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Abstract—Over the past decade there have been significant
advances in bringing parallel computing and new database
management systems to a wider audience. Through a number
of efforts such as the National Strategic Computing Initiative
(NSCI), there has been a push to merge these “Big Data” and
“Scientific Computing” communities to a single computational
platform. At the Massachusetts Institute of Technology, Lincoln
Laboratory, we have been developing HPC and database tech-
nologies to address a number of scientific problems including
biomedical processing. In this article, we briefly describe these
technologies and how we have used them in the past. We
are interested in learning more about the needs of clinical
pathologists as we continue to develop these technologies.

I. INTRODUCTION

Database management systems (DBMSs) have gone through
a significant evolution since the original SQL databases. The
advent of NewSQL and NoSQL (Not Only SQL) databases has
led to the development of new technologies that are well suited
for applications beyond traditional database applications such
as e-commerce. New DBMS technologies are being developed
around supporting traditional scientific workloads such as
image processing and correlation. Further, High Performance
Computing (HPC) paradigms such as the Message Passing
Interface (MPI) have been extended to a number of languages
and hardware tools [1] amenable for use in scientific domains.
At the Massachusetts Institute of Technology, Lincoln Labo-
ratory, we have been developing tools to bring the power of
databases and HPC tools to the common user. In this paper, we
present our view of HPC and database technology progression.
Further, we present, in detail, one DBMS, SciDB, that is
tailored for scientific applications and has the potential for
applications in cancer research.

II. PARALLEL COMPUTING AND BIG DATA

Parallel computing is the ability to take a given program
and split it across multiple processors in order to reduce
computation time or resource availability for the application.
Very often, advances in parallel processing are directly used
for the computational piece of databases such as sorting and
indexing datasets. Hadoop [2], for example, supports a parallel
file system that forms the basis of a number of DBMSs
such as Apache HBase [3]. Parallel computing environments

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Assistant Secretary of Defense for Research and
Engineering.

such as pMatlab [4], or bcMPI [5] can significantly reduce
the need for deep knowledge of parallel computing. In our
previous work, we have applied parallel computing techniques
to digital pathology [6]. In these applications, high resolution
histopathological images were stored as large TIFF images
with JPEG2000 compression and were processed in parallel
using MATLAB and the Parallel Computing Toolbox. These
approaches require a significant amount of parallel computing
development and may not be accessible to the average non-
computer scientist interested in developing novel algorithms
for disease characterization.

III. DATABASE MANAGEMENT SYSTEMS

Database management systems are very commonly used for
indexing and storing large quantities of data. Newer DMBSs
go beyond traditional relational systems such as PostGRES [7]
to support rapid ingest of data, in-database analytics, hard-
ware accelerated DBMS operations, and data models that
more closely resemble the type of data being stored. For
example, NoSQL graph databases are tuned to support graph
operations and NoSQL key-value databases excel at rapid
ingest of unstructured data. Recent NewSQL databases such as
MemSQL[8] or Spark [9] leverage main memory (as opposed
to disk access) for rapid in-database analytics. One NewSQL
database of interest to the scientific community is SciDB
which we discuss in detail. Further, the vast proliferation of
DBMS technologies has created a new technology selection
problem. For this, we have been developing a new type of
database called “Polystore” databases that aims to merge the
relative advantages of disparate systems.

A. SciDB

SciDB is a scalable, computational database system that
uses an array model for data storage. This array data model
stores data in a natural order i.e. the data are stored in the same
logical axis system that was used to generate the original data.
For example, a 3D volumetric image can be stored in SciDB
such that pixels in the image are in the same cartesian space
that was used for generating the data and can be accessed by
simple array based indexing.

The array-based data model in SciDB also provides support
for parallel processing, efficient sparse storage, and in-database
linear algebra operations that are well suited for the storage
and analysis of biomedical imaging data. SciDB is a full
ACID (atomicity, consistency, isolation, durability) DBMS
that guarantees repeatability of results across multiple users



operating on the same data. One of the unique advantages of
SciDB is its ability to perform fast range selects and joins. This
capability is achieved by storing data in chunks, in the same
order as in the original coordinate system. By storing data in
this manner, data that are close to each other can be accessed
very quickly by reducing the number of reads necessary to
access a given range of data. SciDB also allows a user-settable
overlap between chunks of data to speed up applications such
as spatial filtering of images for which fewer data reads are
necessary for accessing border pixels.

Data stored in SciDB can have multiple attributes per data
item. For example, if an RGB color image is stored in SciDB,
each entry in the database can have three attributes: Red,
Green, Blue pixel values. This is a very powerful concept that
can be leveraged for a variety of applications. In the case
of weather modeling, data from a variety of sensors gathered
at specific geo locations can be stored in the same cell of a
SciDB array. Thus, a single query can be used to find geo
locations that have similar characteristics such as temperature,
wind speed, humidity, etc. This capability has applications in
cancer diagnosis and research because of the ability to query
and correlate data from a variety of modalities.

B. Polystore Systems

A new approach to designing new systems is to move
away from the philosophy that we can design a single system
amenable to all possible data types encountered for a par-
ticular application [10]. Recently, we have been developing
a “Polystore” database system called BigDAWG (short for
the Big Data Working Group) that brings together disparate
DBMSs. Polystore databases provide a single interface to data
stored in disparate systems which are most efficient for a
particular dataset. For example, polystore systems can support
analytics that require data stored in PostGRES and SciDB
simultaneously. We have already applied BigDAWG to medi-
cal [11] and genomic data [12] and achieved significant per-
formance and efficiency gains. We have also been developing
a software package, D4M (Dynamic Distributed Dimensional
Data Model) [13], and related mathematical framework of
Associative Arrays [14] to simplify access to polystore systems
in a mathematically rigorous manner.

IV. APPLICATION TO CANCER DIAGNOSTICS

Cancer diagnosis relies on the assessment of stained tissue
samples by a pathologists. Depending on the disease, a number
of different stains are used to identify disease stage and
severity. For example, in Follicular Lymphoma [15], H&E
stained tissues are used to count the number of centroblasts
and stratify the disease. However, by using adjacent tissue
samples stained with CD10, CD20, CD21 antibody researchers
may be able to gain valuable insights that are not apparent in
isolation. Similarly, in high-throughput imaging, cells are typ-
ically labelled with multiple fluorescent proteins that highlight
biological phenomenon that are relevant in the drug discovery
process. By storing data from multiple channels in the same
co-ordinate space, SciDB can be used to develop analytics that

can provide new insights into the data. A common approach in
the analysis of histopathological images is the conversion of
RGB images to other colorspaces [16], [17], [18], [19] such as
the La∗B or HSV colorspace. By storing multiple colorspace
in a single array in SciDB, it is possible to extract regions
of interest in the tissue from multiple staining modalities.
Additionally, these color space conversions can be performed
in-database and stored for future retrieval or use as a pre-
processing step. Since SciDB can leverage HPC resources,
the data is seamlessly processed in parallel, without the need
for extensive re-coding of algorithms for parallel computing.

A. Alternative to current approaches

Analysis of whole slide images is a growing field of
research. A common approach to whole slide analysis includes
downsampling images, processing only small sections of an
image and leveraging HPC systems to perform analysis in par-
allel. Polystore database and specialized DBMSs like SciDB
offer an alternative to these traditional approaches along with
the following advantages:

• Easier data access Since the image data (2D and 3D)
can be stored in it’s natural cartesian space, it is easier to
develop algorithms that can access the data using natural
(x,y,z) co-ordinates rather than reading individual image
files to access the data of interest. Other DBMS technolo-
gies can be used in conjunction for wider analysis.

• In-database analytics Using basic linear algebra ap-
proaches, several common processing steps such as color
space conversions, smoothing, image math can be com-
puted directly inside the database without the need to
extract the image from the database. This pre-processed
data can then be stored as attributes of the images in
SciDB. Thus, for a given pixel location, it is possible to
retrieve not only the original pixel values but also the
corresponding pixel values in a different color space.

• Leverage HPC infrastructure Since SciDB runs on
commodity clusters, it is possible to manage and process
massive amounts of data efficiently using commodity
hardware. It’s capabilities can be extended by adding
additional hardware as needed and developing custom
analytics that can be performed in-database.

• Cross-modal analytics with other data Leveraging tools
such as Polystores can greatly simplify the storage and
access of related datasets that may be already stored in
other systems. For example, time-series data or clinical
information can be stored in relational or key-value
systems.

V. DISCUSSION AND CONCLUSIONS

We believe that there are a number of new technologies that
can be used to simplify the development of cancer diagnostics.
We have been developing a number of these tools but wish
to learn more about what specific capabilities are required by
cancer researchers. During this talk, we will describe a number
of these advances and learn more about how they can be used
to alleviate computational challenges in cancer research.
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