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Abstract. For decades, the social sciences have provided the foundation for the 
study of humans interacting with systems; however, sparse, qualitative, and 
often subjective observations can be insufficient in capturing the complex 
dynamics of modern sociotechnical enterprises.  Technical advances in 
quantitative system-level and physiological instrumentation have made possible 
greater objective study of human-system interactions, and joint qualitative-
quantitative methodologies are being developed to improve human performance 
characterization.  In this paper we detail how these methodologies were applied 
to assess teams’ abilities to effectively discover information, collaborate, and 
make risk-informed decisions during serious games. Statistical models of intra-
game performance were developed to determine whether behaviors in specific 
facets of the gameplay workflow were predictive of analytical performance and 
games outcomes.  A study of over seventy instrumented teams revealed that 
teams who were more effective at face-to-face communication and system 
interaction performed better at information discovery tasks and had more 
accurate game decisions. 2 
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1 Introduction 

From network operations control centers to expeditionary military detachments, teams 
of humans interoperate with complicated systems to create complex sociotechnical 
enterprises. Within these enterprises, the most critical component of overall 
performance is that of the human, yet their contribution is often the least understood. 
For decades, social science has provided the foundation for the study of humans in 
these contexts through the observations of ethnographers and anthropologists, yet 
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these traditional methodologies have significant limitations. Human observation is 
often subjective and anecdotal and can suffer from biases and differences in 
interpretation. Additionally, existing tools to measure human behavior can be 
qualitative and are insufficient in capturing intricate intra- and inter-individual 
dynamics. Lastly, the collection of these data is time and human intensive and does 
not scale to large organizational studies. These limitations hinder the ability to draw 
objective conclusions and understand the parameters influencing team success. 
Recent technical advances in sensing and instrumentation can be used to augment 
human observation and enable quantitative, persistent, and objective measurements of 
human behavior. By jointly processing these multi-modal data, a more complete 
characterization of human-system interaction can be made, increasing the ability to 
modify behavior and improve performance. The fidelity and granularity of these data 
can be very revealing, and in some instances be used to predict performance in related 
aspects of the activities being measured. 

2 Humatics Assessment Methodology 

Over several years, we have developed a data-driven research methodology and 
technical framework, Humatics, to address the challenges outlined in Section 1 by 
quantitatively measuring human behavior; rigorously assessing human analytical and 
cognitive performance; and providing data-driven ways to improve the effectiveness 
of individuals and teams. Humatics incorporates three major areas of research 
including system-level, physiological, and cognitive instrumentation; assessment 
methodology and metrics development; and performance feedback and behavioral 
recommendation. In this paper, we describe an instantiation of this approach, shown 
in Fig. 1, and its application to the study of teams’ abilities to effectively discover 
data, make sense of that data, and make decisions during a serious game.  

 

 
Fig. 1. Humatics performance assessment framework 
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objective for the process being studied and identification of observables to be 
measured in order to enable insight. A measurement strategy can then be developed 
based on which method and phenomenology is best suited to directly or indirectly 
measure those observables. For this research effort, specific instrumentation 
modalities were chosen to augment qualitative human observations with near 
continuous collection to enable analysis of dynamic low-level behavioral signals. 

The first element of the framework in Fig. 1 is the instrumented analyst 
workstation, where both system-level and physiological instrumentation are used to 
characterize human-system interactions. System-level instrumentation is 
accomplished through the insertion or enabling of software code that logs graphical 
user interface interaction events, queries to and transactions with databases, what data 
is visible to the user, and more. To add context to the data, screen recordings are 
continuously captured and a research-grade eye tracker is employed to detect the 
user’s location of gaze on the screen. This physiological information is used for cross-
referencing the system-level data. 

The next element in Fig. 1 is cognitive instrumentation, which is used to measure 
behaviors associated with the cognitive processing of information. To quantify the 
comprehension and situational understanding of teams during scenario-based training 
or serious games, knowledge elicitation techniques are employed [9][15]. In addition 
to gaze following, the eye tracker is also used to perform pupillometry in order to 
noninvasively estimate human cognitive load [10]. 

The last framework instrumentation modality involves the use of wearable sensors, 
called Sociometric Badges [16], to record non-linguistic metadata of speech 
behaviors, body movement, and other data. Originally developed by the MIT Media 
Laboratory, the badges have often been employed to perform longitudinal studies of 
the communication patterns of large organizations. For this application, badges with 
modified firmware and custom post-processing software are used to increase 
granularity for small group dynamics within hierarchical teams. 

Collected instrumentation data is processed with specialized metrics and are used 
for real-time diagnostic displays or post-experiment assessment. Real-time displays 
allow for immediate team evaluation to enable behavioral redirection, while offline 
post-processing supports in-depth analysis and process improvement. The team 
assessments in this document are an example of the latter.  

3 Network Discovery Serious Game 

In 2009, researchers at MIT Lincoln Laboratory developed a serious game to better 
understand how analysts use multisource textual and geospatial data to make risk-
informed decisions [1][3][4]. In the game, competitive teams of varying size from 3 to 
8 players analyze the scenario data to make expected decision outcomes. The teams 
self organize their roles and responsibilities; teams were provided with one less game 
client than the total number of players, generally causing hierarchies to form with one 
leader and the rest workers. The game scenario is based around a scripted storyboard 
where an organized crime network is operating in a city to incite violence 
(kidnappings, attacks) and then quickly disperses into the background populace of the 



 

city. From this storyboard a probabilistic vehicle traffic model produces vehicle 
movements, or tracks, for the scenario vehicles the teams are tasked to find. Those 
tracks are embedded into realistic background tracks from the same model that 
simulate the normative movements of the city population. Using this combined track 
dataset as input, video modeling and simulation tools are used to produce a simulated 
airborne video dataset rendered over the city's geospatial extent for each time-step in 
the scenario storyboard. 

Teams are given news and police reports of varying relevance to cue them to 
observable events in the video. Teams then analyze the video to follow suspect 
vehicles from overt events to their sources and destinations in order to unravel the 
network of facilities used by the crime organization. Teams are given 90 total minutes 
to accrue evidence (discovery phase) and then to codify what they know (decision 
phase) by identifying which facilities (sites) should be interdicted by law enforcement 
to disrupt the network. All scenario data are displayed, manipulated, and acted upon 
in a software game client that was purpose-built for this research and is instrumented 
for post-game analysis as described in Section 2. 

4 Team Assessment Case Study 

To assess human performance during the game, each major step of the workflow is 
decomposed and mapped to instrumentation data and performance metrics that 
characterize their behaviors. As seen in Fig. 2, three major facets of performance 
emerge including client interaction, information triage, and discovery and decision 
performance. Additionally, the performance of this entire workflow is underpinned by 
a team’s ability to effectively organize and collaborate through face-to-face 
communication. In this section, a case study of four 5-member teams illustrates how 
system-level and physiological instrumentation can be used to better characterize a 
team’s performance during gameplay. 
 

 
Fig. 2. Gameplay workflow and performance metric mapping. 



 

 

4.1 Game Client Interaction Performance 

Software instrumentation built into the game client records various user interactions 
both on-demand and at specific intervals. These data can be used to understand macro 
behaviors like the volume or rate of interactions with specific tools in the client. For 
example, in the game teams use placemarks, geo-spatial annotations, to codify the site 
discoveries they have made and to later code their courses of action (decisions). By 
recording placemark creation and modification attributes we can quantify team 
analytical behaviors in the workflow as a function of time. These data can also be 
used to analyze micro behaviors, such as the geospatial data currently being viewed 
by the user, known as the viewport [1]. Viewport data are recorded each second and 
include the current time of gameplay, the time in the scenario being displayed, and the 
geospatial bounding-box of the video footprint in the map tool. An example of 
viewport instrumentation is shown in Fig. 3. 

 
Fig. 3. An illustration of viewport instrumentation.  The game client (left) is viewing a portion 
of the scenario video, whose viewport extents are represented by the blue box on the heat-map 
(right), as indicated by the yellow arrow.  Viewport heat-maps can be used to understand a 
team’s geospatial analysis strategy. 

4.2 Scenario Information Triage Performance 

After the viewport data are logged as described in Section 4.1, they are correlated 
with the scenario ground truth and processed using specialized information theoretic 
metrics [1][2] to determine which relevant (scenario crime network) and irrelevant 
(background population) tracks or sites are being viewed at each scenario time-step. A 
graphical representation of the scenario and background track information is shown in 
Fig. 4, which illustrates the teams’ ability to effectively triage vehicle track data. If 
players are properly interpreting the information in the report messages they should 
focus only on the red scenario vehicle tracks and not the yellow background 
population tracks. As shown in Fig. 4, Teams 3 and 4’s performance plateaus as the 
scenario evolves, whereas Teams 1 and 2 continue to find and analyze more relevant 
(red) scenario tracks throughout gameplay. 



 

 
Fig. 4. Team vehicle triage performance. The left plot shows the extents of all vehicle track 
data in the game, with the red lines denoting tracks associated with the criminal network 
vehicles and the yellow tracks of background population tracks. The right plot shows the team 
triage performance, with the y-axis representing the percentage of total red tracks observed in 
the video and the x-axis representing the number of minutes elapsed since the start of the game.   

Similarly, Fig. 5 illustrates the teams’ ability to effectively triage video of site-
related activities. As shown in the figure, Teams 1 and 2 spent substantially more 
effort observing scenario site information as compared to Teams 3 and 4. In many 
cases teams, spend a lot of time analyzing sites but ultimately chose an incorrect 
action or take no action at all.  

 

 
Fig. 5. Team site triage performance. The left plot shows the scenario sites to be discovered, as 
annotated with the red icons, and the background sites, denoted with a yellow dot. The right 
plot shows the performance of the teams at accumulating information at each of the scenario 
sites, as indicated by the fill color of each box and color bar scale. Decision outcomes for sites 
are also plotted (right), with a + or - representing a correct or incorrect decision respectively. 



 

 

4.3 Team Discovery and Decision-Making Performance 

Because the scenario was constructed to have the crime network activities completely 
separated from the background activity, the game can be analyzed from the 
perspective of signal detection theory. Essentially, the teams are considered to be 
detectors of criminal network activity in that they are attempting to extract these 
signals from the noise of the normal activities of the rest of the population [3]. The 
Receiver Operating Characteristics (ROC) measurements of detection theory can be 
used to assess the teams’ performance, as shown in Fig. 6. 

Results from two different tasks are plotted: the discovery of scenario sites as 
measured by team placemarks at those sites, and the declaration of scenario sites 
which are the subset of the total placemarks that are given a course of action decision.  
Decision actions are directly related to the teams’ comprehension of the scenario 
storyboard and their confidence in that understanding. For example, it can be seen that 
Team 2 had placemarks on 100% of the crime network sites, but only had the 
confidence to declare 30% of those sites.  They also declared sites not part of the 
network, resulting in a 0.2% probability of false declaration. Team 4 had similar 
discovery performance as Team 1 and 0% probability of false declaration. Team 1 
had the highest detection probability, but at the expense of more false declarations. 

 

 
Fig. 6. Team discovery and decision ROC plot. The y-axis represents the Probability of Correct 
Declaration, or the fraction of correct sites found and acted upon by the teams. The x-axis 
represents the Probability of False Declaration, or the ratio of incorrect sites declared divided 
by the total possible discoverable sites. The blue icons represent decision performance for sites 
that were declared to be associated with the network. The red icons show the fraction of all 
sites that were correctly discovered before the course of action selection process. 

4.4 Team Verbal Communication Performance 

Face-to-face communication is known to be a key factor in overall team 
performance for highly cooperative tasks [11][12][13][14]. Traditional methods to 
characterize these communications have largely focused on speech content, however 



 

more recent methods center on the collection of non-linguistic speech features that 
enable the characterization of team dynamics without having to analyze the linguistic 
content of a team’s utterances [12].  

To collect speech metadata, Sociometric Badges are given to each player during 
gameplay. The badges continuously record the time, duration, and identity of each 
player’s speech, and post-processing software provides measurements of when 
players spoke alone, when speech overlapped with another player, which players were 
listening, and when players were silent. These data naturally form a directed graph of 
communication between players as shown in Fig. 7.  For simplicity, only Teams 1 and 
2 are shown. 

 

 
Fig. 7. Face-to-Face communication network graphs. Vertices represent players and edges 
represent directed communication from one player to another. Vertex size is proportional to 
total participation for a player, edge thickness is proportional to directed speech time to each 
teammate, and edge color indicates directionality by matching the source vertex color.  

Previous studies of face-to-face communication behaviors of small teams in a 
collaborative setting have found that balanced participation and speaking time along 
with increased turn-taking are associated with better team performance [8].  In Fig. 7, 
Team 1 players A and C are dominating the conversation as seen by their edge 
thickness, while the rest of the players are less engaged with lower participation 
(smaller vertices) and less speaking time (thinner edges).  Conversely, Team 2 has a 
much more balanced distribution of both speaking time and participation than Team 
1, with player A acting in the role of team leader. Analysis of group influencers and 
team role estimation using these data is a promising area of active research [7]. 

For deeper insight into the communication network, a Social Network Analysis 
approach to characterizing player interaction is explored. By computing the directed, 
normalized Closeness Centrality of each player [5], an estimate of the connectedness 
of players can be derived. Larger centrality magnitudes indicate a player’s graph 
“closeness” to all other players. One useful application of this measure is to inspect 
the time-varying behavior of player centrality [6] during game play, as shown in Fig. 
8. In the figure, the visual representation of Teams’ 1 and 2 closeness centrality can be 
very useful for identifying team dynamic attributes, such as leader emergence.  For 
Team 1 we see the same effect of players A and C communication dominance as seen 



 

 

in Fig. 7. For Team 2 we see the clear emergence of player A as the leader of the team 
during the discovery phase of the game with A’s centrality reducing towards the end 
as the team moved into the collective decision-making phase of the game. 

 

 
Fig. 8. Time-varying player communication centrality. In both teams, Player A is considered 
the leader and transitions to gain the highest Centrality midway through the game.  Qualitative 
observations during gameplay support these findings. 

In addition to Social Network Analysis, Recurrent Pattern Analysis was also 
performed using the Sociometric Badge data. First, speech patterns are coded into 
symbols according to various speech behaviors and are then analyzed as a time series 
[17]. The strength of the recurrent structure within these code sequences is called 
determinism (DET). In a strict turn taking situation the DET will be high (near 100%) 
as the conversation is highly structured. In a situation with random speech intervals, 
the DET will be low (close to 0%) indicating that the conversation is highly 
unstructured. DET scores were comparable for the four teams, with local maxima 
near 60% and local minima near 30%. There were fluctuations in the values over 
time, indicating that the structure of the communication ebbed and flowed throughout 
gameplay. Further analysis showed a high correlation between DET magnitude and 
the percentage of time an individual spoke while all others listened (r=0.47-0.53, 
p<0.001), suggesting that in part, structure occurs, even in a complex team setting 
with five participants, when individuals speak and others listen.   

4.5 Total Team Performance  

Sections 4.1 through 4.4 demonstrated how performance is quantitatively measured at 
several points in the overall game workflow, however combining these metrics into a 
single total performance measure warrants careful consideration.  Qualitatively, 
Teams 1 and 2 excelled at communication, triage, and site discovery, but had more 
false declarations than Teams 3 and 4.  Conversely, Teams 3 and 4 did not observe as 
much information or discover as many sites, but were very accurate in adjudicating 
what they found. Team 2 ultimately was the winner of the four-team competition and 
had the best overall performance and game score. 



 

5 Predicting Team Performance 

When assessing teams’ analytical and decision-making performance, common 
questions arise regarding how performance in one facet of a decision process affects 
the performance of either subsequent processes or the aggregate overall process.  
Section 4 illustrates that the collected measurements enable detailed insight about 
individual facets of performance; however, we wanted to take this a step further to 
determine whether behaviors in specific facets of the intra-game workflow were 
predictive of analytical performance or games outcomes. To approach this, we 
processed data collected over several years of employment of the game, 
encompassing 71 different teams comprised of over 350 unique players. For all of the 
71 teams, system instrumentation data were recorded. For a subset of 15 of those 
teams, face-to-face communication data were also collected. 

Robust linear regression analyses are used to statistically estimate how predictive 
various facets of intra-game performance are with respect to workflow processes. For 
each model, residual analysis, significance testing, and other regression diagnostics 
are performed, and their results are included in parentheticals with each prediction 
finding. In undertaking this analysis, we want to address three overarching research 
propositions, as follows. 

5.1 Client Interaction Effectiveness  

The first proposition investigated was whether more effective interaction with the 
game software client led to better game performance.  From our analysis, we found 
that teams (N=71) who had higher usage across all analytic functions of the game 
client discovered more total sites (p<0.001, R2=0.25) and had a higher probability of 
correct site discovery (p<0.001, R2=0.20). The effect was even more pronounced for 
the functions of the game client associated with the frequency that players submitted 
space-time queries for track data and its correlation with increased site discovery 
(p<0.001, R2=0.43). Higher total game client interaction was also associated with 
more effective observations of scenario site information (p<0.001, R2=0.21) and track 
information (p=0.006, R2=0.20). Essentially teams who were more effective at 
interacting with the functions of the game client observed more relevant scenario 
information and found more correct sites. 

5.2 Information Triage Effectiveness 

The second proposition investigated was whether discovery of more scenario 
information led to better game outcomes.  From our analysis, we found that teams 
(N=71) who observed more relevant scenario site information (p=0.002, R2=0.15) and 
track information (p=0.006, R2=0.13) also scored higher in game outcome. The 
overall game score is a metric that takes into account several aspects of how well the 
players perform but it also encapsulates the confidence of their decisions (courses of 
action strength) and reflects the overall strategy for how they decide to approach the 
game (aggressive to risk-averse). 



 

 

5.3 Team Communication Effectiveness 

The third proposition investigated was whether teams who communicate more 
effectively have higher game performance.  Our analysis found that teams (N=15) 
who communicated more (total time) throughout the exercise also observed more 
relevant scenario site information (p=0.006, R2=0.51) and track information (p=0.001, 
R2=0.61). Additionally, teams who had higher participation (frequency of 
communication) from all of their members throughout the game also observed more 
relevant scenario site information (p=0.002, R2=0.60) and track information (p=0.010, 
R2=0.46). Lastly, teams who communicated more (total time) throughout the exercise 
also made better decisions on the most challenging sites to adjudicate (p=0.007, 
R2=0.47). This agrees with qualitative observations of teams during the decision-
making process regarding the total engagement and participation of the full team. 
Team centrality metrics, as shown Section 4.4, did not have a significant association 
with other aspects of team performance, and warrants further investigation.  

6 Conclusion 

In this paper we have shown that Humatics can be used to improve the quantitative 
study and objective assessment of human analytic and decision-oriented processes, 
and we detailed its application to measuring a team’s ability to effectively discover 
information, collaborate, and make decisions during a serious game. Additionally, we 
have demonstrated that data collected about intra-game workflow process can be used 
to predict subsequent game outcomes and other performance attributes.  While we 
described one specific instantiation of Humatics, the framework has broad 
applicability towards the optimization of a wide range of complex sociotechnical 
enterprises. Future research will study the combination of multiple sources of 
heterogeneous instrumentation data and identifying their relationships to other aspects 
of human behavior and performance. 
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