−ε)k−1(1− δ k−1Var(λi)

ξ 2 ), i.e.,

P
(
|λ̂i,k−λi|< ξ |X (1:k−1))> (1− ε)k−1(1− δ k−1Var(λi)

ξ 2

)
for all i ∈ [n].

Theorem 6 (∆-Bound on Policy Optimality). For any ξi ∈
R+, i ∈ [n], given that 0 < |λ̂i,k−λi|< ξi with probability as
given in Theorem 5, let σmin := ∑

n
i=1(λi−ξi)

−1 and σmax :=
∑

n
i=1(λi + ξi)

−1. Then, the objective value of our policy π∗k
at iteration k is within a factor of ∆ of the ground-truth
optimal solution, where ∆ := σmin

σmax
with probability greater

than (1− ε)n(k−1)
(
1− δ k−1Var(λi)

ξ 2

)n.
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Fig. 2. We present results conveying the quality of the statistics approxima-
tions as a function of monitoring time. The rapid rate of approximation error
for the performance of our algorithm (cyan) supports the conjecture that our
algorithm is able to generate adaptive policies conducive to an accelerated
rate of error decrease in contrast to the other algorithms’ performance.

VI. RESULTS

In this section, we present results that portray the perfor-
mance of our algorithm in a monitoring scenario and contrast
the quality of policies generated by our algorithm to that of
a current state-of-the-art algorithm for persistent surveillance
[2] and a dynamic algorithm that represents a naive method
of generating adaptive policies. We consider the results of
the experiments in two settings: (i) a synthetic simulation
scenario in which the events are generated according to a
Poisson distribution and (ii) a real-world inspired scenario
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Fig. 3. Additional results of the performance of our algorithm with respect
to the Mean Squared Error (MSE) metric as a function of monitoring
time. Similar to the results shown in Fig. 2, we note that our algorithm
(cyan) is able to obtain accurate approximations for event statistics quickly,
resulting in smaller values for MSE in when compared to those of the other
monitoring algorithms’ values (red and blue).

-denoted as the yellow backpack scenario- simulated in the
ARMA, a tactical military game.

The synthetic simulation framework and the monitoring
algorithm were implemented in Python. The experiments
were conducted on a MacBook Pro with one 3.1 GHz Intel
Core i7 (4 cores total) processor and 16 GB of RAM. In
what follows, we present the experimental scenarios and the
respective results.

A. Synthetic Simulation Results

We obtained results from 10,000 trials (per algorithm)
of a simulated persistent monitoring scenario involving the
monitoring of events in 3 discrete stations for a monitor-
ing period of 10 hours (600 minutes). The settings for
the environment and the ground-truth rates were randomly
generated by generating random variables from the following
distributions for each of the three stations:

1) Prior Hyper-parameter αi,0 ∼ Uniform(1,20)
2) Prior Hyper-parameter βi,0 ∼ Uniform(0.5,1)
3) Rate parameter λi ∼ Uniform(

αi,0
4βi,0

,
4αi,0
βi,0

) events per
4) Cost of travel from station i to an adjacent station j

ci, j ∼ Uniform(2,5) minutes of travel time.
In this synthetic simulation, the arrival times of the random
events were specifically drawn from a Poisson distribution

To ensure consistency and compare the algorithms in a
fair manner, we incorporated the same learning and ap-
proximation procedure detailed in Sec. IV for the other
two algorithms. This integration enabled us to measure the
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Fig. 4. The performance of our monitoring algorithms with respect to the
objective function pertaining to the balance of observations. We can see that
when the balance of observations is considered with respect to the entire 10
hour monitoring window, the policies generated by our algorithm achieve a
significantly higher objective value than do the those generated by the other
two algorithms.
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Fig. 5. The performance of each algorithm with respect to the objective
pertaining to the number of events observed within the allotted monitoring
time (10 hours). We note that our algorithm (cyan) enables the agent to
observe significantly more events.

performance of an algorithm by that operated under the
assumption of known rates prior to the monitoring procedure

[2].
The label and description of each algorithm along with its

corresponding color in the figures are as follows:
1) Bal. Events, Min. Delay (Red): the algorithm introduced

by [2] which, as mentioned in Sec. II, assumes that the
event statistics are available apriori.

2) Incremental Search, Bal. Events (Dark Blue): an al-
gorithm that acknowledges the presence of the explo-
ration/exploitation trade-off and attempts to generate
adaptive and lengthier policies. The algorithm initially
begins with a random upper bound on the total cycle
time. After each monitoring iteration, the algorithm
increases the upper bound monotonically by a small ran-
dom amount (with an expected increase of 5 minutes)
by generating observation times that balance expected
observations subject to an arbitrary upper bound on the
total cycle time.

3) Bal. Events, Min σ2 (Cyan): our algorithm introduced
in this paper that employs variance estimates to si-
multaneously generate policies and balance the explo-
ration/exploitation trade-off in a near-optimal way.

We show plots of relative approximation error as a func-
tion of time, the total number of events observed on average
after 10 hours of monitoring, the balance of observations
with respect to all of the observations made in the 10 hour
monitoring period, and the total computation time spent
for generating policies during the execution of a trial. As
expected, the results show that our algorithm shown in cyan
in all figures is able to relatively outperform the other two
evaluated algorithms with respect to every metric. Namely,
from the figures we can see that our algorithm is able to effi-
ciently generate balanced policies leading to policies capable
of achieving near-optimal monitoring objective values while
simultaneously inducing a rapid decline of approximation
uncertainty.

B. ARMA Simulation Results

To be completed: in this subsection, we present the
results regarding the yellow backpack scenario: a real-
world inspired monitoring application involving the
surveillance of people wearing yellow backpacks in an
ARMA simulation (see Figs. 8 and 9).

VII. CONCLUSION

In this paper we introduced novel algorithms and objective
criteria for the task of persistent monitoring of events with
statistics that are unknown a priori. Our algorithms bridged
previous literature and tools pertaining persistent surveil-
lance and machine learning in order to introduce algorithms
that were able to simultaneously explore and exploit the
environment with respect to a given monitoring objective.
Namely, our algorithms considered maximizing the number
of observations across all stations in a balanced manner while
simultaneously ensuring the controlled decay of uncertainty
in our rate approximations . We presented analysis showing
the favorable properties of our algorithm with regard to
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Fig. 7. We present results showing the computation time required to
generate the policies in the simulated scenario. We can see that our algorithm
(cyan) is able to generate high-quality policies with higher computational
efficiency when compared to the other state-of-the-art algorithms.

uncertainty and policy optimality. We performed computa-
tional experiments with a diverse environment in terms of

Fig. 8. Work in progress: a rendition of the yellow backpack scenario
simulated in ARMA. In this scenario, agents randomly wander around a
town-like environment that includes buildings and apartments. The persistent
monitoring task for a robot -such as a UAV- is to continuously survey the
environment by following a given circular patrolling cycle, observing for an
appropriate amount of time at particular locations, and detecting potentially
malicious people wearing yellow backpacks during the observation process.

Fig. 9. Work in progress: a viewpoint of the yellow backpack simulation
in ARMA different from that of Fig. 8 is shown. Three -potentially
suspicious- agents carrying yellow backpacks are seen near a building
located at the intersection of two streets.

event statistics and compared our monitoring approach to
the state-of-the-art. In future work we intend to relax the
assumptions imposed on the events further and extend our
work to dynamic and large-scale environments.
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VIII. APPENDIX

A. Proofs of Results Presented in Sec. V

1) Proof of Lemma 1:

Lemma 1 (Satisfaction of the Uncertainty Constraint). For
a given ε ∈ (0, 1

2 ),δ ∈ (0,1) at iteration k ∈ N, a value of
t∗i,k given by Eq. (9) satisfies the uncertainty constraint (Eq.
3).

Proof. We first show that the proposed value of t∗i, satisfies
the uncertainty condition (3) for all stations i ∈ [n]. Recall
from Sec. IV that the uncertainty constraint is equivalent to
the following:

P
(
Ni,k(t∗i,k)≤ δK(t∗i,k)|X

(1:k−1)
i

)
> 1− ε (10)

with Ni(t∗i,k)∼ Poisson(λit∗i,k) and K(t∗i,k) := δ
αi
β 2

i
(βi + t∗i,k)

2−
αi. Now, we can employ the credible interval established in
Alg. 2 to further simplify the left-hand side of (10):

P(Ni(t∗i,k)≤ K(t∗i,k)|X
(1:k−1)
i ) (11)

=
∫

∞

0
P(Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λ )P(λ |X (1:k−1)

i )dλ

>
∫

λu

0
P(Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λ )P(λ |X (1:k−1)

i )dλ

≥ P(Ni(t∗i,k)≤ K(t∗i,k)|X
(1:k−1)
i ,λu)

∫
λu

0
P(λ |X (1:k−1)

i )dλ

= (1− ε

2
)P(Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λu) (12)

where we utilized the generated credible interval for λi and
the fact that

P
(
Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λu)

= inf
λ∈(0,λu)

P
(
Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λ )

to establish the inequalities.
We can further simplify the expression in (12) by estab-

lishing a lower bound for the cumulative distribution function
of a Poisson random variable with mean m(t∗i,k) = λu(xi)t∗i,k,
given the value K(t∗i,k). Using the inequality established by
[21], we have that the following holds for k ≥ m:

P
(
Ni(t∗i,k)≤ k)> 1− e−H(m,k)

max
{

2,
√

4πH(m,k)
} (13)

where m := E[Ni(t∗i,k)|λu] = λut∗i,k, k = K∗i,k, and H(m,k) is
the Kullback-Leibler (KL) divergence between two Poisson
distributed random variables with means m and k defined as

H(m,k) := m− k+ k ln
(

k
m

)
.

We note that by definition of t∗i,k, H(m(t∗i,k),K(t∗i,k)) = H∗ =

W
( (ε−2)2

2ε2π

)
, we have:

1− e−H∗

max
{

2,
√

4πH∗
} = 1− ε

2− ε
,

and thus

P(Ni(t∗i,k)≤ K(t∗i,k)|X
(1:k−1)
i ,λu)> 1− ε

2− ε
.

Continuing from (12) in light of this inequality yields

P(Ni(t∗i,k)≤ K(t∗i,k)|X
(1:k−1)
i )

> (1− ε

2
)P(Ni(t∗i,k)≤ K(t∗i,k)|X

(1:k−1)
i ,λu)

> (1− ε

2
)(1− ε

2− ε
) = 1− ε.

Putting it all together, we have for our choice of t∗i,k given
by (9) that for any ε ∈ (0, 1

2 )

P(Ni(t∗i,k)≤ K(t∗i,k)|X
(1:k−1)
i )> 1− ε.

2) Proof of Lemma 2:

Lemma 2 (Optimality of Generated Observation Times).
For all ε ∈ (0, 1

2 ),δ ∈ (0,1) at iteration k ∈ N, an optimal
observation time for each station with respect to optimization
problem 1 presented in Sec. III is given by

t∗i,k :=
Nmax

λ̂i,k
= Nmax

βi

αi

where Nmax :=maxi∈[n] λ̂i,kt low
i,k and t low

i,k is given by expression
(9).

Proof. We argue by contradiction, suppose that there exists
some t∗i,k that happens to not be the optimal solution to
problem 1. This implies that t∗i,k either (i) violates the uncer-
tainty constraint (3) or (ii) induces an unbalanced observation
scheme.

We immediately see that case (i) leads to a contradiction
since t∗i,k is defined to be bounded below by the solution to
given by the expression in Eq. (9), t low

i,k , hence by monotonic-
ity of the uncertainty condition, any value greater than or
equal to also satisfies the inequality given by (3). Similarly,
we note that (ii) also leads to a contradiction and thus cannot
occur since by definition of each t∗i,k, we have:

λ̂1,kt∗1,k = Nmax, λ̂2,kt∗2,k = Nmax, . . . , λ̂n,kt∗n,k = Nmax.

which implies that π∗k = (t∗1,k, . . . , t
∗
n,k) maximizes balance

(i.e., objective function 2)

E[N1(π
∗
k )] = E[N2(π

∗
k )] = · · ·= E[Nn(π

∗
k )]

⇐⇒ π
∗
k ∈ argmax

πk

fbal(πk)

hence, we have that (ii) leads to a contradiction. Since
we have exhausted all the cases of sub-optimality, it must
be the case that for all stations i ∈ [n] and all iterations
k ∈ N, the value of t∗i,k is optimal, implying that the policy
π∗k = (t∗1,k, . . . , t

∗
n,k) with respect to the per-cycle optimization

problem.

3) Proof of Lemma 3:

Lemma 3 (Bound on Posterior Variance). For any ε ∈
(0, 1

2 ),δ ∈ (0,1), after k ∈ N+ iterations, the posterior vari-
ance Var(λi|X (1:k)) is bounded above by δ kVar(λi) with
probability at least (1− ε)k, i.e.,

P
(
Var(λi|X (1:k)

i )≤ δ
kVar(λi)|X (1:k))> (1− ε)k



for all stations i ∈ [n] where Var(λi) := αi,0
β 2

i,0
is the prior

variance.

Proof. From Lemma 1 we have that each t∗i,k is ensured to
satisfy the uncertainty condition (3) ∀i ∈ [n]

P
(
Var(λi|X (1:k))≤ δVar(λi|X (1:k−1)

i )|X (1:k−1)
i

)
> 1− ε

(14)

for each iteration k regardless of the events that transpire in
the other iterations. Hence, the probability of satisfying this
condition for k consecutive iterations is greater than (1−ε)k.
This implies that, with probability at least (1−ε)k, we have
that the following chain of of inequalities holds:

Var
(
λi|X (1)

i

)
≤ δVar

(
λi
)
,

Var
(
λi|X (1:2)

i

)
≤ δVar

(
λi|X (1)

i

)
= δ

2Var
(
λi
)
,

...

Var
(
λi|X (1:k)

i

)
≤ δVar

(
λi|X (1:k−1)

i

)
= δ

kVar
(
λi
)

4) Proof of Corollary 4:

Corollary 4 (Bound on Approximation Variance). For any
ε ∈ (0, 1

2 ),δ ∈ (0,1), after k ∈N+ iterations, the variance of
our approximation Var

(
λ̂i,k|X (1:k−1)

)
is bounded above by

δ k−1Var(λi) with probability greater than (1− ε)k−1, i.e.,

P
(
Var(λ̂i,k|X (1:k−1))≤ δ

k−1Var(λi)|X (1:k−1))> (1− ε)k−1

for all stations i ∈ [n].

Proof. Employing the law of total conditional variance, we
have for each i ∈ [n]

Var(λi|X (1:k−1)
i )

= E[Var(λi|X (1:k))]+Var(E[λi|X (1:k)]|X (1:k−1))

= E[Var(λi|X (1:k))]+Var(λ̂i,k|X (1:k−1))

≥Var(λ̂i,k|X (1:k−1))

Invoking Lemma 3, we have that Var(λi|X (1:k−1)
i ) ≤

δ k−1Var(λi) with probability greater than (1− ε)k−1. Com-
bining this inequality with the above application of law of
total conditional variance yields the result.

5) Proof of Theorem 5:

Theorem 5 (ξ -Bound on the Approximation Error). For any
ε ∈ (0, 1

2 ),δ ∈ (0,1), after k ∈N+ iterations, for any ξ ∈R+,
our approximation λ̂i,k lies within a ball of radius ξ centered
at λi with probability at least (1−ε)k−1(1− δ k−1Var(λi)

ξ 2 ), i.e.,

P
(
|λ̂i,k−λi|< ξ |X (1:k−1))> (1− ε)k−1(1− δ k−1Var(λi)

ξ 2

)
for all i ∈ [n].

Proof. Note that by Chebyshev’s inequality states the fol-
lowing:

P
(
|λ̂i,k−λi|< ξ |X (1:k−1))> 1−

Var(λ̂i,k|X (1:k−1))

ξ 2 .

In light of Corollary 4, we have that

P
(
Var(λ̂i,k|X (1:k−1))≤ δ

k−1Var(λi)|X (1:k−1))> (1− ε)k−1

employing this inequality and Chebyshev’s inequality yields:

P
(
|λ̂i,k−λi|< ξ

∣∣X (1:k−1))
> (1− ε)k−1(1− Var(λ̂i,k|X (1:k−1))

ξ 2

)
> (1− ε)k−1(1− δ k−1Var(λi)

ξ 2

)

6) Proof of Theorem 6:

Theorem 6 (∆-Bound on Policy Optimality). For any ξi ∈
R+, i ∈ [n], given that 0 < |λ̂i,k−λi|< ξi with probability as
given in Theorem 5, let σmin := ∑

n
i=1(λi−ξi)

−1 and σmax :=
∑

n
i=1(λi + ξi)

−1. Then, the objective value of our policy π∗k
at iteration k is within a factor of ∆ of the ground-truth
optimal solution, where ∆ := σmin

σmax
with probability greater

than (1− ε)n(k−1)
(
1− δ k−1Var(λi)

ξ 2

)n.

Proof. Let T = ∑
n
i=1 t∗i,k be the total observation time allo-

cated by the generated policy. Then, by the optimality of
policy π∗k = (t∗1,k, . . . , t

∗
n,k) with respect to the rate approxi-

mations, we have the following equalities

λ̂1,kt∗1,k = Nmax, λ̂2,kt∗2,k = Nmax, . . . , λ̂n,kt∗n,k = Nmax.

which implies that

∀i ∈ [n] t∗i,k :=
T

λ̂i,k ∑
n
l=1

1
λ̂l,k

.

Now recall that the objective function pertaining to balance
(2) is given by:

fbal(πk) := min
i

E[Ni(πk)]

∑
n
j=1E[N j(πk)]

.

and the optimal (maximal) value of this function is 1
n . Now,

using the fact that |λ̂i,k − λi| < ξi, we have the following



inequalities for π∗k

fbal(π
∗
k ) = min

i

E[Ni(π
∗
k )]

∑
n
j=1E[N j(π∗k )]

=
mini λ̂i,kt∗i,k
∑

n
j=1 λ̂ j,kt∗j,k

=
mini

T
∑

n
l=1(λ̂l,k)

−1

∑
n
j=1

T
∑

n
l=1(λ̂l,k)

−1

>

T
∑

n
l=1(λi+ξl)

−1

nT
∑

n
l=1(λl−ξl)

−1

=
∑

n
l=1(λl−ξl)

−1

n∑
n
l=1(λl +ξl)−1

=
1
n

( σmin

σmax

)
with probability at least (1− ε)n(k−1)

(
1− δ k−1Var(λi)

ξ 2

)n.
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